
Approximated Explicit NMPC via Reinforcement
Learning for Homomorphically Encrypted Process

Control
Diana Dzurková, Patrik Valábek, Olivér Mészáros, Martin Kalúz, Martin Klaučo

Institute of Information Engineering, Automation, and Mathematics
Slovak University of Technology in Bratislava

Bratislava, Slovakia
diana.dzurkova@stuba.sk

Abstract—This research proposes a novel approach to gen-
erating explicit, nearly-optimal (suboptimal) control policies in
the form of neural networks with a structure that allows
further mathematical operations within homomorphic encryption
frameworks. The novelty of this paper also lies in presenting
a reinforcement learning pathway to train the explicit control
law without the necessity of prior model knowledge. A Deep
Deterministic Policy Gradient algorithm is used to train the
neural network, with the objective function adopted from nonlin-
ear model predictive control. This paper presents a generalized
methodology to train the control policy and evaluate it in a
homomorphic encryption setup. Particular results are presented
based on a software-in-the-loop simulation setup, where specifics
like communication delays and computational overheads are
considered.

Index Terms—secure process control, data-driven explicit con-
trol law, reinforcement learning, homomorphic encryption, data
privacy

I. INTRODUCTION

Data privacy plays a vital role in every aspect of the
implementation of process control applications. In recent
history, several studies have documented tragic breaches in
security that led to service disruption, damaged processes,
and decreased productivity [1], [2]. Even though data security
is primarily the domain of computer science and IT special-
ists [3], the integration of encryption in the process control
layer can greatly improve the overall security of individual
process control applications.

The use of homomorphic encryption in the process control
domain can ensure security on several levels. Firstly, it allows
the encryption of measurement data sent to the controller for
the evaluation of control actions. Secondly, it even allows for

The authors gratefully acknowledge the contribution of the Scientific Grant
Agency of the Slovak Republic under the grants VEGA 1/0490/23, the Slovak
Research and Development Agency under the project APVV-21-0019 and
APVV-20-0261. This paper is also funded by the European Union’s Horizon
Europe under grant no. 101079342 (Fostering Opportunities Towards Slovak
Excellence in Advanced Control for Smart Industries). Patrik Valábek and
Diana Dzurková thank for financial contribution from the STU Grant Scheme
for Support of Young Researchers.

performing mathematical operations with an encrypted con-
troller, an ability that sets it apart from traditional encryption
standards like RSA or AES which require decryption before
any operations over the data. Such concepts directly ensure not
only data privacy but also the security of the control algorithm
itself [4].

Recent advancements in homomorphic encryption (HE) and
its application in process control demonstrate how to employ
several control algorithms, such as linear state feedback [5],
polynomial controllers [6], and PID controllers [7], to govern
processes securely. So far, the application of HE frameworks
has been limited to explicit control laws [8], making the tradi-
tional application of optimization-based strategies unfeasible.
This is due to the limited operations supported on homomor-
phically encrypted data (primarily addition and multiplication),
the absence of comparison functions, and the high compu-
tational complexity and memory requirements. However, the
use of neural networks (NN) as controller approximations can
overcome this limitation. The NN controller can be trained
to approximate the control law, and the trained NN can
be evaluated over encrypted data, yielding encrypted control
actions [6].

This paper explores the unique combination of generating
approximate explicit control laws with reinforcement learn-
ing approaches, closely resembling the performance of the
nonlinear model predictive strategy. We employ the Deep
Deterministic Policy Gradient (DDPG) algorithm [9] to train
the HE-friendly explicit control law. The contributions of this
paper are twofold: (1) we demonstrate the application of the
DDPG algorithm to train an explicit control law, and (2)
we present the integration of the trained control law with
homomorphic encryption to ensure data privacy in the process
domain.

The structure of the paper includes the problem statement
in Section II, followed by a methodology section devoted
to cryptosystems and reinforcement learning (Sections III
and IV, respectively). A benchmark system and case study are
presented in Section V, while the deployment of the encrypted

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

979-8-3503-1632-2/24/$31.00 ©2024 IEEE 4574

process control, including runtimes and implementation de-
tails, is presented in Section VI.

