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Abstract— Model predictive control (MPC) is a control
strategy widely used in industrial applications. However, its
implementation typically requires a mathematical model of the
system being controlled, which can be a time-consuming and
expensive task. Data-driven predictive control (DDPC) methods
offer an alternative approach that does not require an explicit
mathematical model, but instead optimize the control policy
directly from data. In this paper, we study the impact of two dif-
ferent regularization penalties on the closed-loop performance
of a recently introduced data-driven method called γ-DDPC.
Moreover, we discuss the tuning of the related coefficients in
different data and noise scenarios, to provide some guidelines
for the end user.

Index Terms— Data driven control, Predictive control for
linear systems, Uncertain systems

I. INTRODUCTION

Model predictive control (MPC) is a popular control
strategy that has been successfully applied in a wide range
of applications [1]. However, a major limitation of MPC is
that it requires a mathematical model of the system being
controlled, which can be a costly and time-consuming task.
This requirement has led to the development of data-driven
predictive control (DDPC) methods, which aim to learn the
control policy directly from data without the need for a
mathematical model of the plant [2] [3]–[5].

Nonetheless, the data-based predictor used in DDPC is not
exempt from shortcomings, due to the presence of noise on
the measured data. Therefore, different techniques have been
proposed to make the closed-loop performance less sensitive
to such a noise, e.g., robust design in case hard power
bounds are given [3], dynamic mode decomposition [6] and
regularization [7]. The latter in particular can be used to
prevent the data-based predictor to overfit the historical data,
by tuning a few penalty coefficients. In the pioneering work
[7], the design of such terms is discussed for different kinds
of regularization, and the authors highlight the significant
efforts required in terms of trial-and-error tuning, especially
as far as some specific parameters are concerned. In [8], we
showed that regularization may be avoided in case the data
set is large enough and the DDPC problem is reformulated
thanks to subspace identification tools, so as to shrink the
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number of decision variables, into the so-called γ-DDPC
method. Finally, in [9], we have focused on finite size data
sets and used asymptotic arguments to show that regular-
ization might instead be useful to counteract the prediction
error variance, due to the use of noisy data in the predictor.
Two different regularization options have been introduced,
and an on-line tuning of the associated penalizations has
been proposed, based on the prior knowledge of the variance
expression.

This paper’s contribution is built upon [9], since our goal
here is to analyze the joint tuning of the two regularization
terms of γ-DDPC and analyze their impact on the closed-
loop performance. In particular, we shall discuss the role
of the driving input color (spectra) and some qualitative
guidelines about regularization design will be drawn by
means of extensive simulations on a benchmark linear system
as well as on a challenging nonlinear problem, namely, wheel
slip control in braking maneuvering. Finally, offline and on-
line regularization tuning will be compared.

The remainder of the paper is as follows. In Section II, the
predictive control problem setting is described, and the regu-
larization tuning issue is mathematically formulated. Section
III illustrates the considered regularization techniques for γ-
DDPC and discusses the role of each term, also by means
of two numerical case studies. The paper is ended by some
concluding remarks.

Notation. Given a signal (say uptq P Rm), the associated
(block) Hankel matrix Urt0,t1s,N P Rmpt1´t0`1qˆN is defined
as:

Urt,ss,N :“
1

?
N

»

—

—

—

–

uptq upt`1q ¨ ¨ ¨ upt`N´1q

upt`1q upt`2q ¨ ¨ ¨ up0`Nq

...
...

. . .
...

upsq ups`1q . . . ups`N´1q

fi

ffi

ffi

ffi

fl

,

(1)
while we use the shorthand Ut :“ Urt,ts,N to denote a single
(block) row Hankel, namely:

Ut :“
1

?
N

“

uptq upt`1q ¨ ¨ ¨ upt`N´1q
‰

. (2)

II. PROBLEM SETTING

Our goal is to design a controller for an unknown plant
that can be modeled by linear time-invariant (LTI) discrete-
time linear (stochastic) system S. Without loss of generality,
we consider its state space description in innovation form

