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Abstract— Estimation of sensitivity matrices in electrical
transmission systems allows grid operators to evaluate in real-
time how changes in power injections reflect into changes in
power flows. In this paper, we propose a robust low-rank
minimization approach to estimate sensitivity matrices based
on measurements of power injections and power flows. An
online proximal-gradient method is proposed to estimate sensi-
tivities on-the-fly from real-time measurements. The proposed
method obtains meaningful estimates with fewer measurements
when the regression model is underdetermined, in contrast
with existing methods based on least-squares approaches. In
addition, our method can also identify faulty measurements and
handle missing data. In this work, convergence results in terms
of dynamic regret are presented. Numerical tests corroborate
the effectiveness of the novel approach and the robustness of
missing measurements and outliers.

I. INTRODUCTION

Sensitivity factors play an important role in power systems
operations and control. In transmission systems, linear sen-
sitivity distribution factors have traditionally been utilized in
power systems analysis – e.g., contingency analysis, genera-
tion re-dispatch, and security assessment [1], just to mention
just a few. Injection shift factors (ISFs) [2], [3] as well as
power transfer distribution factors (PTDFs) allow grid opera-
tors to estimate line flows in real-time in response to changes
in the (net) power injections. Computation of these sensitiv-
ities typically relies on either model-based or measurement-
based approaches. As an example of a model-based method,
ISFs and the PTDF matrix for transmission systems are
typically computed by leveraging the DC approximation [4].
Model-based approaches require accurate knowledge of the
network topology (including line impedances and switchgear
states), and are not dependent on specific operating points
of the network [4]. Measurement-based methods leverage
data obtained from phase measurement units (PMUs) or Su-
pervisory Control and Data Acquisition (SCADA) systems,
to obtain estimates of the sensitivity matrix using, e.g., a
least-squares approach or alternative estimation criteria [3].
Measurement-based methods do not require a knowledge
of the topology and impedances, and they do not rely on
pseudo-measurements obtained via power flow solutions.

Approaches based on the least-square estimation criterion
are effective only if one can collect measurements of the net
power injections that are “sufficiently rich”; that is, measure-
ments that lead to a least-square that is well conditioned [3],
[5], [6], [7]. In principle, the LS may be well conditioned
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when the perturbations of the net power injections can be
properly designed by the grid operator; for example, by
adopting the probing techniques of [8] at some or all of
the nodes. However, an underdetermined system may emerge
when (i) perturbations may not be performed at a sufficient
number of nodes (thus, the power variations are simply
due to uncontrollable devices); (ii) changes in the power of
uncontrollable loads and generation units located throughout
the network may lead to correlated measurements [9]; and,
(iii) when the power network is operating under dynamic
conditions due to fluctuations introduced by intermittent
renewable generation [10], the operator may not have time
to collect enough measurements before the operating point
of the network changes (and, thus, the sensitivities change).
Approaches based on least-squares as [11], [5], [6], [12] do
not consider the case where the collected measurements have
outliers that might lead to unreliable estimates.

To address these challenges, this paper proposes a robust
nuclear norm minimization method to estimate sensitivities
from measurements. The proposed approach is motivated by
our observation that certain classes of sensitivity matrices
– including the PTDFs – can afford a low-rank approx-
imation. Relative to existing methods based on the least-
squares approach, the proposed method: (C1) obtains mean-
ingful estimates of the sensitivity matrices with a smaller
number of measurements and when the regression model
is underdetermined (this is particularly important in time-
varying conditions and in case of switches in the topology);
(C2) leverages sparsity-promoting regularization functions to
identify faulty measurements; and, (C3) utilizes a low-rank
approach to handle missing data and measurements collected
at different rates.

To adapt to power networks increasingly operating under
dynamic conditions (and, hence, having sensitivity matrices
that change rapidly over time), the development of real-
time algorithms that can estimate the sensitivity matrix on-
the-fly from real-time measurements is presented in this
paper. In particular, we propose an online proximal-gradient
method [13] to solve the nuclear norm minimization problem
based on measurements collected from PMUs and SCADA
systems at the second or sub-second level. In line with the
broad literature on online optimization, convergence results
in terms of dynamic regret [14], [15] are offered. We point
out that the proposed algorithm is markedly different from
the competing alternative [16], and relies on an online
proximal-gradient method. Lastly, it is also worth recog-
nizing related works such as [17], where the AC equations
are perturbed in order to derive a closed-form expression
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of so-called “generalized” ISFs. An approach to estimate
dynamic distribution factors is introduced in [18], where
reduced-order models are used to derive dynamic ISFs and
generator participation factors. An example of online convex
optimization in power systems is presented in [19], for the
specific application of estimating load changes in the grid.