II. PROBLEM STATEMENT

This paper proposes an approach that enforces data privacy
associated with a cloud-based evaluation of a nearly optimal
control policy. More advanced control methods like MPC are
slowly gaining traction across industries, which is directly
linked to an increase in computational complexity and its po-
tential outsourcing using cloud-based computing. Data privacy
is guaranteed by calculating control action in homomorphic
setup, hence the cloud evaluator has no knowledge of the
data. We aim to design a control policy that has the following
properties:

• is nearly-optimal, and the policy adheres to the constraints
of the system,

• the policy formulated as explicit control law, hence no
iterative algorithm is required for its evaluation.

To achieve these properties, we propose to use the Deep
Deterministic Policy Gradient (DDPG) algorithm, which is
a model-free reinforcement learning algorithm that can be
used to train a neural network (NN) to generate an explicit
control law based on objective function adopted from non-
linear model predictive control (NMPC). Moreover, individual
nodes of the NN are of the polynomial form, which allows us
to evaluate the control action in a homomorphic setup. The
contributions of this work can be summarized as follows:

1) We have formulated an optimization-based control strat-
egy that is inherently compatible with HE. This design
enables the execution of control policies in environments
where data privacy is paramount, without significant
effects to the control’s effectiveness or efficiency.

2) Our methodology extends to the practical deployment
of encrypted optimal control within a Software-in-the-
Loop (SIL) framework. This application demonstrates
the feasibility of executing approximated optimal control
policies under encryption, a crucial step toward real-
world implementation. By validating our approach in
a SIL setup, we are stepping beyond the traditional
simulation-based evaluations commonly found in the
literature. [10], [11]

3) We also provide benchmarks connected to this de-
ployment. Communications are facilitated over HTTPS
within a local network where two virtual machines
(VM) communicate to mimic real-world conditions more
closely. This benchmark focuses on encrypted closed-
loop control, capturing performance metrics like oper-
ational time and memory usage across both the key
exchange phase and the control loop runtime. Our
findings offer novel insights into the practical deploy-
ment challenges and performance of homomorphically
encrypted control systems, marking a significant step
towards bridging the gap between theoretical constructs
and their practical applicability in safeguarding data
privacy within cloud-based control systems.

Overall, this paper contributes significantly to the advance-
ment of privacy-preserving control systems, offering a novel
approach that combines the rigor of optimal control policies
with the demands of data privacy. Through our innovative
design, practical deployment strategies, and insightful bench-
marks, we pave the way for future applications in this critical
intersection of control theory and data privacy.

III. CKKS CRYPTOSYSTEM

We have opted to integrate the Cheon-Kim-Kim-Song
(CKKS) cryptosystem into our application due to its inherent
capability to handle operations over real numbers, thereby
obviating the need for supplementary encoding on the user’s
end. Furthermore, CKKS offers advantageous functionalities
such as vector rotation and batching, enabling computations
across multiple slots within a ciphertext, thereby facilitating
evaluation of multiple data in a single operation. This charac-
teristic proves particularly advantageous for applications based
on neural networks.

Since the CKKS belongs to ”leveled” cryptosystems, the
multiplicative depth of an arithmetic circuit is one of the most
limiting computational factors. Each ciphertext has a certain
amount of cryptographic noise (as well as approximation error
for CKKS schemes), which increases as more operations are
performed on it. In case of this noise exceeds a certain level,
referred to as the ”noise budget”, it would ultimately result in
the corruption of the original message hidden inside a cipher-
text. To prevent the error from growing exponentially while
multiplying the ciphertext, CKKS uses a modulus-switching
method known as rescaling. However, this mechanism can be
performed only a limited number of times, which is usually
referred to as the multiplicative depth of the cryptosystem.
More information about CKKS and how to set it up can be
found in [5], [12].

IV. DEEP DETERMINISTIC POLICY GRADIENT

Deep deterministic policy gradient (DDPG) is a model-
free reinforcement learning algorithm based on the actor-critic
method [13]. The DDPG approach trains a neural network, that
serves as the substitute for the controller. By only interacting
with the model of the process, it learns a control policy, that
has similar features as the one obtained by the model predictive
control (MPC) algorithm [14]. To achieve this similarity, we
set up the reward function in a way that resembles the cost
function used in MPC. Since, the outcome of the training is
a neural network, the control policy is deterministic and is in
the form of explicit function.