#

xpt ` 1q “ Axptq ` Buptq ` Keptq

yptq “ Cxptq ` Duptq ` eptq,
t P Z, (3)
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where xptq P Rn, uptq P Rm and eptq P Rp are the state,
input and innovation process respectively, while yptq P Rp

is the corresponding output signal.
Under the unrealistic assumption that the system matri-

ces pA,B,C,D,Kq are known, the predictive constrained
tracking control problem of interest for this paper (for a
given reference yrptq and a prediction horizon T ) can be
formulated as follows

minimize
tupkqu

t`T´1
t

1

2

t`T´1
ÿ

k“t

ℓpupkq, ŷpkq, yrpkqq (4a)

s.t. x̂pk`1q“Ax̂pkq`Bupkq, kPrt, t`T q, (4b)
ŷpkq“Cx̂pkq ` Dupkq, k P rt, t ` T q, (4c)
x̂ptq “ x̂init, (4d)
upkq P U , ŷpkq P Y, k P rt, t ` T q, (4e)

where k P Z, x̂init is the state-estimate at time t, which
can be obtained by running a conventional Kalman filter
given the input-output measurements available up to time
t, and yr is the reference signal. Also, ℓp¨q is a convex loss
function, penalizing both the tracking performance and the
control effort, e.g.,

ℓpupkq, ŷpkq, yrpkqq “ }ŷpkq´yrpkq}2Q`}upkq´urpkq}2R,
(4f)

where the penalties Q P Rpˆp and R P Rmˆm, with Q ľ

0 and R ą 0, are selected to trade-off between tracking
performance and control effort.

A standard assumption in data-driven control is that
the system matrices pA,B,C,D,Kq are not known, and
only a finite sequence of input/output data DNdata

“

tupjq, ypjqu
Ndata
j“1 . We would like to stress that in our frame-

work measured data are by assumption noisy, in the sense
that there is no LTI system that, with the given input uptq,
produces exactly the measured output in a deterministic way.

In this paper, we follow that data-driven predictive control
problem formulation provided in [9], [10], and we refer to
those papers for a connection with the recent related literature
such as [3], [7].

To this purpose, we need to introduce the Hankel matrices,
including past and future values of inputs and outputs, with
respect to time t. In particular, with obvious use of the
subscripts P and F , we define:

UF :“Urρ,ρ`T´1s,N , YF :“Yrρ,ρ`T 1́s,N , (5)

where N :“ Ndata ´ T ´ ρ and ρ is the “past horizon”.
Based on (3) the Hankel YF can be written as

YF “ ΓXρ ` HdUF ` HsEF , (6a)

where EF is the Hankel of future innovations,

Γ “

»

—

—

—

—

—

–

C
CA
CA2

...
CAT´1

fi

ffi

ffi

ffi

ffi

ffi

fl

, (6b)

and Hd P RpTˆmT and Hs P RpTˆpT are the Toeplitz
matrices formed with the Markov parameters of the system,
namely

Hd “

»

—

—

—

—

—

–

D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0

...
...

...
. . .

...
CAT´2B CAT´3B CAT´4B . . . D

fi

ffi

ffi

ffi

ffi

ffi

fl

,

(6c)

Hs “

»

—

—

—

—

—

–

I 0 0 . . . 0
CK I 0 . . . 0
CAK CK I . . . 0

...
...

...
. . .

...
CAT´2K CAT´3K CAT´4K . . . I

fi

ffi

ffi

ffi

ffi

ffi

fl

.

(6d)

Let us now define zptq as the joint input/output process

zptq :“

„

uptq
yptq

ȷ

, (7)

with the associated Hankel matrix being ZP :“ Zr0,ρ´1s,N .
The orthogonal projection of YF onto the row space of ZP

and UF turns out to be given by

ŶF “ ΓX̂ρ ` HdUF ` HsΠZP ,UF
pEF q

loooooooomoooooooon

OP p1{
?
Nq

(8)

where the last term vanishes1 (in probability) as 1{
?
N . This

means that, when the matrices pA,B,C,D,Kq are unknown,
future outputs can still be predicted directly from data. In
fact, given any (past) joint input and output trajectory and
future control inputs

zinit :“

»

—

—

—

–

zpt ´ ρq

...
zpt ´ 2q

zpt ´ 1q

fi

ffi

ffi

ffi

fl

, uf :“

»

—

—

—

–

uptq
upt ` 1q

...
upt ` T ´ 1q

fi

ffi

ffi

ffi

fl

, (9)

the prediction ŷf of future outputs yf

yf :“

»

—

—

—

–

yptq
ypt ` 1q

...
ypt ` T ´ 1q

fi

ffi

ffi

ffi

fl

, (10)

based on past inputs zinit and future inputs uf can be
obtained from2

»

–

zinit
uf

ŷf

fi

fl “

»

–

ZP

UF

ŶF

fi

flα ` OP p1{
?
Nq, (11)

with α P RN to be optimized as in, e.g., [3], [10], [11].