To the best of our knowledge, we present the first work
that explores nuclear norm minimization methods to esti-
mate sensitivity matrices in power systems. Additionally, we
develop an online algorithm based on a low-rank model to
solve a robust sensitivity estimation problem in the power
systems context.

II. PRELIMINARIES

The proposed approach can be leveraged to estimate vari-
ous sensitivity coefficients in a power grid. These include, for
example, ISFs [2], [3] in transmission systems, and voltage
sensitivities (with respect to power injections) in distribution
networks [20]. In the following, to clearly and concretely
explain the proposed approach, we tailor the exposition to
the estimation of the PTDFs matrix in transmission systems1.

A. System Model

Let N := {1, . . . , n} be the set of nodes where generators
and/or loads are located, and let L := {1, . . . , l} be the set
of transmission lines. Towards this, let ∆pj ∈ R represent
a change in the net active power injection at node j ∈ N ,
around a given point pj ; then, the vector capturing the change
in the active power flow on the lines in response to the change
of power ∆pj can be approximated as hj∆pj , where hj ∈
Rl represent the sensitivity coefficients [2], [3]. Discretize
the temporal axis as {tk = kT, k ∈ N}, with T as a given
time interval. Let ∆pk := [∆p1k,∆p2k, . . . ,∆pnk]

⊤ be the
vector of net active power changes collected at time instant
tk at the n nodes, and define the sensitivity matrix as Hk :=
[h1k h2k . . . hnk] ∈ Rl×n. Then, the vector ∆fk ∈ Rl

representing the change in the power flow on the lines in the
network due to ∆pk can be expressed by [2]

∆fk = Hk∆pk, (1)

where the entry i, j of Hk represents the sensitivity injection
shift factors [3]. Overall, Hk can be thought as a proxy for
the Jacobian of the map f = F(p), which yields flows
as a function of power injections, calculated at a given
point. By considering m measurements2 we can define the
matrices ∆Fk = [∆fk−m+1 . . . ∆fk] ∈ Rl×m, and ∆Pk =

1Notation: Upper-case (lower-case) boldface letters will be used for
matrices (column vectors), and (·)⊤ denotes transposition. For a given
column vector x ∈ Rn, ∥x∥ :=

√
x⊤x, and ∥x∥1 :=

∑n
i=1 |xi|.

Given a matrix X ∈ Rn×l, vec(X) ∈ Rp denotes the column vectorized
X with its columns stacked in order on top of one other and p := nl,
∥X∥∗ :=

∑r
i=1 σi(X), where r is the rank of X, and σi represented the

singular values of X. A vector of ones (zeros) is represented by 1 (0) with
the corresponding dimensions. O refers to the big O notation; that is, given
two positive sequences {ak}∞k=0 and {bk}∞k=0, we say that ak = O(bk)
is lim supk→∞(ak/bk) < ∞.

2Here, we consider measurements taken at times tk−m+1, . . . , tk for
exposition simplicity; however, one may use measurements collected at
irregular intervals.

[∆pk−m+1 . . . ∆pk] ∈ Rn×m. Then, the following linear
system of equations can be written as

∆Fk = Hk∆Pk. (2)

Based on (2), the following subsection will review existing
approaches based on the least-squares method as well as
model-based approaches.

B. Existing Methods

1) Least-squares estimation: Assuming that ∆Pk is
known and measurements (or pseudo-measurements) of ∆Fk

are available, one possible way to estimate Hk is via a least-
squares criterion. For example, a method similar to [3] can
be used, where the injection shift factors for a branch were
estimated using PMU measurements obtained in (near) real-
time. In particular, borrowing the approach of [3], Hk can
be obtained at time tk by solving:

HLS,k ∈ arg min
H∈H

∥∆Fk −H∆Pk∥2F , (3)

where ∥·∥F denotes the Frobenious norm, and H is a
compact set ensuring that each entry (i, j) of the matrix
H satisfies the constraint hmin ≤ [H]ij ≤ hmax; that is,
H = [hmin, hmax]

