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Abstract— We consider the problem of learning a neural
network controller for a system required to satisfy a Signal
Temporal Logic (STL) specification. We exploit STL quan-
titative semantics to define a notion of robust satisfaction.
Guaranteeing the correctness of a neural network controller
is a difficult problem that received a lot of attention recently.
We provide a general procedure to construct a set of trainable
High Order Control Barrier Functions (HOCBFs) enforcing
the satisfaction of formulas in a fragment of STL. We use
the BarrierNet, implemented by a differentiable Quadratic
Program (dQP) with HOCBF constraints, as the last layer of the
neural network controller, to guarantee the satisfaction of the
STL formulas. We train the HOCBFs together with other neural
network parameters to further improve the robustness of the
controller. Simulation results demonstrate that our approach
ensures satisfaction and outperforms existing algorithms.

I. INTRODUCTION

We consider the problem of controlling a system from
a specification given as a Signal Temporal Logic (STL)
formula [1]. It was shown that this can be formulated as
an optimization problem with the degree of satisfaction
(robustness) as objective or as a constraint, which can be
solved using Mixed Integer Programming (MIP) [2], [3] or
gradient-based optimization [4]. Such methods, however, are
computationally expensive, and difficult to use online.

Reinforcement Learning (RL)-based techniques can per-
form most of the computation offline, hence enabling real-
time control. Model-based RL using neural network was
applied to control synthesis problems under STL tasks in
[5], [6], where the robustness was used as an objective
(reward) function to learn a robust controller. However, these
works cannot guarantee the correctness of the learned policy.
Violation has two main causes. First, while training a neural
network, the system can get stuck at a local optimum, which
is likely to happen when the STL specification and the system
dynamics are complex. Second, even if the neural network
converges to a policy that satisfies the STL specification
during training, when given unseen initial conditions or envi-
ronments in testing, the policy can still fail. The work in [6]
uses falsification, while [5] uses Control Barrier Functions
(CBF) [7] to mitigate the second problem, but none of them
can guarantee satisfaction. Q-learning is also considered for
STL control synthesis in [8]. This provides no guarantee of
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satisfaction either. The authors of [9] use constrained Markov
Decision Process (cMDP) to provide a lower bound on the
probability of satisfying an STL specification.

In this paper, we use model-based RL and assume that the
model (system dynamics) is known. We propose an algorithm
to learn a control policy that is guaranteed to satisfy the
given STL specification during both training and deployment
by using CBFs. Such functions have been employed to
enforce the satisfaction of STL specifications [10], [11].
These methods require manual design of the CBFs corre-
sponding to the STL and the parameters in the constraints.
A bad design may result in increased conservativeness or
even infeasibility. Recently, we proposed BarrierNet [12],
implemented as a differentiable QP with CBF constraints,
as the last layer of a neural network controller to guarantee
safety. In this method, the parameters in the CBF constraints
can be obtained through training, which results in significant
decrease in conservativeness.

Here we combine BarrierNet [12] with time-varying CBFs
for STL tasks [10] to train a neural network controller that
guarantees the satisfaction of formulas in a fragment of STL
that contains no nested temporal operators and the “until”
operator. We extend [10] to High Order CBFs (HOCBFs)
[13] and provide a general, algorithmic procedure to generate
these functions. Further, unlike the fixed CBFs in [10], our
HOCBFs contain parameters that can be trained together with
the neural network controller using BarrierNet. As a result,
our approach avoids the complicated manual design in [10]
and reduces the conservativeness after training. Our results
show that the learned policy achieves a higher robustness
than directly applying CBFs as in [10]. Unlike [12], where
the policy is trained on a dataset using supervised learning,
we apply model-based RL to train the policy as in [5].
Therefore, no dataset is needed during training. The trained
controller can be implemented in real-time and generalized
to random initial conditions, while retaining correctness.

