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Abstract— In this paper, using tools from graph theory we
provide verifiable necessary and sufficient conditions for the
existence of a unique hydraulic equilibrium in district heating
systems of meshed topology and containing multiple heat
sources. Even though numerous publications have addressed the
design of efficient algorithms for numerically finding hydraulic
equilibria in the general context of water distribution networks,
this is not the case for the analysis of existence and unique-
ness. Moreover, most of the existing work dealing with these
aspects exploit the equivalence between the nonlinear algebraic
equations describing the hydraulic equilibria and the KKT
conditions of a suitably defined nonlinear convex optimization
problem. Differently, this paper proposes necessary and suf-
ficient graph-theoretic conditions on the actuator placement
for the existence and uniqueness of a hydraulic equilibrium,
independent of the actuators’ control objective. An example
based on a representative district heating network is considered
to illustrate the key aspects of our contribution, and an explicit
formulation of the steady state solution is given for the case in
which pressure drops through pipes are linear with respect to
the flow rate.

I. INTRODUCTION

District heating systems distribute heat from heating plants
towards clusters of consumers that are part of a neighbor-
hood, or even a wider area, using a system of heat exchangers
and a closed network of insulated water pipes [1]. The
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safe and efficient operation of district heating systems relies
on control systems in charge of regulating the temperature,
pressure, and flow rate of the stream of water through specific
sections of the network (see, e.g., [2], [3], [4], [5], [6], [7],
[8], [9], [10]).

An essential step to determine suitable setpoints of vari-
ables of interest, as well as the steady state of the sys-
tem in general, refers to the (optimal) heat or power flow
calculation, which usually aims at minimizing operational
costs while satisfying physical constraints originating from
energy, mass and momentum balance conditions imposed on
the system [11], [12], [13].

In this work we focus on identifying necessary and suf-
ficient conditions for the existence of a unique hydraulic
equilibrium, which corresponds to a solution of a system of
nonlinear algebraic equations, which are necessarily embed-
ded into the heat flow calculation.

A vast amount of literature is proposing methods for
rapidly and efficiently solving the hydraulic steady state
equations of district heating systems, see, e.g., [12] and the
references therein. However, our focus is on constructively
identifying conditions based on graph theoretic elements
to certificate the solvability of the considered nonlinear
algebraic equations. This has also been the focus of [14],
[15], [16], [17], [18], but in the context of water distribution
networks, which are typically assumed to be open, i.e.,
with water inflows and outflows. Moreover, most of these
references rely on reformulating the hydraulic steady state
equations as the KKT conditions of a suitably defined convex
optimization problem [19]. In particular, and in contrast to
most publications, [14] also derives necessary and sufficient
conditions in terms of the solvability of the Kirchhoff’s
relations of the network. However, it is still unclear how
the placement of the actuators affect the existence and
uniqueness of a hydraulic equilibrium. To fill this gap, we
propose necessary and sufficient graph-theoretic conditions
on the actuator placement for the existence and uniqueness a
hydraulic equilibrium, independent of the actuators’ control
objective. In addition, we derive closed-form expressions of
the steady state solution in the case of linear flow.

The remainder of the paper is structured as follows.
Section II introduces the model for the hydraulic network
and describes the problem of the existence of steady state
solutions that is addressed in this paper. In Section III we
explore the natural necessary conditions on the network that
arise from the problem, and we subsequently state our main
result, along with a brief discussion. An explicit formulation
of the (unique) steady state solution for the linear case is
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Fig. 1: Simplified representation inspired by [20] of the hydraulic network
of a district heating system with multiple heat sources. Red (blue) arrows
and circles respectively represent pipes and junctions of the supply (return)
layer. The heat exchangers of producers or consumers are denoted by black
arrows.

found in Section IV. The paper is concluded in Section V
with a number of remarks and directions for future research.

Notation: R represents the set of real numbers and Rn is the
set of n-dimensional vectors. The set of m by n real matrices
is denoted by Rm×n. The ith and (i, j)th component of any
x ∈ Rn and any A ∈ Rm×n are respectively denoted by
xi and Aij . For any A ∈ Rm×n and any ordered index sets
I,J , we denote by AI,J the submatrix formed with the
rows of A in I and the columns in J . By 0n and 1n we
represent the n-dimensional vectors of only zero and only
one entries, respectively. The Euclidean norm of any vector
v ∈ Rn is denoted by ∥v∥. For any function t 7→ γ(t), we
denote by γ̇ its derivative with respect to t.

