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Abstract— Iterative learning control for lumped processes is
well established. Therefore, there is strong interest in developing
designs that would produce similar flexibility for classes of
distributed parameter systems. This paper develops a design
for application to examples described by partial differential
equations of convection-diffusion type in the multidimensional
spatial domain, which have many applications, such as heat
transfer problems. The system response is measured, and then
the control is applied via specific boundary conditions using
a sensor/actuator network, i.e., boundary control, as opposed
to designs that require sensing and actuating application over
the domain the dynamics are defined over. The convergence
properties of the design are established in conjunction with
rules for tuning its parameters for performance enhancement.
Finally, the new design is applied to a laser heating problem
in wafer staging, which requires boundary control.

I. INTRODUCTION
Iterative learning control (ILC) originated in the mid-

1980s [1]. It applies to systems that repeatedly complete
the same finite-duration task. The ‘pick and place task that
arises in many industrial applications is a particular example
in robotics. The mode of operation in pick and place is to
transfer a sequence of payloads from a specified location
over a finite time and place them, under synchronization, on
a moving conveyor. Moreover, the sequence of operations by
the robot are: Collect a payload from the specified location.
Transfer it over a finite duration. Place the payload on the
conveyor. Return to the starting location, collect the next
payload, and so on. The term trial is used to distinguish
which particular payload is under consideration, and its
duration from pick to place is termed the trial length (other
terms are used in some of the literature). Once a trial is
complete, all information generated is available to design
the control to be applied on the next trial.

Suppose that a reference trajectory is specified for an
application. Then on any trial, the error is the difference
between this trajectory and the output on each trial. Each
trial error forms the corresponding entry in the error sequence
over all trials. The design problem is to design control action
such that this error sequence converges with an increasing
trial number and regulates the response along the trials.

In ILC, the input (a signal) is adjusted as opposed to a con-
troller (a system) in other control system designs. Possible
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sources for the early literature are the survey papers [2], [3].
For more recent theoretical developments and applications,
including outside engineering, see, e.g., [4].

The critical feature of a system to which ILC can be
applied is the repetition of the same finite duration task, with
either i) resetting to a fixed location after each is complete
or ii) the end of one trial and the start of the next are not
co-incidental. Hence ILC can also be applied to some batch
processing operations, e.g., in the process industries. This
paper focuses on systems described by partial differential
(or distributed parameter systems (DPSs) operating in batch
processing mode.

One approach to DPS analysis and control is to work with
the governing partial differential equation, e.g., the heat or
wave equations, and one starting point for the literature (up
to the time of publication) is the research text [5]. Other
problem areas must, however, start with a numerical solution
of the governing equations due, e.g., to the complexity of
the dynamics, the boundary conditions, and the sensing and
actuating choices available. Such problems arise across a
range of application areas, see, e.g., [6]–[9].

A general application area for ILC in DPS is operations
where a sequence of workpieces are processed over the same
time interval, i.e., one workpiece is replaced by another,
introducing a time between the completing the processing
of one workpiece and starting to process the next. Previous
results on ILC for DPS include [10], but the results are
limited to one spatial dimension.

Recent work on ILC for DPS using distributed sensing
and actuation includes [11], [12]. The results in [11] relate
to application in flexible materials, while the paper [12]
and extends the results in [11] to systems with a multi-
dimensional spatial domain modeled by a parabolic partial
differential equation with convection and diffusion compo-
nents. In addition, a decentralized control update strategy has
been developed. These results can only be used to design
control actions that can be applied across the domain of the
example considered. In my cases, however, control action
can only be applied at the domain’s boundary.

This paper extends the previous results to allow boundary
control and the novel contributions are: (1) the development
of a boundary PD-type ILC law for the class of parabolic
distributed parameter systems in multidimensional spatial do-
main described by partial differential equations of diffusion-
convection with steady velocity field type, (2) a convergence
analysis to provide sufficient conditions, (3) development of
a procedure to tune the learning gain matrices based on the
convergence conditions, and (4) application to heating of a
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rotating silicon wafer to demonstrate the application of the
design.

