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Abstract— This paper develops an iterative learning control
law for a class of nonlinear systems. The approach used to
represent the nonlinear system dynamics is a Takagi-Sugeno
fuzzy repetitive process that considers the two directions of
information propagation. Then, the control action investigated
is a state feedback control law combined with a PD-type
feed-forward learning control law. Consequently, linear matrix
inequality techniques can be used for control design. Further-
more, this approach allows the design of control action to
satisfy the requirements on both the error convergence and
the transient dynamics. Finally, an example demonstrates the
properties of the new design.

I. INTRODUCTION

Many applications, such as various forms of robotics and
chemical batch systems, execute the same finite-duration task
repeatedly. Moreover, the task is to force each execution,
termed a trial in this paper, to follow a specified reference
trajectory, where each trial’s duration is finite. Given this
trajectory, the error on any trial is the difference between the
reference trajectory and the trial output. Hence, a sequence
of errors, where each entry is the error on the corresponding
trial, can be formed, and the control design objective is
to force this sequence to converge as the number of trials
completed increases. Also, it is necessary to regulate the
dynamics along the trial direction.

Once a trial is complete, the system resets to the starting
location before the start of the subsequent trial. Also, all
information generated on the previous trial is available to
update the control input for the ensuing trial. This availability
of previous trial data is the core feature of iterative learning
control (ILC), where, in contrast to other control laws, it is
the input, a signal, that is updated rather than a controller,
which is a system. Let the variable p for discrete dynamics
represent the dynamics produced along a trial, denoted by
the nonnegative integer k. Then, at sample instant p on trial
k information at, as one example, sample instant p+λ, λ > 0
from the previous trial can be used. Using such information
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leads to the terminology ‘noncausal’ in some literature.
Moreover, data from more than the previous trial can be
used, termed higher order, and also ILC is not restricted
to applications with resetting; it is enough that there is
a stoppage between the completion of one trial and the
beginning of the next. Hence, ILC can be applied to batch
processing systems.

Since the original work, widely credited to [1], ILC has
remained a significant area of control systems research with
many designs experimentally verified in the research labo-
ratory and applied in industrial applications. An overview
of the early developments can be found in, e.g., the survey
papers [2], [3]. The survey paper [4] focuses on run-to-run
control in the chemical process industries. This area is one
where there is a stoppage time between one trial and the
next instead of resetting. Applications areas include industrial
robotics, for early application see, e.g., [5], nano-positioning,
for recent progress see, e.g., [6] and optimizing broiler
weight in agriculture [7]. Also, there has been productive
work on using ILC in healthcare. For examples of recent
progress in this last area, see, e.g., [8].

In the above-cited references (and others), ILC designs
use linear models of the dynamics. However, many physical
systems are nonlinear, and linear models for design cannot
adequately approximate their dynamics. Moreover, a general
method to enable design for all possible nonlinearities is not
feasible. Therefore, such designs have to be developed for
subclasses of nonlinear dynamics. This paper considers the
use of Takagi-Sugeno (T-S) fuzzy models [9], coupled with
a linear dynamic model. The key feature of the T-S fuzzy
model resides in its representation of nonlinear dynamics by
a family of local linear models interpolated through nonlinear
membership functions. Such an approach to ILC design has
previously been considered; see, e.g., [10].

This paper develops a robust (proportional plus derivative)
PD-type ILC law for a class of nonlinear systems. The local-
sector nonlinearity method transforms the nonlinear ILC dy-
namics into uncertain T-S fuzzy models. The resulting design
method can be computed using linear matrix inequalities
(LMIs). In particular, sufficient LMI-based conditions for the
existence of a robust ILC law are derived, together with the
design algorithms to compute the associated matrices. An
illustrative example is given.