II. MODEL AND PROBLEM FORMULATION
In this section, we describe the setup of the considered

hydraulic system and present its model. In addition, we
formulate the problem we address in the paper and briefly
describe the approach we take for its solution.

A. Model

We focus on the hydraulic subsystem of district heating
networks, which as mentioned are closed networks for the
distribution of heat from production centers to clusters of
consumers via heat exchangers and a set of hydraulic pumps
that move (typically) water throughout the system (see Fig. 1
for a simplified depiction of a district heating system’s
hydraulic network).

Following [3], [21], [22], [20], we represent the plant as a
connected graph G = (N , E) with no self-loops. The set of
e edges E is comprised by the secondary (primary) sides of
the producers (consumers) heat exchangers and all the pipes
of the system. The set of n nodes N are the points where
two or more edges physically interconnect. For the edges,
we fix an arbitrary orientation, i.e., for any i ∈ E with end
nodes j, k ∈ N , j ̸= k, we can either say that j is the head
and k is the tail of i, or conversely, that j is the tail and k
is the head of i; the orientation of the edges is the reference
direction for positive flows.

Let qi(t) denote the volumetric flow rate through a given
edge i, and let pj(t) denote the pressure of a given node j.

Also, for any j ∈ N , let Ij be the set of edges that are
incident to j, and, based on [20], [8], [23], let us also define
for any i ∈ E the sets N−

i and N+
i , which respectively

represent the tail and head of i. Moreover, throughout this
paper we assume that the hydraulic network is actuated by
pumps that are connected in series with some of the pipes
or heat exchangers. The control variable ui represents the
pressure difference produced by a hydraulic pump in series
with edge i. If there is no pump in series with i, we simply
fix ui = 0.

With the above considerations, the system’s model is the
following (see, e.g., [3], [21], [24]):

Jiq̇i = −fi(qi) + ui + pj − pk, ∀i ∈ E , j ∈ N−
i , k ∈ N+

i

(1a)

0 =
∑
i∈Iℓ

qi, ∀ℓ ∈ N , (1b)

where Ji > 0 is the inertia of the stream through i, and fi
models the pressure drop across i due to frictional forces
and/or the presence of a hydraulic valve in series with i.

Equation (1a) represents the momentum balance at any
edge i and equation (1b) is the volume balance at each
node ℓ; for a more detailed hydraulic model based on
PDEs we refer the reader to [20]. Underlying assumptions
behind the model (1) are that the streams through pipes
and heat exchangers are one dimensional and that water
is incompressible; these are typical considerations when
modeling this type of systems (see e.g., [3], [21], [20]).
Another underlying assumption is that the amount of water
stored at any node is constant; for the purposes of this paper,
such amount can be assumed to be zero without loss of
generality.

For the developments in the coming sections, we find it
convenient to represent the system (1) in vector form as
follows:

Jq̇ = −f(q) + u− B⊤p, (2a)
0 = Bq, (2b)

where q ∈ Re, p ∈ Rn, J = diag(Ji), f(q) = col(fi(qi)),
u ∈ Re and B is the incidence matrix of G, defined as

Bi,j =

 1, if i ∈ N is the head of j ∈ E ,
-1, if i ∈ N is the tail of j ∈ E ,
0, otherwise.

(3)

The assumption that G is connected is reflected by the fact
that the kernel of B⊤ is spanned by 1n.

We also define ∆i := pk − pj with j ∈ N−
i and k ∈ N+

i

as the pressure difference over edge i. By definition of B we
have that ∆ = B⊤p.

Before moving on to the next section, we introduce further
standing assumptions about the plant’s model (c.f., [3], [25]):

Assumption 1.
(i) Each fi is a continuous and strictly monotonically

increasing function that satisfies fi(0) = 0.
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(ii) Pumps are represented as ideal pressure difference
(“voltage”) sources.

The following remarks about the considered model and
associated assumptions are in order:

Remark 1. For any i ∈ E for which fi models the pressure
drop due to a valve, fi will additionally depend on the valve’s
stem position si ∈ [smin

i , 1], smin
i > 0, which in many

practical scenarios it also represents a control variable. For a
number of standard valve models (see, e.g., [22] and [23]) it
is possible to factorize fi as fi(si, qi) = γi(si)f̂i(qi), where
γi is a surjective and positive function of the valve stem’s
position si and f̂i is a strictly monotonically increasing,
surjective function of qi that satisfies f̂i(0) = 0.1 For
simplicity, in this paper we assume that actuation is only
provided through pumps and if control valves are present
then their stem position will be fixed to a constant value.