ln (in this case, hmin = −1 and hmax =
1). Alternatively, a weighted least-squares method can be
utilized when the noise affecting ∆Fk is colored or it is not
identically distributed across lines. Notice that in (3) there
are lm measurements and ln unknowns. With this in mind,
existing works such as [3] generally assume that m ≥ n
and that, the matrix ∆Pk has full column rank; with these
assumptions, one avoids an underdetermined system and,
furthermore, (3) has a unique solution. In principle, the ma-
trix ∆Pk can have full column rank when the perturbations
{∆pjk} can be properly designed by the grid operator [8], or
when nodes are perturbed in a round-robin fashion. However,
this is impractical in a realistic setting (if not infeasible),
because the grid operator may not have access to controllable
devices at each node of the network; moreover, changes
in the power of uncontrollable loads and generation units
located throughout the network contribute to {∆pjk}, and
this may lead to correlated measurements (therefore, sys-
tem (2) becomes underdetermined). In an underdetermined
setting, only a minimum-norm solution would be available
using a least-squares criterion, which may provide inaccurate
estimates of H (as corroborated in the numerical results
in Section V). Before presenting the proposed method, we
briefly mention a model-based approach.

2) Model-based method: For transmission systems, a
widely-used model-based approach to calculate the linear
sensitivity distribution factors is based on the DC approx-
imation [4]. In particular, by letting B ∈ Rn×n represent the
matrix of line series susceptances of the transmission system,
one can calculate the changes in phase angles ∆θ by using
the following relation:

∆pk = B∆θk. (4)

Define X = diag({−xab}) ∈ Rl×l, where xab represents the
line reactance between node a and b ∈ N, and let A ∈ Rl×n
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be the branch-bus incidence matrix. Then, using the DC
power flow formulation, fk can be expressed as the linear
relation fk = X−1Aθk [21]. If we want to express the active
power flow perturbation ∆fk due to a change in the phase
angles ∆θk, we can write ∆fk as ∆fk = X−1A∆θk. By
replacing this equation and (4) in (1) we obtain the model-
based relation for the sensitivity matrix as: H = X−1AB−1.
In order to guarantee that the inverse of B exists, we require
that the DC power flow equations for the nodal power
balances are linearly independent. Then, taking the node 1
as the slack bus, and denoting as Br ∈ R(n−1)×(n−1) and
Ar ∈ Rl×(n−1) the reduced matrices, the final sensitivity
matrix is given by H = [0 X−1ArB

−1
r ].

In the DC formulation, the sensitivity matrix factors de-
pends only on the topology of the network, and are invariant
to changes in the system operation point, such as load and
generation perturbations or failures. In this paper, we target
sensitivities based on the AC power flows, which depend
on the current operating point, as explained in [22]. In the
following, a low-rank method will be presented, which does
not require knowledge of network topology or reactances.

III. LOW-RANK APPROACH

In this section, we present an approach for the estimation
of the matrix H with the following features: i) it leverages
measurements of ∆Fk and ∆Pk obtained from PMUs,
SCADA, or other similar sources, rather than relying on
a network model; ii) it allows for obtaining meaningful
estimates of H even when (2) is underdetermined by lever-
aging a low-rank approximation of H; iii) when ∆Pk is
full column rank, it yields an estimation accuracy similar
to the least-squares estimator and, iv) can handle missing
measurements of flows on some lines (i.e., some entries
of ∆Fk may be missing). We recall that at each time k,
m measurements are utilized; consequently the matrices
∆Fk and ∆Pk processed at time k are constructed as
∆Fk = [∆fk−m+1 . . . ∆fk] ∈ Rl×m and ∆Pk =
[∆pk−m+1 . . . ∆pk] ∈ Rn×m, respectively.

For simplicity of exposition, we first consider the case
where measurements are error-free (then, we consider noisy
measurements and outliers). Based on the model (2), the
nearly low-rank property of H motivates us to consider the
following affine rank minimization problem (RMP) [23]:

min
H∈H

rank(H) s.t. vec(∆Fk) = A(H), (5)

where H is the convex compact set (in the simplest case,
the Cartesian product of box constraints), vec(∆Fk) ∈ Rp

where p := lm, denotes the vectorized ∆Fk, and the linear
map A : Rl×n → Rp is defined as: A(H) = AP,k vec(H),
where vec(H) ∈ Rd, d := ln, and AP,k is a matrix of
dimensions p×d, appropriately built using the perturbations
∆Pk. Specifically, matrix AP,k is the Kronecker product
defined by AP,k := ∆P⊤

k ⊗I, where I is the identity matrix
of dimensions l × l. Unfortunately, the rank criterion in (5)
is in general NP-hard to optimize; nevertheless, drawing an
analogy from compressed sensing to rank minimization, the

following convex relaxation of RMP (5) can be utilized [23]:

min
H∈H

∥H∥∗ s.t. vec(∆Fk) = AP,k vec(H), (6)

where ∥H∥∗ :=
∑

i σi(H) is the nuclear norm of H, with
σi(H) denoting the ith singular value of H. Interestingly,
it was shown in [23] that, if the constraints of (6) are
defined by a linear transformation that satisfies a restricted
isometry property condition, the minimum rank solution can
be recovered by the minimization of the nuclear norm over
the linear space; see the necessary and sufficient condition in
[23]. Unfortunately, designing the perturbation matrix ∆Pk

to satisfy the restricted isometry property may not be possible
due to uncontrollable loads.