II. PRELIMINARIES

Consider a nonlinear control-affine system:

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn is the system state, u ∈ U ∈ Rq is the control,
f : Rn → Rn and g : Rn → Rn×q are locally Lipschitz
continuous functions. We assume U is a box constraint, i.e.,
umin ≤ u ≤ umax, where the inequality is interpreted
element-wise. The initial condition x(0) = x0 is randomly
sampled in a set X0 ∈ Rn with probability density function
P : X0 → R. We consider solutions to (1) over a compact
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time interval [0, T ]. Given an initial condition x0 ∈ X0 and
a control signal u : [0, T ] → U , a signal x : [0, T ] → Rn is a
solution of (1) if x(t) is absolutely continuous and satisfies
(1) for all t ∈ [0, T ]. A partial solution on [0, t] is denoted as
x0:t : [0, t] → Rn. We define a state-feedback neural network
controller with memory as

u(t) = π(x0:t,θ), (2)

where θ is a set of neural network parameters. Memory can
be enabled by using Recurrent Neural Network (RNN) [14].

A. Signal Temporal Logic (STL)

Signal Temporal Logic [1] is interpreted over real-valued
signals x : R≥0 → Rn, e.g., solutions of (1). In this paper,
we consider a fragment of STL with the following syntax:
ϕ := ⊤ | µ | ¬µ | ϕ1∧ϕ2; φ := F[ta,tb]ϕ | G[ta,tb]ϕ | φ1∧φ2,
where ϕ and φ are STL formulae, ϕ1 and ϕ2 are formulae
of class ϕ, while φ1, φ2 are formulae of class φ; ⊤ is the
logical true, µ is a predicate in the form of h(x) ≥ 0 with
h : Rn → R, ¬ and ∧ are Boolean negation and conjunction;
F and G are temporal eventually and always; [ta, tb] is a time
interval with ta < tb. In the rest of this paper, we refer to
the STL fragment defined above simply as STL.

We use (x, t) |= φ to denote that signal x satisfies φ at
time t. A formal definition of qualitative semantics of STL
can be found in [1]. Informally, F[ta,tb]ϕ is satisfied if “ϕ
becomes True at some time in [ta, tb]” while G[ta,tb]ϕ is
satisfied if “ϕ is True at all time in [ta, tb]”. Other Boolean
operators are interpreted in the usual way. Compared with
the full STL [1], this STL fragment cannot contain the
temporal until or nested temporal operators like “eventually
always” (the reason will be clear in Sec. IV-B). However, it
is still capable of expressing a wide range of useful temporal
properties in practice, e.g., safety and reachability constraints
with concrete time requirements.

STL is also equipped with quantitative semantics, also
called robustness, which is a real value that measures how
much a signal satisfies φ. Multiple STL robustness measures
have been proposed [4], [15]. In this paper, we use the
smooth robustness defined in [16], which is differentiable
almost everywhere, and easy to embedded in learning-based
algorithms. The robustness is sound in the sense that the
robustness value is positive if and only if the STL formula
is satisfied. We denote the robustness of φ at time t with
respect to a signal x as ρ(φ,x, t). Further, we define the
time horizon of an STL formula φ as hrz(φ), which is the
closest time point in the future that is required to determine
the satisfaction and robustness of φ. In this paper, we only
consider the solution of system (1) within the time horizon
of the given STL formula, i.e., T = hrz(φ).

B. Time-Varying High Order Control Barrier Function

Informally, the relative degree of a (sufficiently many
times) differentiable time-varying function b : Rn× [0, T ] →
R defined over the state of system (1) is the number of
times it needs to be differentiated along its dynamics until
all elements in the control u show up. Consider a constraint

b(x, t) ≥ 0 where b : Rn × [0, T ] → R is a differentiable
function with relative degree m. Let ψ0(x, t) := b(x, t).
We define a sequence of functions ψi : Rn × [0, T ] → R,
i = 1, . . . ,m as follows:

ψi(x, t) := ψ̇i−1(x, t) + αi

(
ψi−1(x, t)

)
, (3)

where αi, i = 1, . . . ,m is a (m − i)th order differentiable
class K function [13]. Let the super-level set of ψi(x, t) be:

Ci(t) = {x ∈ Rn|ψi(x, t) ≥ 0}. (4)

Definition 1. (HOCBF [13]) Let ψ1(x, t), . . . , ψm(x, t) be
defined by (3) and C1(t), . . . , Cm(t) be defined by (4). A
differentiable function b(x, t) is a High Order Control Barrier
Function (HOCBF) with relative degree m with respect to
system (1) if there exist differentiable class K functions αi,
i = 1, . . . ,m, such that

sup
u∈U

[
Lm
f b(x, t) + LgL

m−1
f b(x, t)u+

∂mb(x, t)

∂tm

+O(b(x, t)) + αm(ψm−1(x, t))
]
≥ 0,

(5)

for all (x, t) ∈ C1(t) ∩ . . . ∩ Cm(t) × [0, T ]. In (5), Lm
f

(Lg) denotes Lie derivatives along f (g) m (one) times, and
O(b(x, t)) denotes the remaining Lie derivatives along f and
partial derivatives with respect to t with degree less than m.