Remark 2. In [3] and [4] a new paradigm for the actuation of
hydraulic networks of district heating systems is discussed.
It consists in placing variable speed pumps in a distributed
manner throughout the system. The aim is to better counter
the increased pressure drops due to the presence of pipes with
reduced diameters, which is a known design rule for reducing
heat losses and improving the overall operational efficiency.
In [26], a comparison of the energetic performance of this
type of hydraulic configuration with respect to traditional
valve-actuated hydraulic networks is presented. Through case
studies, it is shown there that the former pumping scheme
has the potential for substantially reducing the energy con-
sumption associated to the operation of the system pumps.
Extending our current results to also consider the presence
of actuated valves is part of our ongoing research efforts.

Remark 3. (Linear) Dynamic pump models are considered
in [27] and [25]. For each of these models it is possible
to show that, at steady state, there exists a one-to-one
correspondence between the control variable and the pressure
difference produced across the pump. Hence, our results
would also hold if we consider such dynamic models.

B. Problem formulation

The main problem addressed in this paper refers to finding
conditions on the topology of the graph G, on the functions
fi and on the placement of the system’s actuators (pumps)
such that (1) admits a unique equilibrium point. Due to the
relevance in the control of hydraulic networks described by G
and (1), we would like to cast this problem as an assignable
equilibria problem. That is, we are particularly interested
in describing the (disjoint) subsets α, β ⊆ E such that, for
desired equilibrium values qi = q∗i , i ∈ α, and pk−pj = ∆∗

i ,
(j, k) = i ∈ β, an equilibrium point of (2) exists and is
unique; henceforth we assume that every qi, pi, ui and ∆i

are at steady state. In practice this means that for given such
sets α or β, we can check a priori if an equilibrium exists

1This observation originates from an ongoing research of some the authors
with F. Strehle, A. Malan and S. Hohmann from Karlsruhe Institute of
Technology (KIT).

and is unique. Alternatively, when designing the actuator
placement, this gives a description of the α and β for which
an equilibrium to (2) exists and is unique.

The set α is associated to those edges for which it is
of interest to regulate their flows, as is the case for the
consumers and a number of producers of a district heating
network. The set β corresponds to those edges for which
it is relevant to regulate the pressure drop across them,
as is the case for at least one producer in district heating
systems [28], but also for (potentially lengthy) pipes with
supporting booster pumps [3]. Note that α or β may be
empty, which corresponds to the case where there are no
flow-regulating pumps or pressure-regulating pumps in the
network, respectively. We additionally introduce the set γ ⊆
E of unactuated edges. Naturally, the sets α, β and γ are
disjoint and form a partition of the edge set E .

We assume that each i ∈ α ∪ β has an independently
actuated pump in series with it. This pump is to provide
the necessary pressure difference to achieve in steady state
the desired flow or pressure drop through/across i. With
these considerations, the hydraulic dynamics (2) admits an
equilibrium point if and only if the following system is
solvable for ∆i, i ∈ α∪ γ, qi, i ∈ β ∪ γ and ui, i ∈ α∪ β:

0 = −fi(q
∗
i ) + ui −∆i, i ∈ α, (4a)

0 = −fi(qi) + ui −∆∗
i , i ∈ β (4b)

0 = −fi(qi)−∆i, i ∈ γ, (4c)

0 =
∑
i∈Iℓ

qi, ∀ℓ ∈ N , (4d)

where we have used ∆i = pk − pj for any (j, k) = i ∈ E .
An observation that will be useful in the sequel is that for

any solution of (4) the steady state input ui can be expressed
for each i ∈ E as follows:

ui =


fi(q

∗
i ) + ∆i if i ∈ α,

fi(qi) + ∆∗
i if i ∈ β,

0 if i ∈ γ,

(5)

where ui = 0 for i ∈ γ reflects the unactuated nature of
these edges.