In the actor-critic framework, the actor denoted fACT rep-
resents the control policy, i.e., the control law. The critic
denoted fCRIT is an approximation of the value function [15,
Sec. 3.5]. Both actor and critic components are cast as neural
networks of user-defined structure. This structure directly
dictates cryptosystem set up, more importantly the its mu-
tiplicative depth(more in Section V-C). Based on the fCRIT,
the weights of both fACT and fCRIT are updated during the
offline training phase. After sufficient training, we switch to

4575

Fig. 1: Schematic overview of DDPG algorithm. The dashed
lines indicate that based on the critic, both actor and critic
weights are updated during the offline phase. After sufficient
training, we switch to the online phase, where the actor is no
longer updated and works as a deterministic controller.

the online phase, where fACT is no longer updated and serves
as the deterministic controller. The schematic overview of the
DDPG algorithm is shown in Figure 1.

The objective of the DDPG is to find the optimal control
policy uACT = fACT(x) that minimizes a cumulative value of
the cost function. The cost function is defined as:

JDDPG(x, u) = (x⊺
1Qxx1 + u⊺

0Quu0) , (1)

where x1 represents the induced state vector by applying u0

control vector on the previous state x0. The matrices Qx and
Qu are the weighting matrices for the state and control vari-
ables, respectively, and their values are determined according
to (4). The algorithm aims to find the fACT that minimizes the
cumulative value of the objective function JDDPG(x, u) over a
predefined simulation length. The constraints can be applied to
the DDPG algorithm by using a barrier function to penalize
the violation of the constraints in the cost function. In the
presented case study, the input constraints are inherently en-
forced by the clipping nature of the output from the algorithm.
Conversely, the output of the DDPG framework is a generated
explicit control law with nearly optimal performance. Detailed
comparison will be presented in the following sections.

V. BENCHMARK SIMULATION MODEL

A. Continuous Stirred-Tank Reactor

First-order irreversible exothermic reaction A −→ B is
taking place inside the CSTR (Fig. 2), where B is the
main product. The reaction mixture with initial concentrations
cA0, cB0 and temperature Tr0 is entering the reactor vessel at
the flow rate qr. After the reaction takes place, the product
mixture, with final concentrations cA, cB and temperature Tr,
exits the vessel at the same flow rate qr. The heat produced
by the reaction is taken away by a coolant with flow rate
qc, inlet temperature Tc0, and outlet temperature Tc. The
control task is to retain the reactor in a selected operating

Fig. 2: Schematic diagram of CSTR

TABLE I: Parameters of CSTR model

Symbol Meaning Value/Unit

Tr0, Tc0 inlet temperatures of reaction
mixture and coolant

325K, 288K

cA0, cB0 inlet concentrations of
compounds A and B

4.22molm−3,
0molm−3

ρr, ρc density of reaction mixture and
coolant

1020 kgm−3,
998 kgm−3

Cr, Cc specific heat capacities 4.02 J kg−1 K−1,
4.18 J kg−1 K−1

νA, νB stoichiometric coefficients 1, 1
h heat transfer coefficient 42.8Wm−2 K−1

Vr, Vc volume of reactor and cooling
system

0.23m3, 0.21m3

A heat transfer area 1.51m2

Kr reaction frequency factor 1.55× 1011 s−1

Er reaction activation energy 8.1× 104 Jmol−1

Hr reaction enthalpy −6.4× 104 Jmol−1

κ reaction rate f(Tr) [s−1]

point represented by a steady state. The selected steady state
inputs are us = [qs

r , q
s
c]
⊺ = [0.015, 0.004]⊺ and states are

xs = [cs
A, c

s
B, T

s
r , T

s
c]

⊺ = [0.60, 3.62, 364.92, 349.13]⊺. The
dynamical behavior of CSTR is described by a non-linear
model (2).

dcA

dt
=

qr

Vr
(cA0 − cA)− νAκc

νA
A (2a)

dcB

dt
=

qr

Vr
(cB0 − cB) + νBκc

νA
A (2b)

dTr

dt
=

−Hr

ρrCr
κcA +

qr

Vr
(Tr0 − Tr) +

hA

VrρrCr
(Tc − Tr) (2c)

dTc

dt
=

qc

Vc
(Tc0 − Tc) +

hA

VcρcCc
(Tr − Tc) (2d)

κ = Kre
− Er

RTr (2e)

Table I provides the parameters of the model, along with
their values and units. The model and parametrization were
adopted from [16].