Definition 2. (Forward invariant) A set C(t) ⊂ Rn that
depends on time is forward invariant for system (1) given a
control law u if for any x(0) ∈ C(0), the solution of system
(1) satisfies x(t) ∈ C(t), ∀t ∈ [0, T ].

Theorem 1. [13] Given an HOCBF b(x, t) with a sequence
of sets C1(t), . . . , Cm(t) as defined in (4), if x(0) ∈ C1(0)∩
C2(0)∩ . . .∩Cm(0), then any Lipschitz continuous controller
u(t) that satisfies (5) ∀t ∈ [0, T ] renders C1(t)∩C2(t)∩ . . .∩
Cm(t) forward invariant for system (1).

III. PROBLEM FORMULATION AND APPROACH

Let J(u) be a cost function over control signals u :
[0, T ] → U . The problem we consider in this paper is:

Problem 1. Given a system with known dynamics (1), an
STL specification φ, and an initial state x0 sampled from the
distribution P : X0 → R, find the optimal control u∗(t) that
maximizes the STL robustness and minimize the cost J(u)
while guaranteeing the satisfaction of φ:

u∗(t) = argmax
u(t)

ρ(φ,x, 0)− J(u)

s.t. ẋ = f(x) + g(x)u(t),

umin ≤ u(t) ≤ umax,

(x, 0) |= φ.

(6)

To be robust against disturbances, a feedback controller
is desired. One can obtain such a feedback controller by
solving (6) at each discrete time step in a model predictive
control manner as in [2], [3]. However, doing so can be time-
consuming and prevent real-time control. Training a neural
network controller that maximizes the expected objective
in (6) over initial state distribution P can move the online
computation to offline. After training, the controller can be
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computed in real-time and can be generalized to random
initial conditions under the distribution P [5]. Moreover, in
general, an STL specification is history-dependent [17], i.e.,
to satisfy it, the desired control u(t) should depend on not
only the current state x(t) but also history states x0:t. Hence,
a controller with memory is needed.

In this paper, we train a neural network controller with
memory (2) to solve Problem 1. We first construct a set of
trainable time-varying HOCBFs from the STL formula φ.
Then we embedded these HOCBFs into the neural network
controller using a modified version of the BarrierNet from
[12] to guarantee the satisfaction of φ. We train the neural
network controller together with the HOCBFs to further
increase the STL robustness.

IV. SOLUTION

A. Trainable HOCBF and BarrierNet

Suppose that we have a set of time-varying HOCBFs
bj(x, t,θb,x0) that depend on the initial condition x0 and
contain trainable parameters θb, j = 1, . . . ,M . The reason
they depend on x0 will be clear in Section IV-C. To avoid
over-conservativeness, we make the class K functions also
trainable. Rewrite (3) for a HOCBF bj into:

ψi,j(x, t) := ψ̇i−1,j(x, t) + pi,j(x0,θp)αi,j

(
ψi−1,j(x, t)

)
,

(7)
where αi,j are given class K functions, pi,j(x0,θp) > 0,
i = 1, . . . ,mj , j = 1, . . . ,M , mj is the relative degree of
HOCBF bj . pi,j(x0,θp) also depends on initial condition and
contains trainable parameters θp. The reason it depends on
x0 will be clear in Section IV-C as well.

BarrierNet [12] is a neural network layer implemented
by a differentiable Quadratic Program (dQP) with HOCBF
constraints. We add it as the last layer of a neural network
controller (2), i.e., π(x0:t,θ) = u∗(t) with u∗(t) given by:

u∗(t)= argmin
u(t)

1

2
u(t)⊤Q(x0:t,θq)u(t) + F⊤(x0:t,θf )u(t)

s.t. Lm
f bj(x, t,θb,x0) + LgL

m−1
f bj(x, t,θb,x0)u(t)

+
∂mbj(x, t,θb,x0)

∂tm
+O(bj(x, t,θb,x0))