II. SYSTEM DESCRIPTION

The subject area is spatio-temporal processes represented
by the convection-diffusion partial differential equation,
where the time interval T = [0, tf ] is finite and Ω ⊂ R3 is a
bounded spatial domain with a boundary ∂Ω. Moreover, the
scalar state of this process at the spatial point x ∈ Ω̄ ⊂ R3

at time t ∈ T̄ is denoted as y(x, t). The mathematical model
is
∂y(x, t)

∂t
+∇ ·

(
v(x)y(x, t)

)
=∇ ·

(
κ∇y(x, t)

)
+ f(x, t), (x, t) ∈ Ω× T

(1)

where κ denotes a turbulent diffusion coefficient, v(x)
represents a steady velocity field vector, and f(x, t) denotes
some known function representing a source. The system has
initial and boundary conditions (of the general Robin type):{
y(x, 0) = y0, x ∈ Ω,

n ·
(
v(x)y(x, t)− κ∇y(x, t)

)
= g(x, t), (x, t) ∈ ∂Ω× T,

(2)
where n is the outward normal vector to the boundary ∂Ω.
Physically g(x, t) represents the total flux (i.e., the sum
of the convective and diffusion fluxes) at the boundary.
Simultaneously, it represents an external control action on
the boundary due to actuation using m devices. For practical
control design, implementation is by a form of control-affine
approximation, i.e.,

g(x, t) =

m∑
i=1

qi(x)ui(t) (3)

and ui(t) is the control signal of the i-th actuator. Also,
qi(x) denotes a spatial distribution of actuation, which is a
non-negative integrable function satisfying the normalization
condition, i.e., ∫

∂Ω

qi(x)ds = 1, (4)

The above abstract definition of the actuation field includes
a wide variety of practical situations, from pointwise local
actuation, i.e., qi is a Dirac’s delta distribution, to fully
distributed control over the entire boundary. Further, it is
assumed that the system output is observed continuously
over an interval T by the array of n ≤ m sensors in the
consecutive trials of the process. The measurements can be
mathematically described as

zjk(t) =

∫
Ω

pj(x)yk(x, t)dx, t ∈ T, j = 1, . . . , n (5)

where k is the trial number, uk(t) = [uk1(t), . . . , ukm(t)]T

is the control input vector at k-th trial and yk(x, t) =
y(x, t;uk(t)). Observations taken, e.g., by the j-th individual
sensor is characterized by a spatial distribution pj(x) defined
on the domain Ω with

∫
Ω
pj(x)dx = 1.

The probability density pj can be interpreted as the propor-
tion of observational effort dedicated to a particular spatial

location (e.g., measurement replications), measurement pro-
cedure (e.g., integration or averaging by measurement trans-
ducers), or accuracy at different spatial positions. Again, such
an abstract formulation of observations has commonality
with modern optimum experimental design theory, e.g., [11],
[13]. Moreover, it covers numerous measurement scenarios,
from pointwise local measurements (e.g., a Dirac delta
distribution) to fully distributed global observations (e.g.,
uniform distribution over the entire area). Also, it allows the
implementation of both the in-domain measurements (joint
probability distribution over Ω) and boundary observations
(boundary probability distribution over ∂Ω).

III. ITERATIVE LEARNING CONTROL

A. Control law

The control objective is to modify form the input signal
vector uk(t) such the measurement output vector zk(t) =
[z1k(t), . . . , z

n
k (t)]

T follows some differentiable reference tra-
jectory zref(t) with arbitrary accuracy. In particular, the
objective is to sequentially improve performance from trial
to trial such that the tracking error norm:

∥ek(t)∥ = ∥zk(t)− zref(t)∥ (6)

converges as k → ∞ to, ideally, zero or some specified
tolerance. This paper uses a feedforward ILC scheme, where
measurement data gathered from the previous trial is used to
update the control input for the subsequent trial based on the
tracking error [1], [11], [14]. In particular, the control law
has the structure

uk+1(t) = uk(t) +Λkėk(t) +Υkek(t) (7)

where Λk,Υk ∈ Rm×n are learning coefficients matrices.
Also

• setting Υk = 0 results in the so-called D-type law,
• setting Λk = 0 results in the so-called P-type law.