The sampling period of the system was chosen to be
Ts = 10 s.

B. Baseline Non-linear Model Predictive Control

The non-linear model predictive control (NMPC) serves as
the baseline comparison with the quality of the control policy
obtained by the DDPG algorithm. To make the formulation

4576

of the NMPC relevant to the DDPG approach, we choose a
similar objective function as in (1). Let,

min
U

N−1∑
k=0

(x⊺
kQxxk + u⊺

kQuuk) (3a)

s. t. xk+1 = fm(xk, uk), k = 0, 1, . . . , N − 1, (3b)
umin ≤ uk ≤ umax, k = 0, 1, . . . , N − 1, (3c)
x0 = xinit, (3d)

where the variable N is the prediction horizon, Qx and Qu
are positive definite weighting matrices of appropriate size,
defined with the same value as for the DDPG algorithm in (4).
The model function fm(·) are discretized differential equations
from (2). Here, the output of the optimization is the sequence
of optimal control inputs, i.e., U = [u⋆

0, . . . , u
⋆
N−1]

⊺, where
only the first control input u⋆

0 is applied to the system.
The weighting matrices Qx and Qu were chosen such

that the objective function and reward function gains similar
contributions from individual state and input values. The
input constraints umin and umax were set up with regards to
the physical constraints of reactor. The NMPC problem was
formulated with

Qx = diag[1.669, 13.809, 0.274, 0.003], (4a)
Qu = diag[1.0, 0.1], (4b)
N = 20, (4c)

umin = [0.0, 0.0]⊺m3 s−1, (4d)

umax = [0.03, 0.008]⊺m3 s−1, (4e)

and was solved with the MATLAB 2023b Model Predictive
Control Toolbox.

C. Training of Nearly Optimal Control Policy

The DDPG algorithm was deployed in the Reinforcement
Learning Toolbox in MATLAB R2023b.

The approximation of the MPC with a neural network is a
valid solution to the difficult task of implementing higher types
of encrypted control. The neural network provides a suitable
environment for encrypted calculations if executed correctly.
One of the conditions that need to be met is that we need
to use HE-friendly activation functions. Standard activation
functions, such as the classical tangent, sigmoid, or ReLU, are
not compatible with very limited set of arithmetic operations
provided by HE schemes. This can be solved by using their
polynomial approximations, rendering them HE-compliant. In
this paper, we have opted for a polynomial approximation [17]
of the hyperbolic tangent in the form tanh(x) ≈ 0.0009x5 −
0.0392x3 + 0.6414x.

Another limiting factor in the presented approach is the
direct correlation between NN’s structure and its multiplicative
depth. The maximum number of consecutive multiplicative
operations that ciphertexts are subjected to within the neural
network dictates the number of levels of multiplicative depth.
This is facilitated by choosing as many inner primes in an
array of bit sizes for coefficient moduli Q = QS1 × Q∆1 ×

· · · × Q∆M × QS2 as number of required consecutive mul-
tiplication. The designed NN (representing the actor network
fACT) requires in total 9 multiplications in the chain (9 levels
of multiplicative depth). More information about CKKS setup
can be found in [5].

The fACT network consists of the input layer, two hid-
den layers with the HE-friendly activation function described
above, and the output layer. The input layer has 4 neurons,
corresponding to the state variables of the CSTR. Both hidden
layers have 16 neurons, and the output layer has 2 neurons,
corresponding to the control inputs. The fCRIT network has
a more complicated structure that is not the objective of this
study. The fCRIT network is present only in the training of
the fACT, so the limitations concerning fACT are not imposed
in the architecture of fCRIT. Total, the fACT network has 38
neurons and the fCRIT network has 79 neurons. Learning rate
of fACT was set to 5 · 10−5 and the learning rate of fCRIT was
set to 5 · 10−4.