+ pm,j(x0,θp)αm(ψm−1,j(x, t,θb,x0)) ≥ 0,

t = k∆t, k = 0, 1, 2, . . . , j = 1, . . . ,M,
(8)

where Q(x0:t,θq) ∈ Rq×q , F(x0:t,θf ) ∈ Rq , pi,j(x0, θp),
i = 1, . . . ,m and bj(x, t,θb,x0) are all given by pre-
vious neural network layers with trainable parameters
(θq,θf ,θp,θb) := θ, Q is positive definite. Q−1F can be
interpreted as a reference control. Although in (8), Q, F,
pi are given by previous layers, they can also be directly
trainable parameters. The dQP (8) is solved at each time
point k∆t, k = 0, 1, . . . until reaching the time horizon
T , and the solution u∗(t) is applied to the system as a
constant for the time period [k∆t, k∆t + ∆t). Since (8)
is differentiable, the gradient of u∗(t) with respect to θ
can be calculated using the technique in [18], then θ can
be trained using any methods for training neural networks.
Different from the original BarrierNet [12], in (8) we also

make the HOCBF b itself trainable besides Q, F and pi,
as it will be detailed in the next subsection. BarrierNet is
able to guarantee the satisfaction of all HOCBF constraints.
Meanwhile, through training the controller can also optimize
a given objective function.

B. HOCBFs for STL specifications

The authors of [10] proposed the idea of using time-
varying CBFs to ensure the satisfaction of STL specifica-
tions. However, in [10] only relative degree 1 CBFs are
considered and the generation of CBFs is described by ex-
amples without explicitly showing the construction rules. In
this paper, we extend this method to HOCBFs and provide a
general and algorithmic procedure to construct them. Further,
we make these HOCBFs trainable so that the manual design
is avoided, and the performance of the controller including
these HOCBFs can be further improved through training.

Consider an STL formula φ. Since for all predicates with
negations ¬µ we can replace the predicate function with
−h(x) and remove the negation, we assume that the formula
φ is negation-free without loss of generality. We make the
following assumption on the STL formula and the system:

Assumption 1. ∀x(0) ∈ X0, ∃u(t) ∈ U such that (x, 0) |= φ
where x is the solution of system (1).

Assumption 1 is not restrictive in practice since if it is not
true, for some x0 there is no solution for Problem 1.
Categories of Predicates. Suppose that there are M pred-
icates in φ and they are given by µj : hj(x) ≥ 0,
j = 1, . . . ,M . We divide all predicates into three categories:

• Category I: predicates that are satisfied at t = 0 and the
starting time of the temporal operator wrapping it is 0,
e.g., µ1 in G[0,5]µ1 and G[0,5]µ1 ∧µ2, where h1(x0) ≥
0. These predicates usually define safety requirements,
such as obstacle avoidance in robotic applications.

• Category II: All predicates wrapped by F[ta,tb] that do
not belong to Category I, e.g., µ1 in F[2,5]µ1 and µ2 in
F[0,5]µ2 ∧ µ3 where h2(x0) < 0.

• Category III: All predicates wrapped by G[ta,tb] that do
not belong to Category I, e.g., µ1 in G[2,5]µ1∧µ2. Note
that Assumption 1 avoids formulae like G[0,5]µ1, where
h1(x0) < 0.

STL Guarantees. To each predicate µj , we assign a (time-
varying) HOCBF bj . Since each predicate µj belonging to
Category I has already been satisfied at t = 0, we assign a
fixed and time-invariant HOCBF to retain its satisfaction for
the required time:

bj(x) = hj(x). (9)

For predicates µj in Category II and III, we assign a trainable
time-varying HOCBF:

bj(x, t,θb,x0) = hj(x) + γj(t,ωj(θb,x0)), (10)

where γj(·,ωj) : [0, T ] → R is a function parameterized
by ωj , ωj is given by a neural network with input x0 and
parameters θb. Details about this neural network will be
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discussed in Section IV-C. In the rest of this subsection,
we will omit θb and x0 for notation simplicity and just
consider ωj as a vector. By properly choosing γj(t,ωj),
the satisfaction of bj(x, t) ≥ 0, ∀t ∈ [0, T ] can ensure the
satisfaction of the predicate µj during the required time slots.
Next, we discuss the selection of γj(t,ωj).