The following notation is used in this paper; the identity
and null matrices of compatible dimensions are denoted, re-
spectively, by I and 0. Also, the notation R ≻ 0 (respectively
R ≺ 0) denotes a symmetric positive definite (respectively
negative definite) matrix. The symbol sym {R} denotes
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the matrix R + RT . The symbol diag{R1, R2, · · · , Rn}
denotes a block diagonal matrix with diagonal blocks
R1, R2, · · · , Rn. Finally, ⊗ denotes the matrix Kronecker
product, and (⋆) denotes block entries in symmetric matrices.

The development of the new results in this paper uses the
following results.

Lemma 1: [11] Given matrices Γ = ΓT ∈ Rp×p and
two matrices Λ, Σ of column dimension p, there exists
an unstructured matrix W that satisfies

Γ + sym{ΛTWΣ} ≺ 0, (1)

if, and only if

Λ⊥
TΓΛ⊥ ≺ 0, and Σ⊥

TΓΣ⊥ ≺ 0, (2)

where Λ⊥ and Σ⊥ are arbitrary matrices whose columns
form a basis of null spaces of Λ and Σ, respectively, Hence
ΛΛ⊥ = 0 and ΣΣ⊥ = 0.

Lemma 2: [12] Given matrices X , Y , Φ = ΦT and F(t)
of compatible dimensions

Φ+ sym{XF(t)Y } ≺ 0,

for all F(t) satisfying F(t)TF(t) ⪯ I if and only if there
exists ε > 0 such that

Φ+ εXXT + ε−1Y TY ≺ 0.

II. PROBLEM FORMULATION

Consider the class of nonlinear continuous-time systems
described in the ILC setting by the state-space model{

ẋk(t) = f (xk(t), uk(t)) ,

yk(t) = g (xk(t)) ,∀k ≥ 1, t ∈ [0, α],
(3)

where xk(t) ∈ Rn, uk(t) ∈ Rm, and yk(t) ∈ Rl denote,
respectively, the state, input and output vectors at time instant
t on trial k; α is the trial length; f(·) and g(·) are nonlinear
functions with compatible dimensions. Application of the
local sector nonlinear method [10] to (3), and discretizing the
resulting dynamics with an appropriate sampling time results
in a discrete T-S fuzzy model with the IF-THEN rules of the
form

Rule i: IF ϑk1
(t) is Mi1 and ϑkj

(t) is Mij , . . . , ϑkp
(t)

is Mip, THEN
xk(t+ 1)=(Ai +∆Ai(t))xk(t)

+ (Bi +∆Bi(t))uk(t) + wk(t),

yk(t)=Cixk(t), i=1, 2, . . . , r; j=1, 2, . . . , p,

(4)

where ϑk1
(t), . . . , ϑkp

(t) are known premise variables,Mij

is the fuzzy set, r is the number of IF-THEN rules, p
denotes the number of premise variables. w(t, k) denotes
disturbances that are assumed to belong to the L2 space.
Also, Ai, Bi, and Ci denote known constant matrices of
compatible dimensions, ∆Ai(t), and ∆Bi(t) denote time-
varying uncertainties which are assumed to satisfy ∀i =
1, 2, . . . , r[

∆Ai(t) ∆Bi(t)
]
= EF(t)

[
FAi FBi

]
, (5)

where E, FAi, and FBi are known real matrices that char-
acterize the structure of the uncertainty. Finally, F(t) is an
unknown time-varying matrix that also satisfies

FT (t)F(t) ⪯ I. (6)

Remark 1: The results in this paper assume that all fuzzy
subsystems have the same output matrix C, i.e., C = C1 =
C2 = · · · = Cr. This assumption reduces the complexity of
design and the required computations, but it introduces some
level of conservativeness, see [13].