B. Convergence Analysis

The following assumptions underpin the analysis in this
section.
A1. Let zref(t) be a vector of reference trajectories pre-
selected over a finite time interval T . Moreover, it is assumed
that zref(t) is realizable, i.e., there exists a unique uref(t) =
[uref,1, . . . , uref,m]T with the initial state yref(x, 0) = 0 such
that

∂yref(x, t)

∂t
+∇ ·

(
v(x)yref(x, t)

)
=∇ ·

(
κ∇yref(x, t)

)
+ f(x),

(8)

n · (v(x)yref − κ∇yref) = q(x)Turef(t) (9)

where q(x) = [q1(x), . . . , qm(x)]T and

zj
ref(t) =

∫
Ω

pj(x)yref(x, t)dx, t ∈ T, j = 1, . . . , n. (10)

A2. It is assumed that the same initial conditions hold for
all trials, i.e.

∀k, yk(x, 0) = yref(x, 0) = 0. (11)
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The assumptions (A1)–(A2) are typical in iterative learn-
ing control. Their interpretation is clear as they are related
to the reproducibility of the same experimental conditions
for each trial. In the context of the considered system, the
following assumption is also required.
A3. The measurement distributions, i.e., the pj , belong to
the class of piecewise constant functions, i.e., assuming
the partition of the domain Ω into a finite number Lj

of disjoint subdomains Ωℓ such that Ω = ∪Lj

ℓ=1Ωℓ, then
pj(x) =

∑Lj

ℓ=1 p
ℓ
j(x), where

pℓj(x) =

{
pℓj > 0 for x ∈ Ωℓ

0 otherwise
. (12)

This last assumption introduces some basic approximation
(with assumed a priori accuracy) for measurement distribu-
tion with a possible low level of complexity which leads to
a dramatic simplification of the control design. The idea is
similar to local basis functions in the finite element method.

The following theorem establishes convergence properties
for the PD-type controller.

Theorem 1: Suppose that assumptions (A1)–(A3) hold.
Then, under the ILC law (7) applied to the system (1)–(2),
the error (6) converges uniformly if the following conditions
hold

∥I −RΛk∥ < 1 and ∥RΥk∥ > 0 (13)

where R ∈ Rn×m with Rij =
∫
∂Ω

pj(x)qi(x)ds.

Proof: Subtracting the system state equations (1) at two
consecutive trials gives

∂

∂t
(yk+1(x, t)− yk(x, t)) +∇ ·

(
v(x)(yk+1(x, t)− yk(x, t)

)
= ∇ · κ∇(yk+1(x, t)− yk(x, t))

(14)

Multiplying (14) by the j-th sensor spatial distribution pj
and introducing ỹk(x, t) = yk+1(x, t)− yk(x, t) results in

pj(x)
∂

∂t
ỹk(x, t) + pj(x)∇ · v(x)ỹk(x, t)

= pj(x)∇ · κ∇ỹk(x, t).
(15)

Integrating this last equation on Ω and applying the Leibniz
integral rule for the first integral on the left-hand side gives

d

dt

∫
Ω

pj(x)ỹk(x, t)dx+

∫
Ω

pj(x)∇ · v(x)ỹk(x, t)dx

=

∫
Ω

pj(x)∇ · κ∇ỹk(x, t)dx

(16)

Applying the Gauss (or Ostrogradsky) theorem to the second
integral on the left-hand side of (16) and applying the Green’s
formula to rewrite the integral on the right-hand side of (16)

gives

d

dt

∫
Ω

pj(x)ỹk(x, t)dx+

∫
∂Ω

pj(x)n · v(x)ỹk(x, t)ds

−
∫
Ω

∇pj(x) · v(x)ỹk(x, t)dx

=

∫
∂Ω

pj(x)n · κ∇ỹk(x, t)ds

−
∫
Ω

∇pj(x) · κ∇ỹk(x, t)dx

(17)

where ds represents a boundary element of Ω. Under as-
sumption (A3) for the class of piecewise constant functions,
∇pj(x) = 0 almost everywhere. Note that the discontinuities
of pj(x)’s are located in the subset of Ω with measure
zero. Hence the last integrals can be eliminated over domain
Ω on both sides of (17), respectively. Hence after some
rearrangement

d

dt

∫
Ω

pj(x)ỹk(x, t)dx

=−
∫
∂Ω

pj(x)n ·
(
v(x)ỹk(x, t)− κ∇ỹk(x, t)