After creating the fACT and fCRIT networks, we can proceed
to training. During the training, the algorithm does not require
any information about the model of the process. The only
necessary information are obtained as the measured outputs
of the system, the result of applied control actions by fACT.
The training was performed in the close loop with the system
as visualized in Figure 1. The training was carried out for
1000 simulations. In every simulation, the system started at
the specific initial state. This initial state of the system in each
simulation closely resembled the excited state of the system
when subjected to a disturbance in the form of a changed inlet
temperature of the reactant Tr0.

The cumulative value of the cost function of this simulation
was aimed to be minimized during training. This cumulative
value was calculated as the sum of the cost function (1) over
the whole simulation. The algorithm is design to maximize
the reward function so negative value of (1) was calculated for
the purpose of compatibility with the algorithm. The length of
this simulation was specifically chosen to be the same as the
prediction horizon of the NMPC controller to achieve similar
results. Therefore, the length of each simulation was 200 s.

The training process took approximately 20min and was
carried out on a 4 cores of Apple M1 Pro processor. All
parameters, hyperparameters, and the architectures of neural
networks were chosen empirically and were tuned and adjusted
based on the results of the training process.

D. Homomorphic Encryption in Close Loop

After obtaining trained control policy fACT as mentioned
in V-C, we deployed the control law in the form of a Multi-
Layer Perceptron (MLP) NN to control the CSTR. As shown
in Fig. 3, the setup consists of process environment and
cloud environment. The MLP NN control law is deployed
in the plaintext form and process data are ciphertexts i.e.
encrypted throughout the closed-loop roundtrip (network and
NN evaluation). Keys are generated on the process side, and
the public, relinearization, and Galois keys are exchanged
between the process and the cloud at the beginning. States

4577

are continuously measured, encrypted on the process side, and
transmitted as ciphertexts over the network to the cloud. In the
cloud, these ciphertexts are evaluated using the control law,
which generates encrypted control inputs. These encrypted
control inputs are sent back to the process side, where they are
decrypted and applied to the system. This cycle repeats within
the control loop. The specifics of the closed-loop implemen-
tation, deployment, and cryptographic setup are provided in
Sec. VI.

Fig. 3: The scheme of the encrypted control loop.

The objective was to control the CSTR to the origin
represented by a steady state xs. The system was subjected
to the same type of disturbance as during the training phase,
that is, to the change in the temperature of inlet flow Tr0.
At time T = 20 s the inlet flow decreases to Tr0 = 310K
and at time T = 40 s it increases back to Tr0 = 325K. To
test the robustness of the fACT we also introduced a second
disturbance. This type of disturbance was not present during
the training phase. The second disturbance was the failure of
the cooling valve controlling qc. This valve fails between times
150 s and 170 s, is fully open and does not respond to the
control signal.

The results of this simulation are visualized in Figure 4
and 5. The CSTR was simulated with the sampling time Ts =
0.25 s using an ode45 solver in MATLAB R2023b.

E. Comparison of Encrypted DDPG with NMPC in Perfor-
mance

The comparison of the algorithms was done in simulation,
where 20 different random disturbances occurred, 10 on the
inlet temperature of the reactant Tr0 and 10 on the inlet
temperature of the coolant Tc0. Disturbances lasted for 20 s.
The results of the comparison are presented in the following
section (Section VI). The comparison was done by evaluating
integral square error (ISE) criteria for both states and control
inputs. The ISE criteria were calculated as the sum of the
squared values of states and control input:

ISEx =

Ntest∑
i=1

(xi)
2
, ISEu =

Ntest∑
i=1

(ui)
2
, (5)

0 60 120 180 240 300

0.6
0.6
0.7
0.8
0.8
0.9
1.0

t [s]

c
A

[m
o
l]

NMPC DDPG (enc. data)

0 60 120 180 240 300

3.3
3.4
3.4
3.5
3.6
3.6
3.7

t [s]

c
B

[m
o
l]

NMPC DDPG (enc. data)

0 60 120 180 240 300

355
357
358
360
362
363
365

t [s]

T
r
[K

]

NMPC DDPG (enc. data)

0 60 120 180 240 300

335
338
342
345
348
352
355

t [s]

T
c
[K

]

NMPC DDPG (enc. data)

Fig. 4: Control trajectories of CSTR states with NMPC (blue
dashed) and encrypted DDPG controller (red solid).

where xi and ui are the state and control input values at time
step i, respectively. The Ntest is the length of the simulation
during which the random disturbances occurred.