The fuzzy basis functions used in this paper are

µi(ϑk(t)) =

∏p
j=1Mij(ϑkj

(t))∑r
i=1

∏p
j=1Mij(ϑkj (t))

, (7)

whereMij(ϑkj
(t)) is the grade of membership of ϑkj

(t) in
Mij . Moreover,

µi(ϑk(t)) ≥ 0,
r∑

i=1

µi(ϑk(t)) = 1. (8)

Without loss of generality, it is assumed that xk(0) = x0,
i.e., the same initial state vector at the beginning of each
trial. Application of the common center-average defuzzifier
approach gives an uncertain T-S fuzzy repetitive process,
which can be written as

xk(t+ 1)=(A(µ) + ∆A(µ))xk(t)

+ (B(µ) + ∆B(µ))uk(t) + wk(t),

yk(t)=Cxk(t),

(9)

with

A(µ)=

r∑
i=1

µi(ϑk(t))Ai, ∆A(µ)=

r∑
i=1

µi(ϑk(t))∆Ai,

B(µ)=

r∑
i=1

µi(ϑk(t))Bi, ∆B(µ)=

r∑
i=1

µi(ϑk(t))∆Bi.

(10)

Let yd(t) denote the specified reference (or output) trajec-
tory. Then the tracking error on trial k is

ek(t) = yd(t)− yk(t). (11)

A commonly used ILC law has the form

uk(t) = uk−1(t) + ∆uk(t), (12)

i.e., the sum of the control input on the previous trial and a
term, ∆uk(t), often referred to as the control update, where
the previous trial data is used. Also, u0(t) is the initial control
input commonly set to zero for implementation. Introduce
δxk(t) = xk(t)− xk−1(t) and then, using (4)-(12),

δxk(t+1)=(A(µ)+∆A(µ))δxk(t)

+(B(µ)+∆B(µ))∆uk(t)+w̄k(t),

ek(t+1)=ek−1(t+1)−C(A(µ)+∆A(µ)δxk(t)

−C(B(µ)+∆B(µ))∆uk(t)−Cw̄k(t),
(13)
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where
w̄k(t) =wk1

(t) + wk(t)− wk−1(t),

wk1
(t) =(A(δµ) + ∆A(δµ))xk−1(t)

+ (B(δµ) + ∆B(δµ))uk−1(t),

A(δµ) =

r∑
i=1

(µi(ϑk(t))− µi(ϑk−1(t)))Ai,

∆A(δµ) =

r∑
i=1

(µi(ϑk(t))− µi(ϑk−1(t)))∆Ai,

B(δµ) =

r∑
i=1

(µi(ϑk(t))− µi(ϑk−1(t)))Bi,

∆B(δµ) =

r∑
i=1

(µi(ϑk(t))− µi(ϑk−1(t)))∆Bi.

Also the control update considered has the following descrip-
tion

Rule i: IF ϑk1
(t) is Mi1 and ϑkj

(t) is Mij , . . . , ϑkp
(t)

is Mip, THEN

∆uk(t)=K1iδxk(t)+K3iek−1(t)+Liek−1(t+ 1), (14)

where Li = K2i − K3i, and K1i, K2i and K3i are the
control law matrices to be designed. Hence this correction
term consists of a state feedback control action on the current
trial and a PD-type feed-forward learning term depending on
the previous trial error. Also, when K2i = K3i, a P-type ILC
law results. By fuzzy blending,

∆uk(t)=K1(µ)δxk(t)+K3(µ)ek−1(t)+L(µ)ek−1(t+1),
(15)

where

L(µ) =

r∑
i=1

µiLi,K1(µ) =

r∑
i=1

µiK1i,

K2(µ) =

r∑
i=1

µiK2i,K3(µ) =

r∑
i=1

µiK3i

and µi is used to replace µi(ϑ(t, k)) for notational simplicity.
Application of the control law defined by (12) and (15)

gives the following description of the controlled dynamics[
δxk(t+1)
ek−1(t+1)

]
=A(µ)

[
δxk(t)
ek−1(t)

]
+B0(µ)ek−1(t+1)+B1w̄k(t),

ek(t+1)=C(µ)
[
δxk(t)
ek−1(t)

]
+D0(µ)ek−1(t+1)+D1w̄k(t),

(16)

where[
A(µ) B0(µ)
C(µ) D0(µ)

]
= (Ā(µ)+∆Ā(µ))+(B̄(µ)+∆B̄(µ))K(µ),

=

 A(µ) 0 0
0 0 I

−CA(µ) 0 I

+
 ∆A(µ) 0 0

0 0 0
−C∆A(µ) 0 0


+

 B(µ)
0

−CB(µ)

+
 ∆B(µ)

0
−C∆B(µ)

K(µ),

K(µ) =
[
K1(µ) K3(µ) L(µ)

]
,D1=−C,B1=

[
I
0

]
.