For simplicity, we omit the subscript j when it is clear
from the context. For a predicate µ in Category II that is
wrapped with F[ta,tb], we choose γ to be a linear function:

γ(t,ω) = ω1 + ω2t, (11)

where ω = (ω1, ω2), ω1 > 0, ω2 < 0. Note that other forms
of functions are also possible. To make sure the HOCBF
b(x, t) = h(x)+γ(t,ω) guarantees the satisfaction of µ, we
add 3 constraints on γ:

γ(0,ω) > −h(x0), (12a)
γ(tb,ω) ≤ 0, (12b)
γ(ta,ω) > − sup

x∈Rn

h(x). (12c)

Constraint (12a) ensures the HOCBF is positive at the
initial time, i.e., b(x0, 0) > 0. Constraint (12b) ensures
that h(x) ≥ b(x, t) ≥ 0 before time tb. Given (12a) and
(12b) the forward invariance of the superlevel set of b(x, t)
enforces the satisfaction of F[ta,tb]µ. The third constraint
(12c) ensures that the superlevel set of b(x, t) is nonempty
when t < ta. As it will be dicussed later, we delete the
HOCBF once h(x) > 0 when t ≥ ta, so we do not consider
whether the superlevel set of b(x, t) is empty after ta.

For a predicate µ in Category III that is wrapped with
G[ta,tb], let γ be defined as:

γ(t,ω) = ω1e
−ω2t − c, (13)

where ω = (ω1, ω2), ω1 > 0, ω2 > 0. c > 0 is a
small constant. Again, other forms of functions are possible.
Similar to (12), we have two constraints on γ:

γ(0,ω) > −h(x0), (14a)
γ(ta,ω) ≤ 0. (14b)

The difference is that (14b) ensures h(x) ≥ b(x, t) ≥ 0
before time ta so that G[ta,tb]µ is enforced to be satisfied.
When c > 0 is small enough, the superlevel set of b(x, t)
is always nonempty under Assumption 1. We choose the
exponential function (13) for always instead of a linear
function because it satisfies:

0 ≤ −γ(t,ω) < c, ∀t ∈ [ta, tb].

As a result, b(x, t) ≥ 0, i.e., h(x) ≥ −γ(t,ω), is not over-
conservative for t ∈ [ta, tb] when c > 0 is small enough. As
it will be detailed below, the HOCBF is deleted when t > tb,
which further mitigates over-conservativeness.

We can construct an HOCBF bj for each predicate µj in
φ using (9) or (10). However, it is possible that the corre-
sponding constraints b(x, t) ≥ 0 are conflicting with each
other during some time periods. By making an additional
assumption below, we addressed this issue in detail in [19].

Fig. 1: Overall structure of the controller. Purple parts are only
executed at t = 0, while blue parts are executed repeatedly. The
dashed box indicates the controller π(x0:t,θ).

Assumption 2. Let all predicate functions in Category II
and III be in the form of:

h(x) = ±
(
R− ∥l(x)− o∥2

)
, (15)

where l : Rn → Ro is a differentiable function shared by all
predicates mapping state x to a vector that we care about,
e.g., the location of a robot, and R ∈ R+, o ∈ Ro are the
radius and center of a circular region.

Theorem 2. Assume we have a STL formula φ satisfying
Assumption 2, a system (1) satisfying Assumptions 1, a
set of HOCBFs constructed by (9) and (10) that satisfy all
constraints (12) and (14), and a sequence of functions ψi for
each HOCBF as in (3), where ψi(x0, 0) ≥ 0, i = 1, . . . ,m.
Then a control law u(t) that satisfies (5) for all HOCBFs is
guaranteed to satisfy specification φ.

The proof can be found in [19].

C. Learning Robust Controllers

Theorem 2 ensures the satisfaction of the STL specifica-
tion when all HOCBFs constraints are satisfied. Then we
can use BarrierNet (8) to obtain a controller that satisfies all
HOCBFs constraints. In this subsection, we first explain why
in (8), b(x, t,θb,x0) and pi,j(x0,θp) all depend on the initial
condition x0. Then we describe the structure of the entire
neural network controller π(x0:t,θ). Finally, we introduce
the training process of the controller.
Parameters Depending on Initial Conditions. Consider a
predicate belonging to Category II or III with corresponding
HOCBF b(x, t) = h(x) + γ(t,ω). Since constraints (12a)
and (14a) on parameters ω contain the initial condition x0,
different ω should be used for different initial condition
x0. Hence, we use a neural network whose input is x0 to
provide ω, denoted as ω(x0,θb). As a result, the HOCBF
also depends on x0 and contains trainable parameters θb,
denoted as b(x, t,θb,x0).