)
ds

(18)

Using the boundary condition (2) combined with the control
update (7) the last set of equations (for j = 1, . . . , n) can be
written in the form:

d

dt

∫
Ω

p(x)ỹk(x, t)dx

= −
∫
∂Ω

p(x)qT(x)
(
Λkėk(t) +Υkek(t)

)
ds

= −RΛkėk(t)−RΥkek(t),

(19)

where p(x) = [p1(x), . . . , pn(x)]
T.

From the definition of the tracking error, it follows that

ėk+1(t) = żk+1(t)− żref(t)

= ėk(t) + (żk+1(t)− żk(t))

= ėk(t) +
d

dt

∫
Ω

p(x)ỹk(x, t)dx

= ėk(t)−RΛkėk(t)−RΥkek(t).

(20)

Integration of (20) with respect to time with the initial
condition satisfying (A2) gives

ek+1(t) =
(
I −RΛk

)
ek(t)−RΥk

∫ t

0

ek(τ)dτ, (21)

where I is the compatibly dimensioned identity matrix.
Taking the norm on both sides of (21) gives

∥ek+1(t)∥ = ∥
(
I −RΛk

)
ek(t)−RΥk

∫ t

0

ek(τ)dτ∥

≤ ∥
(
I −RΛk∥∥ek(t)∥+ ∥RΥk∥

∥∥∥∥∫ t

0

ek(τ)dτ

∥∥∥∥.
(22)

By definition, the error ek(t) is bounded on the finite time
interval T , and the norm of the integral in (22) is also
bounded, and satisfies

∥∥ ∫ t

0
ek(τ)dτ

∥∥ ≤ ϵp for some positive
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constant ϵp. Introducing γd = supk ∥I − RΛk∥ and γp =
supk ∥RΥk∥ from (22) gives

∥ek+1(t)∥ − γd∥ek(t)∥ ≤ γpϵp. (23)

Also, see [15], (23) is satisfied if γ1 < 1 and γ2 > 0. Hence

lim
k→∞

∥ek(t)∥ ≤ γpϵp
1− γd

. (24)

Since the qi’s and pj’s are nonnegative distributions,
therefore by definition, Rij’s takes nonnegative values for
any i and j. Hence, there exists Λk such that

∥I −RΛk∥ < 1. (25)

Let e(t) denote the pointwise limit of the error ek(t) with
k → ∞. Then, in the case of Υk = 0, the D-type control
law, it follows immediately from (24) that

lim
k→∞

∥ek(t)∥ = 0,

i.e., e(t) = 0. Otherwise, from (20) it is concluded that e(t)
is the solution to the following Cauchy initial value problem

RΛė(t) = −RΥe(t), e(0) = 0, (26)

for Λ and Υ satisfying (13). The zero initial condition is
a direct consequence of assumption (A2). It can be easily
shown that in the case of full rank matrices RΛ and RΥ
the particular solution of the system of equations (26) is
e(t) = 0. Hence the error sequence uniformly converges to
zero, and the proof is complete.

lim
k→∞

ek(t) = 0.

Theorem 1 is a sufficient condition for the convergence
of the PD ILC law and is an alternative to the in-domain
control strategies developed in [11], [12] for the hyperbolic
and parabolic systems class.

Remark 1: Theorem 1, allows decoupling the control up-
date, leading to an even easier implementation of the ILC
design. In particular, attention can be restricted to diagonal
learning matrices (but at the cost of some performance
reduction). In fact, considering the ILC law (7) with m = n,
Υk = 0 and diagonal learning matrix Λk with λj

k, j =
1, . . . , n denoting its diagonal elements, (21) can be written
as

eik+1(t) = eik(t)−
n∑

j=1

Rijλ
j
kek(t), i = 1, . . . , n. (27)

Moreover, the i-th component of tracking error on trial k+1
is a linear combination of error components from trial k.
Hence a solution to the following problem is required:

Problem 1: Find λj
k, j = 1, . . . , n, subject to

−1 < 1−
n∑

j=1

Rijλ
j
k < 1, i = 1, . . . , n. (28)

This problem is a relatively simple linear feasible solution
problem, and the solution inside the polyhedral defined by
(28) guarantees convergence of control update. The solution

Fig. 1. Silicon disk heating using four laser beams with infrared vision
camera monitoring lower surface

exists if the matrix R has linearly independent rows, i.e., has
full rank.