Also,

∆Ā(µ) =

 E
0
−CE

F(t) [FA(µ) 0 0
]
= ÊF(t)F̂A(µ),

∆B̄(µ) =

 E
0
−CE

F(t)FB(µ) = ÊF(t)FB(µ).

The state space model (16) has the structure of a discrete
linear repetitive process. These processes make a series of
trials (also termed passes in the literature) through dynamics
defined over a finite interval. Once a trial is complete,
resetting to the starting point takes place, and during the
subsequent trial, the previous trial output acts as a forcing
function and hence contributes to the dynamics of this pro-
file. The result can be oscillations that increase in amplitude
from trial to trial; standard action cannot control them.
Instead, a stability and control law design theory for the
linear dynamics case has been developed [14].

Next, the repetitive process theory is applied to the ILC
design problem. Repetitive processes are a class of 2D
systems with, in the ILC setting, information propagation
from trial to trial (k) and along the trials (p). Moreover,
the trial length is finite and, hence, matches ILC dynamics
more closely than other 2D systems models. Note also that
the model (16) includes disturbances resulting from non-
repetitive behavior. However, due to space limitations, the
disturbance attenuation problem is not considered here and
is left as a topic for future research.

III. MAIN RESULTS

The stability theory for repetitive processes requires that
a bounded initial trial profile produces a bounded sequence
of trial profiles, i.e., in the k direction, where the bounded
property is defined in terms of the norm on the underlying
function space. Moreover, this property can be applied over
the finite and fixed trial length, or uniformly, i.e., for all
possible values of the finite trial length. The former property
is termed asymptotic stability, which is distinct from the
latter, known as stability along the trial. As the trial length
is finite, it is possible to ensure asymptotic stability even
for examples that are unstable, i.e., for linear dynamics not
all eigenvalues of the state matrix have strictly negative real
parts. Hence stability along the trial is required.

The following result, first developed in [15], gives a con-
dition for robust stability along the trial of discrete repetitive
processes described by (16).

Lemma 3: A discrete repetitive process described by (16)
is stable along the trial if there exist compatibly dimensioned
matrices P1 ≻ 0, P2 ≻ 0 such that[

A(µ) I
C(µ) 0

]
(Φ⊗P1)

[
A(µ) I
C(µ) 0

]T
+

[
B0(µ) 0
D0(µ) I

]
(Π⊗P2)

[
B0(µ) 0
D0(µ) I

]T
≺0

(17)
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is feasible, where Φ = diag{1,−1}, Π = diag{1,−γ2},
where γ is a given scalar satisfying 0 < γ ≤ 1 and allows
the specification of a gain bound for the controlled dynamics.

Clearly, the result of Lemma 3 cannot be directly applied
to the considered ILC design since there exist product terms
between control law matrices and the matrix variables P1

and P2. The unknown matrix F(t) is also coupled. The
application of transformations now leads to the following
result.

Theorem 1: Let γ be a positive scalar satisfying 0 < γ ≤
1. Then, the controlled dynamics represented as a discrete
linear repetitive process of the form (16) is robustly stable
along the trial, and hence trial-to-trial error convergence oc-
curs for all admissible uncertainties if there exist compatibly
dimensioned matrices P1 ≻ 0, P2 ≻ 0, W , F1, F2, F3, Y (µ)
and scalars β ∈ (−1, 1) and ϵ1 > 0 such that the following
inequalities hold for all µ