We would like to emphasize our desire to determine the
placement of the actuator pumps that would guarantee the
existence of steady state solution of (1) in such a way that
a hydraulic equilibrium exists independently of the values
of the desired setpoints q∗i , i ∈ α and ∆∗

i , i ∈ β. Then, for
precision and conciseness, we summarize the above problem
formulation as follows:

Problem 1. Given a closed hydraulic network that is repre-
sented by the graph G = (N , E) and dynamics (1), subject
to Assumption 1. Determine for which placements of flow-
regulating pumps α ⊆ E and pressure-regulating pumps
β ⊆ E there exists a steady state solution to (1), for any
choice of the desired equilibria q∗i , i ∈ α and ∆∗

i , i ∈ β, and
under which conditions it is unique.
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III. MAIN RESULT
In this section we explore two necessary conditions for

the placement of flow- and pressure-regulating pumps, which
inspires the notion of a properly actuated network. We then
state the main result of this paper, followed by a short
discussion on how our main result is related to the literature.

A. Necessary conditions for the existence of a steady state
solution

We recall some further notions from graph theory as
reported in [29, Ch. 11] and [30] (see also [3]). In this
work we associate each subset S ⊆ E to the subgraph of G
obtained by selecting all edges in S and its incident nodes.
A subgraph G′ = (N ′, E ′) of G = (N , E) is said to be
spanning if it contains all the nodes of G, by which we mean
that N ′ = N . If G′ is connected and does not have loops,
then it is a tree of G. A spanning tree is a tree that is also
a spanning subgraph. Each connected graph has at least one
spanning tree [30, Cor. 7]. A cut set is a minimal set of
edges S ⊆ E such that the subgraph obtained by removing
the edges in S from G, denoted by G \ S, is disconnected
and has exactly two connected components. Note that we do
not remove any nodes to obtain G \ S, and hence G \ S is
always spanning.

Cut sets represent sets of edges for which the flow cannot
be independently assigned. If S ⊆ E is a cut set of the graph,
then let U and V represent the nodes of the two connected
component of G \ S. The minimality of the cut set ensures
that each edge in S is an edge between a node in U and
a node in V . Since we consider a closed network, the flow
that leaves component U must enter component V , and vice
versa. The total flow that U exchanges with V is given by∑

l∈U

∑
i∈Il

qi. However, due to the nodal conservation of
flow (1b), which corresponds to the Kirchhoff current law,
this total flow is equal to zero. Since the flow between U
and V is transported through the edges in S, the flow of the
edges in S must sum to zero. Consequently, if α were to
contain a cut set, then the desired equilibrium values q∗i for
i ∈ α cannot be independently assigned. Intuitively, the set
of q∗ for which the steady state equations (4) are solvable
has measure zero. The above is a restriction on the placement
of flow-regulating pumps in the network. Figure 2 illustrates
this restriction by an example.

Analogous to cut sets, loops in the graph correspond to sets
of edges for which the pressure drop cannot be independently
assigned. Since the pressure drop ∆i over each edge i is the
difference between the nodal pressures at the head and tail
of the edge, the difference of the nodal pressure of the start
and end node of a walk coincides with the signed sum of
the pressure drops over each edge in the walk. The sign
in the sum respects orientation of the edge relative to the
direction of the walk. If S ⊆ E forms a loop in the graph,
the signed sum of the pressure drops in the loop therefore
corresponds to a walk along the loop from any node in the
loop to itself. Since the start and end point of the walk are the
same node, the pressure drops over the edges in S must sum
to zero. Hence, if β were to contain a loop, then the desired

equilibrium values ∆∗
i for i ∈ β cannot be independently

assigned. Intuitively, the set of ∆∗ for which the steady state
equations (4) are solvable has measure zero. The above is a
restriction on the placement of pressure-regulating pumps
in the network. Figure 3 illustrates this restriction by an
example.

We conclude that, if α contains a cut set and/or β contains
a loop, then the choices of q∗i and ∆∗

i for which (1) has
an equilibrium are constrained. As such, the absence of cut
sets in α and loops in β is a necessary condition for the
placements of the actuator pumps that solves Problem 1.
Inspired by this observation, we introduce the following
definition.

Definition 1. The network represented by the graph G =
(N , E) for which the edges in α are flow-regulated and the
edges in β are pressure-regulated is called properly actuated
if there exists a spanning tree T of G such that α ⊆ E \ T
and β ⊆ T .

Although Definition 1 appears to be unrelated to the
previous discussion, the “properly actuated”-property is a
graph-theoretic reformulation of the condition that α does
not contain a cut set and β does not contain a loop. Their
equivalence is shown in the following lemma.