On the other hand, to use HOCBFs to guarantee set-
invariance, we also need to make sure ψi(x0, 0) ≥ 0 for
all i = 1, . . . ,m. Since b(x0, 0) > 0, we can always find a
large enough pi such that ψi(x0, 0) ≥ 0 according to (7).
These constraints on pi also depend on x0. Hence, we use a
neural network with input x0 and parameters θp to provide
pi, denoted as pi(x0,θp).
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Neural Network Controller Structure. In practice, we use
one neural network referred to as InitNet to provide all
parameters depending on x0:

[Ω⊤P⊤] = N(x0,θb,θp), (16)

where Ω = [ω⊤
1 . . .ω

⊤
N ]⊤ ∈ R2N , P is the concatenation of

all pi in (7) for all HOCBFs, N is the neural network pa-
rameterized by trainable parameters θb and θp. We transform
the constraints on γ into constraints on Ω. For constraints
in the form of ω ∈ [ω, ω] we apply a Sigmoid function
on the last layer of N while for constraints in the form of
ω ∈ [ω,∞) or ω ∈ (−∞, ω] we apply a Softplus function.
In this way, Ω satisfies all constraints in (12) and (14).
Similarly, for pi, i = 1, . . . ,m − 1, we add constraints
pi > max

[
− ψ̇i−1(x, 0)/αi

(
ψi−1(x, 0)

)
, 0
]

which are also
implemented by Softplus functions.

InitNet is only used at time t = 0 to provide a set of
HOCBFs and the corresponding class K functions, which
are fixed after t = 0. Then we use another (recurrent) neural
network parameterized by θq and θf to provide Q(x0:t,θq)
and F(x0:t,θf ) at each discrete time point. The whole
controller π(x0:t,θ) = u∗ contains Q(x0:t,θq), F(x0:t,θf ),
N(x0,θb,θp) and the dQP (8) with θ = (θq,θf ,θb,θp). The
overall structure of the controller is shown in Fig. 1
Training BarrierNet. Similar to [5], we randomly sample
V initial conditions xv

0 , v = 1, . . . , V . We apply the system
dynamics (1) with the controller π until reaching the time
horizon T to get V state and control trajectories. We evaluate
their STL robustness and cost J , and then use the mean value
to approximate the expectation. Formally, we rewrite (6) into:

θ∗ = argmax
θ

1

V

V∑
v=1

[
ρ(φ,xv, 0)− J(uv)

]
s.t. ẋv = f(xv) + g(xv)π(xv

0:t,θ), v = 1, . . . , V,

(17)

where the superscript v indicates the vth sample. We sub-
stitute the constraint (dynamics) into the objective function
to make it an unconstrained optimization problem. Since the
QP (8) is differentiable with respect to its parameters using
the technique in [18], we backpropagate the gradient of the
objective funtion in (17) through the QP to all parameters θ.
The gradients of the STL robustness are calculated analyti-
cally and automatically using an adapted version of STLCG
[20] that use the robustness in [16]. Then we update the
parameters using the gradient. Note that at each optimization
step we randomly resample V initial conditions to have
a better exploration of the initial set X0 and we use the
stochastic optimizer Adam to train the parameters.

The following corollary from Theorem 2 states that our
network controller is correct:

Corollary 1. Consider an STL formula φ and a system (1)
satisfying Assumptions 1 and 2. Then any neural network
controller with BarrierNet (8) as the last layer guarantees that
the solution of system (1) starting from any initial condition
x0 ∈ X0 satisfies the specification φ.

Proof. This follows immediately from Theorem 2.

(a) Environment (b) Trajectories

Fig. 2: (a) The 2D environment we consider. (b) Sampled trajecto-
ries with random initial conditions using three methods: BarrierNet
(developed in this paper), FCNet, and HOCBFs.

An algorithm summarizing our solution is in [19].