1For a more formal statement on this, we refer the reader to standard
literature on subspace identification.

2Conditions on ρ for this to hold are provided in [10].
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Following subspace identification [12] ideas, the orthogo-
nal projection (8) can be written exploiting the LQ decom-
position of the data matrices. In particular, let us define

»

–

ZP

UF

YF

fi

fl “

»

–

L11 0 0
L21 L22 0
L31 L32 L33

fi

fl

»

–

Q1

Q2

Q3

fi

fl . (12)

where the matrices tLiiu
3
i“1 are all non-singular and Qi have

orthonormal rows, i.e., QiQ
J
i “ I , for i “ 1, . . . , 3, QiQ

J
j “

0, i ‰ j. The orthogonal projection (8) can be written in the
form:

ŶF “ L31Q1 ` L32Q2

With this notation, following the same rationale of [9], [10],
we can further reformulate (11) as:
»

–

zinit
uf

ŷf

fi

fl “

»

–

ZP

UF

ŶF

fi

flα “

»

–

L11 0
L21 L22

L31 L32

fi

fl

„

Q1

Q2

ȷ

α
loomoon

γ

`OP p1{
?
Nq.

(13)
and the parameters

γ “

„

γ1
γ2

ȷ

, (14)

become the new decision variables. In addition, in [9] it was
suggested to add a (slack) optimization variable γ3 to model
the projection error in (8) and avoid overfitting. In particular,
the prediction (with slack) can be written as:

ȳf “
“

L31 L32

‰

„

γ1
γ2

ȷ

looooooooomooooooooon

“ŷf

`L33γ3

We refer the reader to [9] for a sound statistical mo-
tivation of this particular expression of the slack L33γ3.
In particular, since L33 is generically of full rank, con-
straints/regularization should be imposed on the slack op-
timization variable γ3.

A data-driven predictive controller with the same objec-
tives and constraints of (4) can be formulated as follows [10]

min
γ2,γ3

1

2

t`T´1
ÿ

k“t

ℓpupkq, ȳpkq, yrpkqq ` Ψpγ1, γ2, γ3q (15a)

s.t.
„

uf

ȳf

ȷ

“

„

L21 L22 0
L31 L32 L33

ȷ

»

–

γ‹
1

γ2
γ3

fi

fl , (15b)

upkq P U , ȳpkq P Y, k P rt, t ` T q, (15c)

with

ℓpupkq, ȳpkq, yrpkqq “ }ȳpkq´yrpkq}2Q`}upkq}2R, (16)

and
γ‹
1 “ L´1

11 zinit, (17)

where zinit is defined as in (9) and the choice of γ1 straight-
forwardly follows from the initial conditions (showing the
advantages of using γ instead of α as the decision vector).

The purpose of this paper is to study the design and
impact of the regularization term Ψpγ1, γ2, γ3q within a noisy
stochastic environment, and provide the end user with useful
hints on how to tune such a penalty term.

III. THE ROLE OF REGULARIZATION

In [9], it has been argued that the average variance of
the error on the future output predictions ŷf due to the finite
data projection errors in (8), is proportional to }γ1}2`}γ2}2.
Since, in the optimization problem (15), γ1 is determined by
the initial conditions, it only remains to regularize γ2 so as
to avoid an (unnecessarily) high variance on the predictor
and, therefore, poor control performance. In this paper, we
consider also an alternative regularization term that penalizes
directly the control input effort (in addition to the control
penalty already embedded in the control cost), and discuss
its relation with regularization on γ2. Differently from [9],
we consider this jointly with presence of a slack variable
γ3 and thus a related regularization. These considerations
lead to the following two forms of the regularization term
Ψpγ1, γ2, γ3q in (15):

(a) Regularization on γ2 and slack γ3

Ψγ2pγ1, γ2, γ3q :“ β2}γ2}2 ` β3}γ3}2; (18)

(b) Regularization on input uf and slack γ3

Ψupγ1, γ2, γ3q :“β2}uf }2 ` β3}γ3}2

“β2}L21γ1 ` L22γ2}2 ` β3}γ3}2;
(19)

where pβ2, β3q are hyper-parameters to be determined.

A. Theoretical analysis
We first state a Theorem the establishes the connection

between (18) and (19).
Theorem 1: If the training input sequence uptq in the

Hankel matrices UF and UP is (zero mean) white with
variance σ2I , the regularization terms Ψγ2 in (18) and Ψu in
(19) are asymptotically (in N ) equivalent up to a rescaling
of the weight β2.