TABLE II: Comparison of NMPC and DDPG with encrypted
data controllers

Algorithm NMPC DDPG (enc. data)

ISEcA 1.466 1.338
ISEcB 1.466 1.338
ISETr 1.937 · 103 1.890 · 103
ISETc 4.420 · 102 5.423 · 102
ISEqr 3.272 · 10−4 4.209 · 10−4

ISEqc 3.447 · 10−4 3.693 · 10−4

The results of the comparison are presented in Table II.
The average performance degradation of ISE criteria of DDPG

4578

0 60 120 180 240 300

0.000

0.008

0.015

0.023

0.030

t [s]

q
r
[m

3
s−

1
]

NMPC DDPG (enc. data) bounds

0 60 120 180 240 300

0.000

0.002

0.004

0.006

0.008

t [s]

q
c
[m

3
s−

1
]

NMPC DDPG (enc. data) bounds

Fig. 5: Trajectories of CSTR control actions with NMPC (blue
dashed) and encrypted DDPG controller (red solid).

over NMPC is 6.46%. This indicates that the NMPC controller
provides better control performance compared to the DDPG
controller in the presence of random disturbances. However,
the difference in performance is small. Regarding many ben-
efits of DDPG control over NMPC, the results indicate that
the DDPG controller with encrypted data is a promising safe
alternative to NMPC.

VI. DEPLOYMENT BENCHMARKS

In this section, we discuss a deployment setup of an
encrypted control. In the majority of pertinent literature, eval-
uations of homomorphically encrypted controls are typically
conducted through simulation within a local environment, of-
ten executed as a standalone computer program. Consequently,
certain challenges inherent in practical implementations may
be overlooked. In our work, we still use a simulation model as
a substitute for a controlled process, however we ensure that
all other components of the control loop are implemented to
accurately emulate real-world deployment. The setup consists
of two virtual machines (VM) running on a host computer via
a Hyper-V virtualization. The host computer uses an AMD
Ryzen 9 5950X CPU with 16 cores and 32 threads, is equipped
with 128GB of DDR4 RAM clocked at 3200MHz, and uses
a 10Gbit Ethernet interface, integrated into the local physical
network, which adheres to the same specifications. For each
VM, we allocated 4 physical CPU cores and 16GB of RAM.

The first VM represents the process side of a control loop. It
runs a simulation model of a controlled process implemented
in MATLAB. The process exchanges the data with a program
written in Python that provides cryptographic features and
serves as a communication bridge to the cloud. The second
VM represents the cloud side of the control loop. The cloud
logic is implemented in Python and contains the outsourced
control law (the neural network designed in Sec. V-C). The

communication between the two is handled via HTTPS, and
data is transferred using the JSON format with hexadecimal
encoding. To utilize the full communication stack, we route
the traffic through a local network, which is a more realistic
scenario than just the use of a direct loopback adapter that
does not utilize the physical layer.

In this benchmark, we perform an encrypted closed-loop
control of the reactor model and simultaneously measure the
time of all important steps as well as the memory footprint
of data associated with them. The procedure consists of two
phases, the first being the handshake, where the cryptographic
keys are generated on the side of the process and sent to
the cloud, and the second being the actual control loop
runtime. We use the CKKS cryptosystem provided by the
Python library TenSEAL [18] that is built on top of the
Microsoft SEAL [19]. The cryptographic parameters used in
this setup are: the polynomial modulus degree N = 16384;
scaling factor ∆ = 37bit; and coefficient moduli chain
Q = [45 bit, 9× 37 bit, 45 bit].

Fig. 6: Time-based visualization of cryptographic handshake
and encrypted control runtime.