V. SIMULATIONS

Environment and STL setup. Consider a 2D robot naviga-
tion problem. The dynamics of the robot is given as:

ṗx
ṗy
v̇x
v̇y

 =


vx
vy
0
0

+


0 0
0 0
1 0
0 1

[
ax
ay

]
, (18)

where x = [px py vx vy]
⊤, u = [ax ay]

⊤, [px py]
⊤ is

the 2D position, [vx vy]
⊤ is the velocity, and [ax ay]

⊤ is
the acceleration of the robot. We assume the control has
no bounds in this case and use the L2 norm for the cost
function in (17) with a coefficient of 0.003 to punish large
accelerations. Consider the environment shown in Fig. 2a. x0

is uniformly sampled in the region Init with zero velocity.
We discretize the system with a time interval of 0.1s. The
task for the robot is given by an STL formula:

φ = F[0,2]Reg1∧F[2,5]Reg2∧G[0,5](¬Obs1∧¬Obs2), (19)

where Regi indicates Ri − ∥l(x) − oi∥2 ≥ 0, i = 1, 2,
l(x) = [px py]

⊤. Obsi is a superellipse:

1− 4

√
(
px − ox,i

ai
)4 + (

py − oy,i
bi

)4 ≥ 0, (20)

i = 1, 2. Here, Regi belongs to Category II and Obsi belongs
to Category I, i = 1, 2. In plain English, the STL formula
φ requires the robot to eventually visit Reg1 within [0, 2]
and eventually visit Reg2 within [2, 5], while always avoid
obstacles Obs1 and Obs2. The time horizon of φ is 5. For
all 4 predicates, the corresponding HOCBFs have a relative
degree of 2 with respect to system (18). In this example,
we fixed Q(x,θq) to an identical matrix, so the output of
the previous layers at t > 0 is just F(x,θf ), which can be
interpreted as a reference control. Since this task does not
require back and forth motions, an RNN is not necessary
for F. Hence, both F and InitNet are implemented as neural
networks with 3 fully connected layers. For the robustness
function, we use the exponential robustness given in [16].
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Comparison setup. We construct the HOCBFs and train the
controller proposed in this paper. We compare the results
with our previous work [5] where a neural network controller
without BarrierNet, i.e., a Fully Connected Neural Network
(FCNet) is trained for an STL task. It is equivalent to
directly use the reference control F. We refer to these two
controllers as BarrierNet and FCNet respectively. To make
the comparison fair, we assume that the system dynamics
are known for [5]. We use the same objective function,
optimizer, and the same neural network architectures, i.e., the
FCNet has the same structure with F(x,θf ). Training curves
are illustrated in Fig. 3. Meanwhile, we directly apply the
approach in [10] (extended to HOCBF) without any learning,
i.e., we construct a set of HOCBFs with fixed parameters and
solve the QP (8) with F = 0. The parameters are randomly
chosen but satisfy all constraints (12) and (14). We refer
to this approach as HOCBF. The resulting average values
of the objective function and the robustness starting from
random initial conditions are shown in Fig.3 with dashed
lines. Sampled trajectories using the three approaches with
random initial conditions are shown in Fig. 2b.
Analysis and Discussion. In Fig. 3a we can see that
when using BarrierNet, the robustness is positive (the STL
specification is satisfied) from the beginning of the training.
This demonstrates the correctness of Corollary 1. As for
FCNet, it takes about 150 iterations to get a positive mean
robustness value. The results of directly applying HOCBFs
with randomly chosen parameters are similar as using Bar-
rierNet with an untrained neural network, i.e., at the first
iteration during training. It also satisfies the specification
but is less robust than using BarrierNet after training. As
shown in Fig. 2b the robot reaches the center of Reg2
with both BarrierNet and FCNet after training while only
reaches the boundary of Reg2 when directly using HOCBFs.
The robot leaves Reg2 after the corresponding HOCBF is
deleted. The final robustness and objective function values of
BarrierNet are both higher than FCNet. Without the guidance
of HOCBFs, the FCNet controller only finds a sub-optimal
solution which steers the robot further away to avoid the
obstacles. Training of the BarrierNet and FCNet takes 14
min and 2 min respectively on our machine with 2.1/4.9
GHz Core i7 CPU and NVIDIA RTX 3050 GPU. Since QP
can be solve very efficiently, all three methods can execute
fast during testing which enables real-time control.
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[20] K. Leung, N. Aréchiga, and M. Pavone, “Backpropagation through
signal temporal logic specifications: Infusing logical structure into
gradient-based methods,” The International Journal of Robotics Re-
search, p. 02783649221082115, 2020.

7048