Proof: Under the assumption that uptq is white noise,
then the future inputs are uncorrelated with past input and
output data, so that the projection ÛF :“ ΠZP

pUF q of UF

on the joint past ZP tends to zero as OP p1{
?
Nq, more

precisely

ÛF :“ L21Q1. (20)

Since Q1Q
J
1 “ I , it follows that L21 “ OP p1{

?
Nq. In

addition, since u is white, its sample covariance matrix
UFU

J
F converges to σ2I , i.e.

UFU
J
F “ L21L

J
21

loomoon

OP p1{Nq

`L22L
J
22

NÑ8
ÝÑ σ2I (21)

Equations (20) and (21) imply that, asymptotically in N ,
L21 » 0 and L22 » σI . Therefore we have:

Ψupγ1, γ2, γ3q :“ β2}L21γ1 ` L22γ2}2 ` β3}γ3}2

» β2σ
2}γ2}2 ` β3}γ3}2

(22)
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showing that, up to the rescaling of the weight β2, this is
equivalent to Ψγ2

pγ1, γ2, γ3q

This result has two important implications:
‚ When the (training) input is white, regularization on γ2

is equivalent to a penalty on the future input energy,
which is typically present in the control cost. As such,
we can argue that, in this case, the control cost has an
indirect but important effect in counteracting the effect
of the noise variance in the predictor.

‚ When the training input is not white, the control energy
cost is not equivalent to penalizing the norm of γ2,
which on the other hand should be penalized to limit
the effect of noise variance. The simulation results in
the next section indeed confirm that, when noise input
is not white, regularization on γ2 (i.e. Ψγ2 ) has to be
included.

B. Experimental analysis

In this section we shall illustrate, exploiting two numerical
examples (one linear and one nonlinear3), the role of different
regularization terms in the optimal control problem (15).
In particular, following the rationale proposed in [7], we
evaluate the closed-loop performance over Tv feedback steps
as measured by the performance index:

Jpu, yq“
1

Tv

Tv´1
ÿ

t“0

´

}uptq´urptq}
2
R`}yptq´yrptq}

2
Q

¯

. (23)

(a) Performance indexes (b) Optimal performance under con-
straint β2 “ 0

Fig. 1: (a): comparison between the Kalman-filter-based oracle
performance JOR and the minimum cost realizations pJ

Ndata
ns,rg for

ΣL over 100 Monte Carlo runs; (b): Optimal performance under
the constraint β2 “ 0.

1) Benchmark LTI system: Consider the SISO, 4-th order
system in [13] (ΣL in the sequel) with a prediction horizon
T “ 20. To assess the impact of the training data on closed-
loop performance, we consider four data sets of two different
lengths Ndata (either 250 or 1000), obtained either with
white noise input (denoted with ns “ w) or with a low-
pass (obtained filtering white noise with a discrete-time low-
pass filter with cut-off angular frequency 1.8 rad{s) input
sequence (denoted with ns “ c). White noise is added to the
output to guarantee a signal-to-noise ratio of 15 dB.

The data-driven optimal control problem (15) is solved
fixing Q “ 103 and R “ 10´2, setting the output reference

3By working in a specific operating regime, the control of an unknown
nonlinear system can be tackled as that of an uncertain linear system.

yrptq “ sinp5πt{pT ` Tv ´ 1qq and the input reference
urptq “ 0, with Tv “ 50. The two different regularization
strategies discussed in Section III are denoted with the
shorthands rg “ 2 and rg “ u for (18) and (19), respectively.

The “oracle” value of pβ2, β3q leading to the minimum
cost (23), here denoted as JNdata

ns,rg “ JpuNdata
ns,rg , y

Ndata
ns,rg q

to account for the different data set lengths, input and
regularization strategies, are searched over a rectangular
logarithmic-spaced grid G23 with 7 points per decade, so that
G23 Ď t0uYr10´4, 100sYt`8uˆt0uYr10´3, 100sYt`8u.