Once the D-type control update is determined, the matrix
Υk can be used to speed up convergence rate. Finally, the
adopted control design in each trial is a two step procedure:
first solve the Problem 1 and determine the coefficients of Λk

matrix, then heuristically tune the Υk matrix as to increase
the convergence rate.

IV. CASE STUDY

The case study arises from the problem of heating silicon
disks one after another. Four laser beams, arranged evenly
along the disk diameter, apply heat to a very thin rotating
disk. The disc diameter is d = 0.054 m, and its thickness
is 0.0003 m. In particular, the heating of each disk lasts 60
seconds, after which the disk is replaced with the next one,
and the process is repeated again and again. This application
is one where ILC can be applied (a finite duration task is
completed, and there is a stoppage time before the task
is repeated); hence, information from one completion is
available to update the control law for the next). The disk
moves in one direction at a constant rotational speed of 10
rpm. Each laser beam is applied to the disk over a circle with
radius r = 0.002 m around its focal point, and the maximum
power is 15 W (see Fig. 1).

The action of the i-th laser beam on the upper surface of a
silicon disk is a combination of the beam intensity ui(t) and
the spatial distribution of the beam qi(x), and is represented
by the Gaussian distribution:

qi(x) =

√
2

πr2
exp

(
− 2

(x1 − d(1− 0.2i))2 + x2
2

r2

)
. (29)

where x1 and x2 are the coordinates of the spatial point x. It
is assumed that the laser operates at a wavelength at which
the wafer is opaque, and in this manner, all of the laser heat
is deposited at the surface. In the case considered, the disk
emissivity ϵ is also taken into account, which has a value
of 0.8. Additionally, it is assumed that the constant ambient
temperature θ0 is set to 293.15 K.

To complete the problem specified in Section II, the time
interval is taken as T = (0.60] and the spatial domain Ω =
{(x1, x2, x3) : x

2
1 + x2

2 ≤ 0.02542, x3 ∈ [0.3 · 10−4]} ⊂ R3.
For this application, the PDE (1) is rewritten as
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ρCp
∂θ̄(x, t)

∂t
+ ρCpv(x) · ∇θ̄(x, t)

−∇ · κ∇θ̄(x, t) = 0,
. (30)

where ρ is the mass density per unit area, Cp stands for
the thermal capacity of silicon, κ represents the thermal
conductivity, v(x) = π

3 · [−x2, x1]
T is the speed field. Due

to the zero initial conditions, in (30), the difference between
the disk and ambient temperature θ̄ is used.

Heat losses are treated as radiation from the upper disk
surface to the surrounding environment (where this assump-
tion requires perfect disk insulation but is valid for initial
control design verification studies). The boundary and initial
conditions are of the form of (2) with

g(x, t) =

{
ϵ
∑4

i=1 qi(x)ui(t), x ∈ Γ1, t ∈ T,

0, x ∈ Γ2, t ∈ T,

θ̄(x, 0) = 0, x ∈ Ω,

(31)

where the Γ1 is the upper surface of wafer, and ∂Ω = Γ1∪Γ2.
The heating profile does introduce significant temperature
variations since the linear velocity outside the wafer is
greater. Thus the laser heat deposits over a larger area in the
same time duration. The disk’s temperature is acquired from
the thermal imaging camera placed underside of the disk.
The disk is divided into symmetric quadrants designated by
the x1 and x2 axes (see Fig. 1), and for each quadrant the
average temperature is derived. The objective of the control
is to obtain an average temperature course for each quadrant
defined by the following temperature profile:

zref(t) = 50 · sin(0.0083πt), t ∈ [0, 60]. (32)

Also, the results given in the remainder of this paper were
obtained using a COMSOL MULTIPHISICS 5.4 and MAT-
LAB 2018b software computer with the Intel Core i7 1.99
GHz processor and 16 GB of RAM. The solver used a spatial
grid with 780 nodes and 1044 triangular prisms.