The proposed methodology leverages the relaxation (6) to
estimate the matrix H from measurements of ∆Fk induced
by the perturbations in the net power injections ∆Pk.
Assuming that the measurements ∆Fk are affected by a zero-
mean Gaussian noise, a pertinent relaxation of (6) amounts
to the following convex program [24]:

min
H∈H

∥vec(∆Fk)− AP,k vec(H)∥22 + λ ∥H∥∗ , (7)

where λ > 0 is a given regularization parameter that is used
to promote sparsity in the singular values of H (and, hence,
to obtain a low-rank matrix H).

A. Robustness to outliers

We further consider the case where some measurements
of ∆Fk may be corrupted by outliers. This can be due to, for
example, faulty readings of PMUs, communication errors, or
malicious attacks. To this end, we augment the model (2)
as ∆Fk = Hk∆Pk + Ok + Ek, where Ek is a matrix
containing (small) measurement errors and Ok is a matrix
containing measurement outliers [25], [26]. When no outliers
are present, Ok is a matrix with all zeros. Based on this
augmented model, estimates of Hk and Ok can be sought
by solving the following convex problem [25], [26]:

min
H∈H,O∈M

∥vec(∆Fk)− AP,k vec(H)− vec(O)∥22
+ λ ∥H∥∗ + γ ∥vec(O)∥1 , (8)

where ∥vec(O)∥1 =
∑

i |[vec(O)]i| is the ℓ1-norm of the
vector vec(O), γ > 0 is a sparsity-promoting coefficient, and
M are box constraints of the form omin ≤ [Ok]ij ≤ omax.
Notice that the ℓ1-norm is the closest convex surrogate to
the cardinality function. Once (8) is solved, the locations
of nonzero entries in O reveal outliers across both lines
and time; on the other hand, the amplitudes quantify the
magnitude of the anomalous measurement. It is important
to notice that the parameters λ and γ control the trade-
off between fitting error, rank of H, and sparsity level of
O; in particular, when an estimate of the variance of the
measurement noise is available, one can follow guidelines
for selecting λ and γ similar to the ones proposed in [25].
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B. Missing measurements
It is worth pointing out that the proposed methodology

applies to the case where some measurements in ∆Fk in (7)
are missing. This may be due to communication failures or
because measurements are collected at different rates. For
the latter, one can take the highest measurement frequency
(i.e., the T shortest inter-arrival time) as a reference frame,
and treat measurements that are received less frequently (i.e.,
with a larger inter-arrival time) as missing entries.

In this case, missing measurements are discarded from
the least-squares term in (8) [26]. In particular, let Ωk ⊆
{1, 2, . . . , p} be a set indicating which measurements in the
vector vec(∆Fk) are available at time tk; for example, if the
measurement for the line 1 is missing at time tk−m+1 and
tk−m+2, then, Ωk ⊆ {2, 3, . . . , l, l+2, . . . , p}. Let PΩk

be a
time-varying vector sampling operator, which sets the entries
of its vector argument not indexed by Ωk to zero and leaves
the other entries unchanged. Then, (8) can be written as:

min
H∈H,O∈M

∥PΩk
{vec(∆Fk)− AP,k vec(H)− vec(O)}∥22

+ λ ∥H∥∗ + γ ∥vec(O)∥1 , (9)

where, of course, missing measurements are not accounted
for in the least-squares term.

IV. DATA-DRIVEN ONLINE ESTIMATION

Based on ∆Pk and ∆Fk, which collect measurements
of new power injections and power flows acquired at time
steps k−m+1, . . . , k, an estimate of Hk can be obtained by
solving the convex problem (8) using existing batch solvers
for non-smooth convex optimization problems. When the
power network is operating under dynamic conditions, for
example, due to swings in the net power due to intermittent
renewable generation and uncontrollable loads [10], the
sensitivity matrix Hk may rapidly change over time (since,
in general, it depends on the current operating points [3],
[22]); in these dynamic conditions, it may not be possible
to solve (8) sufficiently fast due to underlying computational
complexity considerations, and a solution of (8) generated
by batch solvers can be outdated. That is, by the time the
solution is produced, the operating conditions of the network
(and, hence, Hk) have changed. This aspect motivates the
development of an online algorithm that estimates Hk based
on streams of measurements and identifies outliers “on the
fly,” as explained in this section.