We perform 100 Monte Carlo experiments4 (i.e. 100
different training data sets with the output of ΣL corrupted
by white noise) to tune β2 and β3 for all the four consid-
ered training scenarios and possible regularization. For each
Monte Carlo run, and for each set of possible parameters
in the grid G23, the closed loop performance index (23) is
computed by averaging over 100 closed loop experiments (all
with the same control law but different closed measurements
errors) the corresponding performance index JNdata

ns,rg piq, i.e.

sJNdata
ns,rg “

1

100

ÿ100

i“1
JNdata
ns,rg piq, (24)

The optimal values of β2 and β3 over the grid G23 is obtained
by finding the minimum pJNdata

ns,rg “ minpβ2,β3qPG23
t sJNdata

ns,rg u.
The results are reported in Fig. 1, based on which we can

make the following general considerations:
‚ As expected based on Theorem 1, when the input is

white noise, the two types of regularization provide the
same performance (minor differences for Ndata “ 250
are due to sample variability).

‚ The “optimal” (oracle) closed loop performance ob-
tained with the two different regularization strategies
differ when the input is not white. In particular, the
penalty (18) that acts directly on γ2 and thus controls
the predictor variance provides the best performance,
particularly so for small data sets where the effect of
noise has more impact.

‚ Based on the comparison between Fig.1(a) and Fig. 1(b)
(in which β2 is constrained to zero), we can observe that
the impact of β2 is significant in the low-data regime
(equivalent to large noise in the predictor), whereas for
larger data sets its impact can be neglected and the
optimal performances exploiting only β3 match those
obtained optimizing jointly β2 and β3.

In light of the above observations, the general validity of
(15) constrained to either β2 “ 0 or β3 “ 8 devised in [9]
is strengthened, as different types of data set are given. The
effectiveness of these γ-DDPC schemes is also reinforced
since it is evident that, in most cases, the operative tuning
of either the sole parameter β2 or the sole parameter β3 is
worth to be carried out in practice.

2) Wheel slip control problem: We now consider the
problem of designing a wheel slip controller, steering the
vehicle slip λptq P r0, 1s to a constant target value λr.
The design is carried out by focusing on quasi-stationary

4The past horizon ρ is determined using Akaike’s information criterion.

3064



(a) Performance indexes (b) MPC-based oracle

Fig. 2: (a): comparison of the performance indexes obtained with
different γ-DDPC strategies (bar and hat notation indicating offline
and online approaches respectively) and a model-based oracle. The
subscript a P t0, 2, 3, 23u on J refers to the regularization scheme
(respectively: no regularization, β2, β3 or both); (b): input/output
tracking obtained from an MPC-based oracle. Mean (line) and
1.95 times the standard deviation (shaded area) of the closed-
loop input/output trajectories; the reference input and output are
indicated with black dashed lines.

operating condition (the parameters of the vehicle, its ve-
locity and the road profile are assumed to be constant). In
both data collection and closed-loop testing, the behavior
of the braking system (from now on indicated as ΣNL) is
simulated based on the nonlinear model in [14]. We indicate
with Tbptq [Nm] the controllable braking torque and set
the system parameters to the same values used in [15].
Although this dynamics is clearly nonlinear, it is possible to
identify two main operating regions of the system5, where
the behavior of the slip can be approximated as linear. To
comply with our framework (see (3)), we thus consider
both data collection and simulation tests where the vehicle
generally operates in a low-slip regime. Accordingly, data
are gathered by performing closed-loop experiments with
the benchmark controller introduced in [16], selecting a
slip reference uniformly chosen at random in the interval
r0, 0.15s and collecting data at a sampling rate of 100 [Hz].
In particular, the output ytrnptq of the employed training
data set is generated by exploiting a closed-loop experiment
wherein the output is corrupted by a zero-mean white noise
process with variance σ2

n “ 10´6 and, also, zero-mean white
noise with variance 108σ2

n is added to the input utrnptq
provided by the controller.

Meanwhile, the reference slip for the closed-loop tests
is λr “ 0.1, corresponding to a reference braking torque
Tb,r “ 768.9 [Nm]. To improve the tracking performance
in closed-loop, apart from the terms weighting the tracking
error and the difference between the predicted and reference
torque, respectively weighted by Q “ 103 and R “ 10´7, the
cost of the γ-DDPC problem (15a) is augmented with a term
penalizing abrupt variations of the input (weighted as 10´4),
a term penalizing the integral of the tracking error (weighted
as 105), and two terms further penalizing the difference
between the slip and torque references and their actual value
over the last step of the prediction horizon (weighted as 103

5In this case, these two regions are limited by the slip λ̄ “ 0.17, for slip
values lower than 0.17; while it becomes unstable for higher slips.

and 5 ¨ 10´6, respectively). The following constraint is also
added at each feedback step t ě 0 for s “ 0, . . . , T ´ 2:

#

qpt ` sq “ qpt ` s ´ 1q ` yrpt ` s ´ 1q ´ ŷpt ` s ´ 1q;

qpt ´ 1q “ yrpt ´ 1q ´ ypt ´ 1q;
(25)

to account for the known dynamics of the integrator.
Nonetheless, performances are still assessed via the index
in (23) over a closed-loop test of Tv “ 50 steps. A Monte
Carlo campaign with 100 iterations is run on the above
setup, corrupting the output of ΣNL with a white noise
having signal-to-noise ratio 40 dB. For each of the 100 tests,
the regularization parameters β2 and β3 are both selected
from a grid over r10´4, 104s comprising of 15 logarithmic-
spaced points. For the joint optimization, the squared grid
tβ̄2, β̄2{10, β̄2{100, 108u ˆ t0, β̄3, 10β̄3, 100β̄3u composed
by the optimal values pβ̄2, β̄3q obtained via offline γ-DDPC
is instead taken into account. Fig. 2(a) depicts the distribu-
tions of the performance index in (23) as the selected reg-
ularization strategy varies considering pβ2, β3q tuned either
offline or online and comparing γ-DDPC with a MPC-based
oracle (see also Fig. 2(b)). In particular, the input-output
trajectories of all γ-DDPC strategies can be summarized
in Fig. 3. Although the MPC-based oracle displays evident
preeminence, it is worthwhile to appreciate that all these
trajectories are characterized by solid performances (rise time
of at most 5 steps, settling time of about 25 steps, maximum
overshoot of 40% or less with no cross into the unstable
region), with such traits indicating that γ-DDPC schemes
remain competitive even in nonlinear scenarios. Noticeably,
the online strategies (implementable on real applications)
shown in Fig. 3(e)-3(f) share similar performances with the
corresponding offline strategies in Fig. 3(b) - 3(c), especially
that relying on the online tuning of parameter β3. Moreover,
within the setup of this numerical example, one observes that
the performance of the offline strategy based on β2 strictly
matches with that of the scheme lacking of regularization
(Fig. 3(a)); whereas, the performance of the offline strategy
based on β3 strictly matches that of the scheme in which a
joint optimization of both β2 and β3 (Fig. 3(d)) is carried
out. Hence, under this setup and with the data collected
in this numerical example, it emerges once again that the
optimal tuning based on the sole penalty parameter β3 (i.e.,
setting β2 “ 0) can be considered in practice for high-data
regimes. This, in turn, may lead to significantly diminish the
computational burden associated to the tuning of the penalty
parameters whenever a real implementation based on the
proposed regularized scheme (15) is considered and a big
training data set is available.

The above comparison further highlights that regular-
ized DDPC approaches can be competitive w.r.t. traditional
model-based controllers and that γ-DDPC solution with the
online tuning proposed in [9] can be robustly effective also
when dealing with nonlinear systems.
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(a) J̄0: pβ2, β3q “ p0,`8q (b) J̄2: pβ2, β3q “ pβ̄2,`8q (c) J̄3: pβ2, β3q “ p0, β̄3)

(d) J̄23: pβ2, β3q “ pβ‹
2 , β

‹
3q (e) Ĵ2: pβ2, β3q “ pβ̂2,`8q (f) Ĵ3: pβ2, β3q “ p0, β̂3q

Fig. 3: For all diagrams: mean (line) and 1.95 times the standard deviation (shaded area) of the closed-loop input/output trajectories;
the reference input and output are indicated with black dashed lines. (a): γ-DDPC with no regularization; (b)-(c): offline regularization
strategies employing β̄2 and β̄3 separately; (d): offline regularization strategies employing β̄2 and β̄3 jointly; (e)-(f): online regularization
strategies employing β̂2 and β̂3 separately.

IV. CONCLUDING REMARKS AND FUTURE DIRECTIONS

Several regularization strategies for Data Driven Predictive
Control (γ-DDPC) have been discussed and evaluated in
terms of closed-loop performance. It has been proved that
when the input is white, regularizing γ2 and penalizing
control energy are equivalent. Numerical examples further
illustrate that the tuning of the penalty parameters in the
γ-DDPC can be decoupled without dramatically impacting
the performance corresponding to a (more costly) joint
regularization wherein both β2 and β3 are accounted for.

Future work will be devoted to the extensive experimental
assessment of the considered regularization strategies, as well
as to a theoretical analysis of the optimization of the sole β3.
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