The average times of both the key exchange and runtime
are visualized in Fig. 6. The generation of cryptographic
context, the memory object (in binary format – BIN) that
holds keys and parameters, takes on average 8.9 s. Then the
context that contains all the keys, except the private key, is
serialized into a hexadecimally encoded string – HEX (7.2 s)
and sent to the cloud (2.3 s). The size of the context takes
up 549.2MB (BIN) in the memory of process-side computer,
548.2MB (BIN) of a cloud computer, and 1.07GB (HEX)
for transfer. The cloud deserializes the context (18.1 s), and
after the acknowledgment, the handshake is complete. The
runtime consists of an iterative procedure where the process
states are measured, encoded/encrypted (20.2ms, 1.81MB –
BIN) and sent to the cloud (16.1ms). The cloud computer de-
serializes the ciphertext (332.1ms), and evaluates the control
law (543.8ms) to get an encrypted control action (215.16 kB –
BIN). The resulting ciphertext is then serialized and sent back

4579

to the process (1.9ms). The process deserializes the ciphertext
(1.13ms), decrypts/decodes it (1.05ms) and applies it to the
process.

The sizes of all the keys and ciphertexts are presented in
Table III. The times involved in the key exchange and runtime
are presented in Tables IV and V, respectively. The times and
sizes were acquired from 60 repetitions of the key exchange
and 60 iterations of the control loop. The presented data show
that the cryptographic handshake takes on average 36.5 s, and
a single iteration of the control loop runtime takes on average
941ms, which is well below the sampling time of the control
loop. The major benefit of implemented controller comes from
its fixed structure, thus very consistent computational times,
unlike the baseline NMPC that on average took 3.09 s with
minimum of 0.32 s and maximum of 14.7 s.

TABLE III: Sizes of cryptographic keys and ciphertexts, both
in binary (memory utilization) and hexadecimal (transfer).

Size of
(p–process, c–cloud) BIN HEX

Public key (p, c) 2.02MB 4.04MB
Secret key (p) 1.01MB 2.02MB

Relinearization key (p, c) 20.23MB 40.46MB
Galois key (p, c) 526MB 1.03GB

Ciphertext (states, level 9) 1.81MB 3.62MB
Ciphertext (control, level 0) 215.16 kB 430.32 kB

TABLE IV: Benchmark results for key exchange (handshake),
including the times1 for key generation, serialization, deseri-
alization, and network transfer. Presented data were acquired
from 60 repetitions of a key exchange.

Time of [seconds]
(p–process, c–cloud) Min. Max. Mean Median

Key generation (p) 8.77 9.06 8.88 8.88
Serialization (p) 7.13 7.50 7.24 7.22

Deserialization (c) 16.7 18.9 18.1 18.1
Network transfer 2.31 2.33 2.34 2.34
Round-trip (tot.) 34.9 37.8 36.5 36.5

VII. CONCLUSION

In this study, we explored the integration of the Deep
Deterministic Policy Gradient (DDPG) with homomorphic
encryption control over the model of a continuous stirred tank
reactor. Our approach combines the strength of DDPG for
generating explicit control laws in the form of neural net-
works (NNs) and the privacy preservation capabilities of HE.
The application of polynomial approximations for activation
functions within the NNs aligns with the constraints of HE,
enabling secure and private control. Through a detailed experi-
mental setup, including deployment benchmarks in a simulated
real-world environment, we demonstrate the practical viability
of this approach. Our findings indicate that while the im-
plementation of homomorphically encrypted control systems

1Note that the utilized time measurement method has a limited accuracy of
318 µs, which mostly affects the measurements of short time periods.

TABLE V: Benchmark results for the runtime of encrypted
control, including the times1 for encryption, decryption, se-
rialization, deserialization, total round-trip, network transfer,
and control law evaluation. The data presented was acquired
from 60 iterations of the control loop.

Time of [milliseconds]
(p–process, c–cloud) Min. Max. Mean Median

Encode/Encrypt (p) 19.0 23.0 20.2 20.0
Decode/Decrypt (p) 1.00 2.00 1.05 1.00

Serialization (p) 23.0 30.0 23.7 24.0
Serialization (c) 1.00 2.00 1.15 1.00

Deserialization (p) 1.00 2.00 1.13 1.00
Deserialization (c) 62.0 381 332 363

Network transfer (tot.) 17.0 23.0 18.3 18.0
Evaluation (c) 531 567 544 544

Round-trip (tot.) 661 1009 941 969

introduces computational overheads, it ultimately outweighs
its shortcomings and offers a valid, worthwhile solution. This
study paves the way for future research in encrypted control
systems, highlighting the balance between control performance
and data privacy in cloud-based control applications.