Measurements are assumed to arrive at times {tk =
kT, k ∈ N}, with T the inter-arrival time (e.g, T could
be one second or a few seconds [10]); suppose further that
measurements are processed over a sliding window Tk =
{tk−m+1, . . . , tk}. Then, at each instant tk, the matrix Hk

can be estimated via (8), which is re-written here as the
following time-varying problem [13]:

(H∗
k,O

∗
k) ∈ arg min

Hk∈Rl×n,Ok∈Rl×m
fk(Hk,Ok), ∀ kT

(10a)
where fk(Hk,Ok) := sk(Hk,Ok) + gk(Hk,Ok),

sk(Hk,Ok) := ∥∆Fk −Hk∆Pk −Ok∥2F , (10b)

gk(Hk,Ok) :=λk ∥Hk∥∗ + γk ∥vec(Ok)∥1
+ ιH(Hk) + ιM(Ok), (10c)

with ιH(H) the set indicator function for the compact set
H and ιM(O) the set indicator function for the compact set
M. The goal posed here is to develop an online algorithm
that can track a solution {H∗

k,O
∗
k}k∈N and the trajectory

of optimal value functions {f∗
k := fk(H

∗
k,O

∗
k)}k∈N by

processing measurements in a sliding window fashion. In the
following, let ok = vec(Ok), and xk = [vec(Hk)

⊤,o⊤
k ]

⊤ ∈
Xk := H × M for brevity. Notice that sk(xk) is closed,
convex and proper, with a Lk-Lipschitz continuous gradient
at each time tk; on the other hand, gk(xk) is a lower
semi-continuous proper convex function. Lastly, the function
attains a finite minimum at a certain x∗

k. Given this particular
structure of (10), we propose to use an online proximal-
gradient algorithm [13] to solve (10) under streams of
measurements. Assuming that, because of communication
delays and computational considerations, one step of the
algorithm can be performed within an interval T (which
coincides with the inter-arrival rate of the measurements), the
online proximal-gradient algorithm amounts to the sequential
execution of the following step:

yk = xk−1 − α∇xsk(xk−1), xk = proxαgk,X {yk}, (11)

where α > 0 is the step size, and the proximal operator is
defined over the non-differentiable function gk as [27]

proxαg {y} := arg min
x

{
g(x) +

1

2α
∥x− y∥2

}
. (12)

Notice that, if we re-write the function sk as

sk(xk) =
∥∥∆fk −APs,kxk

∥∥2 , (13)

where ∆fk = vec(∆Fk), APs,k = [AP,k, I], and xk defined
as before, then, ∇xsk is given by

∇xsk(xk) = 2APs
⊤
,k

(
APs,kxk −∆fk

)
. (14)

Notice that the proximal operator in (11) is separable across
the two variables of interest Hk and ok, since the costs
associated with the Hk and ok are decoupled; therefore,
the proximal mappings for Hk and ok can be computed
separately. In particular, one has that,

Hk = proxλk∥·∥∗+ιH
{YH,k}, (15)

ok = proxγk∥·∥1+ιM
{yo,k}, (16)

with YH,k and yo,k extracted from the stacked vector yk

in (11), then, ok admits a closed-form solution, given by:

ok = [Sγ(yo,k)]
omax
omin

, (17)

where [x]ba = max{min{x, b}, a}, and the thresholding
operator Sγ is defined as:

Sγ(y) = max{|y| − γ1,0} ⊙ sgn(y)

=

{
y − γ1, if y ≥ γ1,

0, if |y| < γ1,
y + γ1, if y ≤ −γ1.

(18)
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With the previous definitions in place, the online proximal-
gradient algorithm for the robust estimation of the sensitivity
matrix is tabulated as Algorithm 1.

Algorithm 1 Online robust estimation of sensitivity matrices
for k = m,m+ 1, . . . , do

[S1] Collect ∆fk and ∆pk

[S2] Build ∆Fk and ∆Pk based on {∆fk,∆pk}k∈Tk

[S3] Compute yk via (11)
[S4] Update Hk via (15)
[S5] Update ok via (17)
Go to [S1]

end for

In order to analyze the estimation accuracy of Algorithm 1
performance, the dynamic regret metric is considered here;
see, e.g. [14], [15], [13]. In particular, it is defined as:

Regk :=
k∑

i=1

[fi(xi)− fi(x
∗
i )] ,

where we recall fi is the cost function in (8) (see also (10)).
The dynamic regret is an appropriate performance metric
for time-varying problems with a cost that is convex, but not
necessarily strongly convex [13]. To derive bounds on the
dynamic regret, it is first necessary to introduce a “measure”
of the temporal variability of (10). One possible measure is:

ωk :=
∥∥x∗

k − x∗
k−1

∥∥ , (19)

along with the so-called “path length”:

Ωk :=

k∑
i=1

ωi, Ω̄k :=

k∑
i=1

ω2
i . (20)

Recall that the least-squares term sk(xk) is closed, convex
and proper, with a Lk-Lipschitz continuous gradient at each
time tk, and that gk(xk) is a lower semi-continuous proper
convex function. Then, by using the definitions (19)–(20) and
leveraging bounding techniques similar to [28], the following
result can be obtained.

Theorem 1: Suppose that the step size α is chosen such
that α ≤ 1/L, with L := max{Lk}. Then, the dynamic
regret of Algorithm 1 has the following limiting behavior:

1

k
Regk = O(1 + k−1Ωk + k−1Ω̄k). (21)

□
Proof. See the Appendix.
Note that:
• When the sensitivity matrix changes over time, Ωk and Ω̄k

grow as O(k). Therefore, (1/k)Regk = O(1); that is, the
sensitivity matrix can be estimated within a bounded error
even in the considered online setting [13].
• A no-regret result (i.e., (1/k)Regk asymptotically goes to
0) can not be obtained in general.
• If the sensitivity matrix is constant, then one trivially
has that Regk approaches 0 asymptotically, thus recovering
convergence results for the batch proximal-gradient method.

V. SIMULATION RESULTS

In this section, the estimation accuracy of the proposed
methodology is assessed, for both batch and online imple-
mentation. The following transmission networks are consid-
ered: i) Western Electricity Coordinating Council (WECC)
3-machine 9-bus transmission system [29], and ii) the syn-
thetic South Carolina 500-bus transmission power system
model [30]. In both cases, MATPOWER is used to compute
the power-flow solutions [29].

A. Batch estimation

Fluctuations in active power injections around a given
operating point are simulated as in [3]. In particular, the
injection at node j, denoted by pj , is given by pj [k] =
p0j [k] + σN1p

0
j [k]η1 + σN2η2, where p0j [k] is the nominal

power injection at node j at instant k, and (η1, η2) are
random values, where η1 ∼ N (0, σN1) and η2 ∼ N (0, σN2)
for standard deviations σN1 = σN2 = 0.1; see [3] for details.
For each time k, we take the difference between consecutive
line flow measurements to obtain ∆Fk. We obtained ∆Pk

by taking the differences between consecutive values of
active power injections in each node. The batch optimization
problems (7) and (8) can also be solved efficiently using
the proximal-gradient method (i.e., a batch version of Algo-
rithm 1); see, for example, [31] (and references therein) for
standard computational times of proximal-gradient methods.

The performance of the proposed low-rank based approach
is considered for both transmission networks. First, the batch
method (7) is evaluated, when a decrease in generation
occurs at generator 2 for the 9-bus, and in generator 9
for the 500-bus transmission system. Figure 1 and Figure
2 compare the performance of the proposed method with
the least-squares approach [3]. In this case, 10 trials were
used, and the relative error (RE) with respect to bus i is
defined by REi =

∥hik−h∗
ik∥

∥h∗
ik∥

(we use this definition to be
consistent with [3]), where the actual sensitivity of the lines
due to the change of generation in bus i is denoted h∗

ik, and
hik specifies the column of the estimated sensitivity matrix
Hk for the bus i obtained form the DC model-based, least-
squares, or low-rank approaches. Figure 1 shows that when
the set of measurements is less than 9 (the total number
of nodes in this case) the least-squares approach does not
give an accurate estimation, because it is underdetermined.
In the case of the proposed low-rank method, the median of
the relative errors can be just 3% even when we have only
6-7 sets of measurements; the proposed method performs
better than the model-based approach via DC approxima-
tion once we collect 8 measurements. When more than 9
measurements are collected, the proposed method and the
least-squares approach have similar performance as expected.
Figure 2 shows similar behavior for the synthetic South
Carolina 500-bus transmission systems, where our method
is able to estimate the sensitivity matrix from 200 sets of
measurements. In both cases, it is evident that the proposed
approach provides accurate results with fewer measurements
than the least-squares approach.
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(a)

(b)
Fig. 1. Case - 9-bus: Box plot of the relative error (RE) over 10 trials
for the estimation of the sensitivity matrix under a different number of
measurements: (a) RE for the least square estimator and (b) RE for the
low-rank approach.