Υ1 −sym{W} (⋆)
Υ3+Ω1(µ)−βW Υ2+βsym {Ω1(µ)}

Gb−[0 I]W −GT
a +[0 I]ΩT

1 (µ)

0 ϵ1Ê
T

(F̂A(µ)W+FB(µ)Y (µ)) (F̂A(µ)W+FB(µ)Y (µ))

(⋆) (⋆) (⋆)
(⋆) (⋆) (⋆)

P2−sym{F3} (⋆) (⋆)
0 −ϵ1I (⋆)

(F̂A(µ)W+FB(µ)Y (µ))

[
0
I

]
0 −ϵ1I

≺0,

(18)

where Ω1(µ) = Ā(µ)WT +B̄(µ)Y (µ) and

Υ1=

[
P1 0
0 0

]
,Υ2=

[
−P1 0
0 −γ2P2

]
,

Υ3=

[
0 F1

0 F2

]
, Ga=

[
F1

F2

]
, Gb=

[
0 F3

]
.

Proof: Assume that the inequality of (18) is feasible.
Then, application of the Schur’s complement formula to this
inequality gives

Γ1(µ) + ϵ1E1E1T + ϵ1
−1H1(µ)

TH1(µ) ≺ 0,

where

Γ1(µ)=

 Υ1 −sym{W} (⋆)
Υ3+Ω1(µ)−βW Υ2+βsym {Ω1(µ)}

Gb−[0 I]W −GT
a +[0 I]ΩT

1 (µ)

(⋆)
(⋆)

P2−sym{F3}

 , E1=

 0

ÊT

0

 ,

H1=
[
F̂A(µ)W+FB(µ)Y (µ) F̂A(µ)W+FB(µ)Y (µ)

(F̂A(µ)W+FB(µ)Y (µ))

[
0
I

] ]
.

Also, given Lemma 2, this last inequality is feasible if and
only if

Γ1(µ) + sym {E1F(t)H1(µ)} ≺ 0.

Moreover, by introducing Ω2(µ) = (Ā(µ)+∆Ā(µ))+(B̄(µ)+
∆B̄(µ))K(µ) the above inequality is equivalent to (1) with

Γ=

Υ1 ΥT
3 GT

b

Υ3 Υ2 −Ga

Gb −GT
a P2−sym{F3}

 ,ΛT =

 I 0
βI 0
0 I

 ,

W=

[
W

[0 I]W

]
,Σ=

[
−I ΩT

2 (µ) 0
]
.

(19)

Next, by Lemma 1, the inequality (18) is feasible if and only
if the inequality (1) holds for matrices chosen as in (19).
Also, Σ⊥ and Λ⊥ can be chosen as

Σ⊥ =

ΩT
2 (µ) 0
I 0
0 I

, Λ⊥ =

βI−I
0

.
It now follows immediately that the first inequality in (2)
can be is transformed to the following form[

(β2−1)P1 0
0 −γ2P2

]
+sym

{[
0
−βI

] [
F1 F2

] [ I 0
0 I

]}
≺ 0.

(20)

Also, making the substitutions

Γ←
[
(β2−1)P1 0

0 −γ2P2

]
,ΛT←

[
0
−βI

]
,

W←
[
F1 F2

]
,Σ←

[
I 0
0 I

]
and applying Lemma 1 with Λ⊥ = [I 0]

T , it follows that the
inequality (20) holds if and only if (β2−1)P1 ≺ 0. Also,
on setting β ∈ (−1, 1) and P1 ≻ 0 (20) holds. Additionally,
using the notation in (19) the second inequality in (2) givesA(µ)P1AT (µ)−P1 A(µ)P1CT (µ) 0

C(µ)P1AT (µ) C(µ)P1CT (µ)−γ2P2 0
0 0 P2


+sym


I 0 0
0 I 0
0 0 I

F1

F2

F3

[BT0 (µ) DT
0 (µ) −I

] ≺0.

(21)

Finally, by Lemma 1, the inequality (21) can be directly
transformed into (17). This last fact implies robust stability
of the resulting repetitive process (16); hence, trial-to-trial
error convergence occurs, and the proof is complete.