Lemma 1. The set α ⊆ E does not contain a cut set and
the set β ⊆ E does not contain a loop if and only if α and
β are such that G is properly actuated.

Proof. (⇒): Since α does not contain a cut set, it means that
removing the edges in α from G, denoted as G \ α, results
in a spanning subgraph of G. Since β contains no loops,
each connected component of β is a tree. We let (G \ α)/β
denote the graph obtained from G\α by contracting over the
edges from β (cf. [30, p. 24]). Consequently, each connected
component of β in G \ α corresponds to a single node in
(G \ α)/β. Since G \ α is connected, so is (G \ α)/β, and
hence (G \ α)/β has a spanning tree [30, Cor. 7]. Let T ′ ⊆
E \(α∪β) represent the edges in such a spanning tree. Since
each connected component of β in G \α was a tree, we have
that T := β∪T ′ forms a spanning tree of G \α. Since G \α
is a spanning subgraph, T is also a spanning tree of G.

(⇐): If β is contained in a tree, it cannot contain a loop.
If the subgraph E \α contains a spanning tree, then E \α is
connected and hence α cannot contain a cut set for G.

Figure 4 illustrates an example of a network which is
properly actuated. Due to Lemma 1 and the discussion above,
it is necessary for a network to be properly actuated in order
to solve Problem 1.

Lemma 2. An equilibrium (p, q) to (1) exists for any choice
of q∗i , i ∈ α and ∆∗

i , i ∈ β only if the network is properly
actuated.

B. Statement of the main result

Lemma 2 shows that the “properly actuated”-property
is a necessary condition for the actuator pump placement
problem of Problem 1. A natural continuation is to ask if
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Fig. 2: A hypothetical placement for the flow-regulating pumps α (dashed
red edges) and pressure-regulating pumps β (solid blue edges) for the graph
associated to the district heating diagram in Fig. 1. The edges {5, 6, 7, 8} ⊆
α form a cut set. Consequently, the flow exchanged between the subsystems
{1, . . . , 4} and {9, . . . , 18} is fully determined by the flow through the
edges {5, 6, 7, 8}. Since the network is closed, there is a conservation of
mass in the network, and the mass that enters each subsystem equals the
mass that leaves it. Hence the volumetric flow over the edges {5, 6, 7, 8}
must sum to zero, meaning that the q∗i with i ∈ α cannot be independently
assigned.

this property is also sufficient, and what restrictions arise
if it is not. Since Lemma 2 does not take into account the
functions fi, such restrictions may come from the properties
of fi. However, by virtue of the properties of fi, which were
summarized in Assumption 1, we have that the “properly
actuated”-property is both necessary and sufficient for solv-
ing Problem 1.

Theorem 1. Consider a closed hydraulic network that is
represented by the graph G = (N , E) and dynamics (1),
subject to Assumption 1. The placements of flow-regulating
pumps α ⊆ E and pressure-regulating pumps β ⊆ E is such
that for any choice of the desired equilibria q∗i i ∈ α and
∆∗

i , i ∈ β there exists a steady state solution (p, q) to (1) if
and only if the graph G is properly actuated. Moreover, for
each choice of q∗i i ∈ α and ∆∗

i , i ∈ β, the flow vector q
is unique, and pressure vector p is unique up to addition by
the vector 1n.

The proof of Theorem (1) is omitted for the sake of brevity.
To illustrate to result, we note that it follows from Theorem 1
that the actuator pump placement in Figure 4 guarantees the
existence of a steady state solution, independent of the choice
of q∗i , i ∈ α and ∆∗

i , i ∈ β.
Some special use-cases of Theorem 1 may be highlighted.

We recall the set α of flow-regulating pumps or the set β
of pressure-regulating pumps may be empty. The case where
E \ α forms a spanning tree and β = ∅ was considered in
[3] and [4] and corresponds to the typical mesh analysis in
electric networks [29]. Similarly, the case where α = ∅ and
the edges in β form a spanning tree corresponds to the typical
cut-set analysis in electric networks.