(a)

(b)
Fig. 2. Case - 500-bus: Box plot of the relative error (RE) over 10 trials
for the estimation of the sensitivity matrix under a different number of
measurements: (a) RE for the least-square estimator and (b) RE for the
low-rank approach.

Further, in order to assess the performance of (8) in the
case of outliers, we replicated the previous case for the 9-
bus transmission system but with random outliers in the
measurements. Figure 3 presents the results for the proposed
method and the least-squares approach. Again, the proposed
method outperforms the least-squares approach, and provides
better estimates than the DC model-based method. In order
to assess the performance of (9) in the case of missing
measurements, we replicated the case for the 9-bus transmis-
sion network. Figure 4 presents the results for the proposed
method and the least-squares approach where the LR method
outperforms the LSE approach, in a case when different
values of percentages of the data in ∆Fk are missing.

(a)

(b)
Fig. 3. Case - 9-bus: Box plot of the relative error (RE) over 10 trials
for the estimation of the sensitivity matrix with outliers under a different
number of measurements: (a) RE for the least-square estimator and (b) RE
for the low-rank approach.
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(b)
Fig. 4. Case - 9-bus: Relative error (RE) over 50 trials for the estimation
of the sensitivity matrix under a different number of measurements and
different percentages of missing data: (a) RE for the least-square estimator,
and (b) RE for the low-rank approach.

B. Online Estimation

As an example of an application of Algorithm 1, we
consider an online robust estimation of the sensitivity matrix
for the 9-bus transmission system. Relative to the test case
presented in Section V-A, the nominal power injections at
the nodes are now changing over time as in [32]. Figure
5(a) shows the dynamic regret (1/k)Regk, when a window
of 18 measurements is used. Based on Theorem 1, in the
current setting the limiting behavior of (1/k)Regk is O(1).
Indeed, we can see that an asymptotic error is decreasing
with the time index. Figure 5(b) presents the cumulative sum
of the relative error (RE) over k, i.e., (1/k)

∑k
i=1 RE2, for

the online robust estimation of the sensitivity matrix in the 9-
bus transmission system, when there are changes of topology.
In this case, we change the reactance of line 5 at k = 400,
and the reactance of line 8 at k = 700.
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(a)

(b)
Fig. 5. (a) Evolution (1/k)

∑k
i=1[f(xi)− f(x∗

i )] for the online robust
estimation of the sensitivity matrix in 9-bus transmission system using LR
(low-rank) method and LSE (least-square estimation) approach. (b) Cumu-
lative sum of the relative errors (RE) over k, i.e., (1/k)

∑k
i=1 RE2, for

the online robust estimation of the sensitivity matrix in 9-bus transmission
system, when there are changes of topology (k = 400 change reactance
of line 5 and k = 700 change reactance of line 8), using LR (low-rank)
method and LSE (least-square estimation) approach.

VI. CONCLUSION

This paper proposed a method to estimate sensitivities in
a power grid by leveraging a nuclear norm minimization
approach and sparsity-promoting regularization functions.
The proposed methodology is applicable to the estimation
of various sensitivities at the transmission level. Relative to
a least-squares estimation method, the proposed approach
allows to obtain meaningful estimates of the sensitivity
matrix even when measurements are correlated. The method
can identify outliers due to faulty sensors and is not deterred
by missing measurements. An online proximal-gradient algo-
rithm was proposed to estimate sensitivity matrices on-the-fly
and enable operators to maintain up-to-date information on
sensitivities under dynamic operating conditions.

APPENDIX

Proof of Theorem 1. Since sk has a Lk-Lipschitz contin-
uous gradient, i.e., Lk ≥

∥∥∥APs
⊤
,kAPs,k

∥∥∥, then:

sk(xk) ≤ sk(xk−1) + ⟨∇xsk(xk−1),xk − xk−1⟩

+
Lk

2
∥xk − xk−1∥2 . (22)

Using the convexity of sk we also have that,
sk(xk−1) ≤ sk(x

∗
k) + ⟨∇xsk(xk−1),xk−1 − x∗

k⟩. (23)

Therefore, putting (22) and (23) together, one arrives at:

sk(xk) ≤ sk(x
∗
k) + ⟨∇xsk(xk−1),xk − x∗

k⟩

+
Lk

2
∥xk − xk−1∥2 . (24)

On the other hand, for the non-differentiable function gk,
we can leverage [27, Theorem 3.36]. Let ϕ1(z), ϕ2(z):
E → (−∞,∞] be proper convex functions, and let z ∈
int(dom(ϕ1)) ∩ int(dom(ϕ2)). For ϕ(z) := ϕ1(z) + ϕ2(z),

then ∂ϕ(z) = ∂ϕ1(z) + ∂ϕ2(z). Based on [27, Theorem
3.36], we have that,

0 ∈ ∂
{
gk(xk) +

1

2α
∥xk − yk∥2

}
,

which implies:

−φ ∈ ∂gk(xk), φ ∈ ∂
{ 1

2α
∥xk − yk∥2

}
.