A. LMI-based design

The result in Theorem 1 establishes sufficient conditions
for stability along the trial for repetitive processes described
by (16). Unfortunately, the control law design problem can-
not be directly solved since the conditions are not LMIs. To
achieve LMI-based design, any products involving unknown
matrix variables must be decoupled, which is achieved by
the following result.

Theorem 2: Let γ be a positive scalar satisfying 0 < γ ≤
1. Then the controlled dynamics represented as a discrete
linear repetitive process of the form (16) is robustly stable
along the trial, and hence trial-to-trial error convergence oc-
curs for all admissible uncertainties, if there exist compatibly
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dimensioned matrices P1 ≻ 0, P2 ≻ 0, W , F1, F2, F3, Yi

and scalars β ∈ (−1, 1) and ϵ1 > 0 such that such that the
following LMIs are feasible for all i, j=1, 2, . . . , r

Υii≺0,

Υij +Υji≺0, i < j,
(22)

where

Υii=


Υ1 −sym{W} (⋆)
Υ3+Ω1ii−βW Υ2+βsym {Ω1ii}
Gb−[0 I]W −GT

a +[0 I]ΩT
1ii

0 ϵ1Ê
T

(F̂AiW+FBiYi) (F̂AiW+FBiYi)

(⋆) (⋆) (⋆)
(⋆) (⋆) (⋆)

P2−sym{F3} (⋆) (⋆)
0 −ϵ1I (⋆)

(F̂AiW+FBiYi)

[
0
I

]
0 −ϵ1I

 ,

Υij=


Υ1 −sym{W} (⋆)

Υ3+0.5Ω1ij−βW Υ2+0.5βsym
{
Ω1ij

}
Gb−[0 I]W −GT

a +0.5[0 I]ΩT
1ij

0 ϵ1Ê
T

0.5Ω2ij 0.5Ω2ij

(⋆) (⋆) (⋆)
(⋆) (⋆) (⋆)

P2−sym{F3} (⋆) (⋆)
0 −ϵ1I (⋆)

0.5Ω2ij

[
0
I

]
0 −ϵ1I



(23)

and

Ω1ii =ĀiW
T +B̄iYi, Ω1ij = ĀiW

T +B̄iYj ,

Ω2ij =F̂AiW+FBiYj ,

Āi =

 Ai 0 0
0 0 I

−CAi 0 I

, B̄i =

 Bi

0
−CBi

.
Also, if these last LMIs are feasible for all i=1, 2, . . . , r the
corresponding ILC law matrices of (14) are given by[

K1i K3i Li

]
= YiW

−T , K2i = Li +K3i. (24)
Proof: Assume that the inequality of (22) is feasible.

Furthermore, by the nonnegative property of the membership
functions, feasibility of (22) immediately implies that

r∑
i=1

µ2
iΥii + 2

r∑
i=1

∑
i<j

µiµjΥij ≺ 0.

This last inequality can be equivalently rewritten as (18).
Therefore, given Theorem 1, the controlled dynamics repre-
sented as a discrete linear repetitive process of the form (16)
is robustly stable along the trial. Hence, trial-to-trial error
convergence occurs for all admissible uncertainties, and the
proof is complete.

Remark 2: The result in Theorem 2 enables the introduc-
tion of fuzzy-basis-dependent matrix variables, i.e. P1(µ) ≻
0, P2(µ) ≻ 0, F1(µ), F2(µ) and F3(µ) since there are

no products with other fuzzy-basis-dependent variables. This
fact could result in a less conservative design condition with
further research.

IV. CASE STUDY

As a numerical example, the ILC design of the previous
section is applied in simulation to a single-link rigid robot
system [16] whose dynamics are described by

Jη̈ = −(0.5m0gl +M0gl) sin(η) + u, (25)

where η denotes the joint rotation angle in radians, m0 =
1.5kg, M0 = 3kg, g = 9.8m/s2 and l = 0.5m denote the
mass of the load, the rigid link, the gravity constant and the
robot link length, respectively. Also, the moment of inertia
is

J = M0l
2 + (1/3)m0l

2 = 0.875kg·m2

and the control torque applied to the joint u in Nm is denoted
by u.