The rest of the paper uses a digital approximation (con-
structed as above) to investigate critical aspects of control
performance for D and PD-type laws and their relative
performance. The first area investigated is the effects of
different choices of the learning gain matrix on performance.
Three forms of learning gain are examined, namely full,
diagonal, and tridiagonal control law matrices. Convergence
results for the tracking performance are expressed in the form
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Fig. 2. Convergence results for a full learning matrix

of the mean squared tracking error (MSE) computed along
the trial, and the results are given in Figs. 2, 3 and 4. In these
figures, the results for the D-type controller are in solid red
color and those for the PD controller in the blue-dashed color.

Analyzing the results in Figs. 2, 3 and 4, it is immediate
in each case that the PD controller converges faster than the
D-type. However, in two cases, for the full and tridiagonal
learning matrices, the PD-type controller exhibits worse
convergence than the D-type controller over the initial trials
(see the upper-left zoomed windows in Figs. 2 and 4). An
explanation of this phenomenon could be the application of
learning gain matrices in the form of a full or tridiagonal
matrix, which makes it possible to consider interactions
between actuators (laser beams).

In contrast, in the case of the diagonal matrix, no account
of the interactions between the actuators is enforced. In
such a case, the proportional term of the controller is more
sensitive to the form of the gain matrix than the derivative
term. These results demonstrate that the PD controller with
the full learning gain matrix is the best of the three options.
Summarizing this part of experiments we can conclude that
introducing the proportional term to the controller makes
it possible to achieve much faster convergence of the error
trace.

The next part of the experiments investigates the temper-
ature evolution of the disk surface along successive trials.
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Fig. 3. Convergence results for a diagonal learning matrix
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Fig. 4. Convergence results for a tridiagonal learning matrix
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Fig. 5. Evolution of temperature for the D controller
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Fig. 7. Control signal evolution of the 1st laser beam with the D-type
controller
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Fig. 8. Control signal evolution of the 1st laser beam with PD-type
controller

For the D-type controller, the average temperature over the
disk for selected trials is shown in Fig. 5. From trial to trial,
the temperature curve leads to the required reference profile
(marked with the solid line), but very slowly. In this case,
the temperature curve is smooth and slowly changing. In
turn, the temperature evolution achieved for PD-type ILC
is shown in Fig. 6, where, in this case, a rapid change
in the temperature profile occurs, especially for the initial
trials. After that, the temperature profile is driven near the
reference. The temperature changes are smaller for future
trials, but contrary to the D-type, the temperature variability
is quite significant.

The last aspect investigated is the control signal required,
where the system consists of four actuators, and hence four
control signals. However, for the clarity of presentation, the
control signal of one laser only is considered. (For the other
lasers, the results are quite similar). The evolution of the
control signal for the first laser with the D-type law is
shown in Fig. 7. Similar to the temperature, the control
signal converge relatively slowly. The oscillations observed
for the later trials are numerical and are closely related to
the computation of the first derivative of the tracking error.
Fig. 8 gives the control signal evolution of the first laser for
the PD learning controller. In this case, faster convergence
to the required control sequence is observed. As a particular

case, For the 10-th trial, the control signal fluctuates around
u10 ≈ 0.3. Finally, note that the control objective is achieved
using a relatively small power for the first laser of less than
0.5 W.

V. CONCLUSIONS AND FUTURE RESEARCH

The paper has considered iterative learning control ap-
plied to a general class of parabolic distributed parameter
systems with control applied via the boundary conditions.
Two laws have been investigated, D- and PD-type, and their
convergence properties were established. These properties
are straightforward to apply and can be constructively used
to tune the learning gain matrices.

Future research will address the important issue of gen-
eralization of the approach to address measurement and
model prediction errors, together with optimization of sen-
sor/actuator locations for improving control quality.
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