REFERENCES

[1] E. D. Knapp and J. T. Langill, “Chapter 3 - industrial cyber
security history and trends,” in Industrial Network Security (Second
Edition), second edition ed., E. D. Knapp and J. T. Langill,
Eds. Boston: Syngress, 2015, pp. 41–57. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780124201149000034

[2] M. Wolf, “Chapter 8 - cyber-physical systems,” in High-Performance
Embedded Computing (Second Edition), second edition ed.,
M. Wolf, Ed. Boston: Morgan Kaufmann, 2014, pp. 391–413.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
B9780124105119000083

[3] D. Pliatsios, P. Sarigiannidis, T. Lagkas, and A. G. Sarigiannidis,
“A survey on scada systems: Secure protocols, incidents, threats and
tactics,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp.
1942–1976, 2020.

[4] M. S. Darup, A. B. Alexandru, D. E. Quevedo, and G. J. Pappas,
“Encrypted control for networked systems: An illustrative introduction
and current challenges,” IEEE Control Systems Magazine, vol. 41, no. 3,
pp. 58–78, 2021.

[5] M. Furka, M. Kalúz, M. Fikar, and M. Klaučo, “Guidelines for secure
process control: Harnessing the power of homomorphic encryption and
state feedback control,” IEEE Access, vol. 11, pp. 110 328–110 341,
2023.

[6] M. S. Darup, “Encrypted polynomial control based on tailored two-party
computation,” International Journal of Robust and Nonlinear Control,
vol. 30, no. 11, pp. 4168–4187, 2020.

[7] M. Furka, K. Kiš, M. Klaučo, and M. Kvasnica, “Usage of homomorphic
encryption algorithms in process control,” in 2021 23rd International
Conference on Process Control (PC), 2021, pp. 43–48.

[8] N. Schlüter and M. S. Darup, “Encrypted explicit mpc based on two-
party computation and convex controller decomposition,” in 2020 59th
IEEE Conference on Decision and Control (CDC), 2020, pp. 5469–5476.

[9] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[10] S. Kosieradzki, X. Zhao, H. Kawase, Y. Qiu, K. Kogiso, and
J. Ueda, “Secure teleoperation control using somewhat homomorphic
encryption,” IFAC-PapersOnLine, vol. 55, no. 37, pp. 593–600, 2022,
2nd Modeling, Estimation and Control Conference MECC 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2405896322028907

[11] K. Tjell, N. Schlüter, P. Binfet, and M. S. Darup, “Secure learning-based
mpc via garbled circuit,” in 2021 60th IEEE Conference on Decision
and Control (CDC), 2021, pp. 4907–4914.

4580

[12] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in Cryptology –
ASIACRYPT 2017, T. Takagi and T. Peyrin, Eds. Cham: Springer
International Publishing, 2017, pp. 409–437.

[13] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural
information processing systems, vol. 12, 1999.

[14] Y. Lin, J. McPhee, and N. L. Azad, “Comparison of deep reinforcement
learning and model predictive control for adaptive cruise control,” IEEE
Transactions on Intelligent Vehicles, vol. 6, no. 2, pp. 221–231, 2020.

[15] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[16] M. Bakošová, A. Mészáros, J. Klemeš, and J. Oravec, “Robust and op-
timal control approach for exothermic reactor stabilization,” Theoretical
Foundations of Chemical Engineering, no. 46, pp. 740–746, 2012.

[17] M. Kalúz, R. Kohút, and D. Dzurková, “Mpc-mimicking neural network
based on homomorphic encryption,” in Proceedings of the 2023 24th
International Conference on Process Control, Slovak University of
Technology in Bratislava. IEEE, June 6 - 9, 2023 2023, pp. 126–131.

[18] A. Benaissa, B. Retiat, B. Cebere, and A. E. Belfedhal, “Tenseal: A
library for encrypted tensor operations using homomorphic encryption,”
https://arxiv.org/abs/2104.03152, 2021.

[19] “Microsoft SEAL (release 4.1),” https://github.com/Microsoft/SEAL,
Jan. 2023, Microsoft Research, Redmond, WA.

4581