Introduce the state vectors

xk(t) = [x1k(t) x2k(t)]
T
= [η η̇]

T
,

and take the output as yk(t) = η̇. Similar to [17], the
nonlinear-sector approach leads to a T-S fuzzy model for
the nonlinear system (25) as

Plant Rule 1: IF x1k(t) is about 0, THEN
ẋk(k) = A1xk(t) +B1uk(t)

Plant Rule 2: IF x1k(t) is about 0.5π, THEN
ẋk(k) = A2xk(t) +B2uk(t)

where

A1=

[
0 1

−m0gl−2M0gl
2J 0

]
, A2=

[
0 1

−m0gl−2M0gl
πJ 0

]
, B1=B2=

[
0
1
J

]
.

Also, see [16],

µ1(x1k(t))=(0.5π − |x1k(t)|)/(0.5π),
µ2(x1k(t))= |x1k(t)| /(0.5π).

Sampling the system with sampling period T0 = 0.02s
and assuming that the system model is subject to uncertainty,
results in the two-rule discrete-time T-S fuzzy modelxk(t+1)=

2∑
i=1

µi((Ai+∆Ai(t))xk(t)+(Bi+∆Bi(t))uk(t)),

yk(t)=Cxk(t),

where

A1=

[
0.9958 0.0200
−0.4194 0.9958

]
, A2=

[
0.9973 0.0200
−0.2671 0.9973

]
,

B1=B2=

[
0.0002
0.0228

]
, E=

[
0 0

0.012 0.01

]
, C=

[
0 1

]
,

FA1=

[
0 0.21

−0.05 0.41

]
, FA2=

[
0 0.13

−0.06 0.37

]
,

FB1=

[
0

0.024

]
, FB2=

[
0

0.016

]
,F(t)=

[
− sin(2t) 0

0 0.5(1−e−t)

]
.

Consider the reference trajectory yd(t) = 2.236π(t −
0.5t2) sin(πt), t ∈ [0, 2] s. Then solving the LMIs of
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Theorem 2 with γ = 0.9 and β = 0.8 the matrices in (14)
are

K11=
[
9.4223 −43.4399

]
,K21=33.4405,K31=−1.9622·10−15;

K12=
[
4.3958 −44.6048

]
,K22=31.8862,K32=−1.7876·10−15.

0 0.5 1 1.5 2
-3

-2

-1

0

1

2

3

Fig. 1: The reference trajectory.

The resulting controlled system is stable along the trial;
hence, trial-to-trial error convergence occurs. To assess ILC
performance, a measure of the trial-to-trial error progress is
needed. One measure is the root mean square error for each
trial, i.e.,

RMSE =

√√√√ 1

N

N∑
t=0

|ek(t)|2 (26)

plotted against the trial number k, where N denotes the
number of samples along a trial. Performance along a trial
(in t) can be assessed by standard measures. The RMSE plot
for this example is shown over 100 trials in Fig 2, where
noise with root mean square value 10−8 was added in the
simulation and the convergence curve stays at this level after
16 trials.

0 20 40 60 80 100
10-10

10-5

100

Fig. 2: RMSE values of the output tracking error.

V. CONCLUSIONS AND FURTHER RESEARCH

In this paper, new results on ILC design for a class of
nonlinear systems have been developed. The approach is
based on applying the local linearization method to establish
a repetitive T-S fuzzy model of the controlled dynamics.
Then, the stability theory for linear repetitive processes has
been used to design the ILC law using LMIs. A numerical
example illustrates the effectiveness of the design. Topics
for future research include a detailed investigation into the
attenuation of non-repetitive disturbances and control laws
that use only measured outputs. Finally, a longer-term aim
is to validate the design experimentally.
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