IV. CLOSED-FORM EXPRESSIONS
FOR LINEAR FLOW

Whenever all the functions fi are linear, the (unique)
steady state solution in Theorem 1 of (1) can be expressed
explicitly. In order to do so, we recall several more graph-
theoretic notions from [29]. For a given spanning tree T of G,
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Fig. 3: A hypothetical placement for the flow-regulating pumps α (dashed
red edges) and pressure-regulating pumps β (solid blue edges) for the
graph associated to the district heating diagram in Fig. 1. The edges
{1, 2, 3, 7, 8, 10} ⊆ β form a loop. Consequently, the pressure drops over
the loop must sum to zero. This means that the pressure drops ∆∗

i with
i ∈ β cannot be independently assigned.
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Fig. 4: A hypothetical placement for the flow-regulating pumps α (dashed
red edges) and pressure-regulating pumps β (solid blue edges) for the
graph associated to the district heating diagram in Fig. 1. The edges T :=
{2, 3, 4, 6, 8, 9, 10, 13, 15, 16, 17} (solid blue and dotted green edges) form
a spanning tree of the graph such that α ⊆ E \T and β ⊆ T , meaning that
the network is properly actuated (Definition 1). Note that the graph remains
connected upon removing the edges in α, which means that α does not
contain a cut set. Also note that β does not contain any loops. According
to Lemma 1, the absence of cut sets in α and loops in β is equivalent to
the network being properly actuated.

any edge of T is referred to as a twig and any edge of G that
is not in T is referred to as a chord. We let C := E \T denote
the set of chords. There are n−1 twigs and e−n+1 chords.
Each chord corresponds to a unique loop, which is obtained
by adding the chord to the tree. This results in e − n + 1
distinct loops. By this association, we identify each chord
with a loop in the graph, which is commonly referred to as
a fundamental loop. As was shown in [29], all other loops
may be expressed as a combination of fundamental loops.

Let us assign a reference orientation of every fundamental
loop of a tree T such that it agrees with the orientation of the
associated chord. Then a fundamental loop matrix, denoted
by F ∈ R(e−n+1)×e, is defined as follows [29]:

Fi,j =

 1 if edge j is in loop i and the reference directions agree,
-1 if edge j is in loop i and the reference directions disagree,
0 if edge j is not in loop i.

We let the rows of F be indexed by C. By construction of F
it follows that FC,C = I . We let γC := γ∩C and γT := γ∩T
be a partition of the unactuated edges γ. When the network is
properly actuated, its equilibria may be expressed explicitly
as follows. The result is again stated without proof for the
sake of brevity.
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Theorem 2. Consider a closed-loop hydraulic network as in
Theorem 1 that is properly actuated. In the case where all fi
are linear, say fi(qi) = Riiqi, where R ∈ Re×e is a diagonal
matrix with positive diagonal entries, we have that

qγC = (FγC,γRγ,γFγC,γ
⊤)−1(FγC,β∆

∗
β − FγC,γRγ,γFα,γ

⊤q∗α).

Consequently, q = FγC,E
⊤qγC + Fα,E

⊤q∗α and ∆ satisfies

∆α = Fα,γT
RγT ,γT

(FγC,γT

⊤qγC + Fα,γT

⊤q∗α)− Fα,β∆
∗
β ;

∆β = ∆∗
β ;

∆γ = −Rγ,γ(FγC,γ
⊤qγC + Fα,γ

⊤q∗α),

and the associated nodal pressures p are given by p =
(B⊤)+∆ + c1n, where c ∈ R is any scalar and (B⊤)+ is
the Moore-Penrose pseudo-inverse of B⊤.

V. CONCLUSIONS

Using tools from graph theory, we have presented neces-
sary and sufficient conditions for the existence and unique-
ness of a hydraulic equilibrium in district heating systems
featuring multiple heat sources and meshed topologies. Our
results have been established under the assumption that any
edge for which it is desired to fix the steady state pressure
drop or flow rate is actuated by an independent variable speed
pump in series with it; with any pump being considered
as an ideal pressure difference (“voltage”) source. Despite
this simplifying assumption, our contribution is distinguished
from most of existing results in the literature of water distri-
bution networks for the constructive nature of the proof of
our claims, which do not rely on establishing an equivalence
between the hydraulic equilibrium equations of interest to a
convex optimization problem and its associated KKT condi-
tions. Nonetheless, further work is currently being carried out
to efficiently compute the singled-out equilibrium, under the
circumstances in which it is guaranteed to exist. Moreover,
we are interested in extending our results to consider more
complex pump models, to allow the presence of actuated
valves, and to extend our model with the incorporation of the
thermal dynamics of the district heating system to address
in full the heat flow calculation.
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