Since φ ∈ ∂
{

1
2α ∥xk − yk∥2

}
, the following holds:

1

2α
∥xk − yk∥2 + ⟨φ,q− xk⟩ −

1

2α
∥q− yk∥2 ≤ 0 ∀ q.

(25)
Furthermore, since (25) holds for all q, we can define q =
yk + αφ. Then, (25) can be written as

1

2α
(∥xk − yk∥2 + α2 ∥φ∥2)− ⟨φ,xk − yk⟩ ≤ 0. (26)

Now using (25) and (26) we get that,
yk − q

α
∈ ∂gk(xk). (27)

By using the subgradient defined in (27) and the update in
(11), the following inequality for gk can be obtained,

gk(xk) ≤ gk(x
∗
k)−

1

α
⟨xk−1 − q,x∗

k − xk⟩

+ ⟨∇xsk(xk−1),x
∗
k − xk⟩. (28)

Adding (24) and (28) we obtained

sk(xk) + gk(xk) ≤ sk(x
∗
k) + gk(x

∗
k) +

Lk

2
∥xk − xk−1∥2

+ ⟨∇xsk(xk−1),x
∗
k − xk⟩+ ⟨∇xsk(xk−1),xk − x∗

k⟩

+
1

α
⟨xk−1 − q,xk − x∗

k⟩,

and therefore,

fk(xk) ≤ fk(x
∗
k) +

(
Lk

2
− 1

α

)
∥xk − x∗

k∥
2
+

Lk

2
∥xk−1 − x∗

k∥
2
+

(
1

α
− Lk

2

)
⟨xk−1 − q,xk − x∗

k⟩.

(29)

Set α ≤ 1
max{Lk} ; in particular, let α = 1

max{Lk} − w2, for
w ∈ R. Then:
Lk

2
− 1

α
≤ α max{Lk} − 2

2α
≤ − 1

2α
− w2 max{Lk}

2α
. (30)

Also notice that,(
1

α
− Lk

2

)
⟨xk−1 − q,xk − x∗

k⟩ ≤(
1

α
− Lk

2

)
∥xk−1 − q∥ (∥xk − x∗

k∥+ ωk).

Based on (25) holds for all q, let R be the diameter of X .
Therefore,(
1

α
− Lk

2

)
∥xk−1 − q∥ (∥xk − x∗

k∥+ωk) ≤ ΦR(R+ωk),

(31)
where Φ := 1

α − min{Lk}
2 . Then, based on (30) and (31), and

neglecting constant terms, we can write (29) as,

fk(xk)−fk(x
∗
k) ≤ − 1

2α
∥xk − x∗

k∥
2
+

1

2α
∥xk−1 − x∗

k∥
2

+ΦR(R+ ωk). (32)
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By adding and subtracting x∗
k−1 in the last term on the

right hand side of (32), and adding it from i = 1, . . . , k, we
can write the right hand side of the equation as:
k∑

i=1

{
− 1

2α
∥xi − x∗

i ∥
2
+

1

2α

∥∥xi−1 − x∗
i−1 + x∗

i−1 − x∗
i

∥∥2} ,

(33)
where the second term in (33) can be expanded as:

k∑
i=1

{
− 1

2α
∥xi − x∗

i ∥
2
+

1

2α

∥∥xi−1 − x∗
i−1

∥∥2 +
1

α

∥∥xi−1 − x∗
i−1

∥∥∥∥x∗
i − x∗

i−1

∥∥+
1

2α

∥∥x∗
i − x∗

i−1

∥∥2 }.

(34)

The first two terms in (34) correspond a telescoping series;
and, by using the definition of ωk, (32) can be rewritten as
follows:

k∑
i=1

[fi(xi)−fi(x
∗
i )] ≤

1

2α
∥x0 − x∗

0∥
2− 1

2α
∥xk − x∗

k∥
2

+
1

α

k∑
i=1

ωi(
∥∥xi−1 − x∗

i−1

∥∥+ΦR)+
1

2α

k∑
i=1

ω2
i + kΦR2.

Since X is compact, we can upper bound ∥xk − x∗
k∥ by R,

and thus the result follows.
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