
Robust decentralised proof-of-position algorithms for smart city applications

Aida Manzano Kharman amm3117@ic.ac.uk1, Pietro Ferraro1, Anthony Quinn1,2, and Robert Shorten1

1Imperial College London, Dyson School of Design Engineering
2Trinity College Dublin, Electronic and Electrical Engineering

Abstract— Motivated by the ever growing use of location-
based services, we present a decentralised class of algorithms
called Tree-Proof-of-Position (T-PoP). Most of the current
proofs of location are centralised, thus forgoing verifiablity and
privacy for the users. Decentralised solutions also exist, but they
suffer from drawbacks that make them unsuitable for realistic,
adversarial use cases. T-PoP algorithms rely on the web of
interconnected devices in a smart city to establish how likely it is
that an agent is in their claimed position. T-PoP operates under
adversarial assumptions, where some agents are incentivised to
be dishonest. We present a theoretical model for T-PoP and its
security properties, and we validate this model through a large
number of Monte-Carlo simulations. We specifically focus on
two instances of T-PoP and analyse their security and reliability
properties under a range of adversarial conditions. Use-cases
and applications are discussed towards the end of the paper.

I. INTRODUCTION

A basic problem across a range of application areas is
the need for decentralised agents to be able to certify their
position in a trustworthy and certifiable manner. For example,
in crowd-sourcing applications arising in the context of smart
cities, the need for agents to certify their position in a
trustworthy manner is essential; one such use-case arises
when vehicle cameras are used to identify available parking
locations or electric charge points [1]. Other examples are
emerging in the context smart mobility applications in which
vehicles need to prove their location to avail of certain
services; for example, in the case of hybrid vehicles using
their electric engine mode in a city to avoid an environmental
charge (as in London); when making use of a fast or slow
lane on a highway and paying the associated charge; or when
‘infotainment’ services are offered to vehicles when adopting
certain positions.

Our objective in this paper is to propose a suite of
algorithms whereby agents may certify their position col-
laboratively, but in a decentralised manner. Our algorithms
are designed to be robust in the sense that they do not
require the use of centralised infrastructure, and in the
sense that they are designed to operate successfully in an
adversarial environment (in the presence of agents that are
interested in coercing the system for their own personal
objectives). The need to be independent of a centralised
authority is fundamental to our work, as such authorities
may be compromised or a subject to data and privacy leaks
[2]. While our original motivation arises from automotive
applications, the work presented here is relevant and may find
application in other disciplines and applications, and may

also help to encode basic elements of fairness, social justice
and civil rights. More specifically, in an era characterised by
fake news, and deep fake technology, the ability to associate
sensing information with a verifiable geographic position,
is not only essential in establishing the veracity of sensed
information, but also in developing robust decision making
analytics based on these data. Currently, across many such
applications, sensed information is assumed more trustwor-
thy if a number of people agree on it. In scenarios where
we cannot verify what happened ourselves, we search for
‘truth’ by listening to our peers and believing what a majority
claims [3]. Hence, our research question becomes: how can
we provide agents with the ability to claim that they are at
a given place in time, without the security of our protocol
depending on the honesty of a centralised authority? While
we are not the first to address this research question, existing
solutions do not address the requirements of applications
in smart city contexts. Specifically, the solution must be
truly decentralised, and it must be robust to attacks whilst
preserving user privacy.

Our work is motivated by recent developments in dis-
tributed ledger technologies (DLT); in particular, in the
design of distributed acyclic graph (DAG)-based distributed
ledgers. However, while the design of such ledgers is con-
cerned with architectures that can provide peer-to-peer trust-
worthy record keeping, we are interested in realising DAG-
based algorithms that encode reliable position information.

A. Related Work

Several papers have been published on the topic of proof-
of-position; see for example [4], [5], [6], [7], [8]. Most are
unsuitable for the applications we are interested in due to
unrealistic trust assumptions and de facto centralisation in
the proposed systems. We now provide a snapshot of some
of this prior work.

An early example of a decentralised proof-of-location
scheme, termed APPLAUS, was presented in [9]. The AP-
PLAUS scheme makes a number of valuable contributions;
namely it looks to address collusion attacks using graph
clustering and computing a ‘betweeness’ metric. In [10],
nodes in the graph that are weakly connected are considered
less trustworthy. They also present a weight function that
decays with time, and compute the trustworthiness of a node
by calculating a node’s ratio of approvals to neighbours.
These contributions serve as a starting point for our ap-
proach. However, in their work, users must register their

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 112

public/private keys with a trusted certificate authority, and
so it is not a truly decentralised solution. A focal point of
our work is that we do not assume a trusted centralised
authority. Indeed, we argue that introducing this assumption
makes a system de facto centralised and poses security
and privacy risks. Another algorithm, known as SHARP,
is introduced in [11]. Here, the authors present a private
proximity test that does not require a user to reveal their
actual location to a server, and furthermore, they present a
secure handshake method wherein users do not need to have
a pre-shared secret. A notable contribution is that a witness1

may only extract the session key if they are indeed in the
vicinity of the prover 2. Security is ensured by requiring
that location tags be unforgeable, thus implying that the
protocol is robust against location cheating. A weakness of
the protocol is that a user in a given location can generate
a valid proof and relay it to a malicious agent in a different
location. Another algorithm, known as Vouch+, is presented
in [12]. This is another decentralised approach to proving
location, with a focus on addressing high speed and pla-
tooning scenarios. The major disadvantage is that its security
relies on selecting a proof provider which is honest. This
assumption, in our opinion, is too strong. We aim to develop
a protocol wherein the prover could lie, and the system
would still have a probabilistic guarantee of detecting this.
Another protocol, SPARSE [4], does not allow the prover
to pick their own witnesses, making collusion significantly
harder. Furthermore, SPARSE does address necessary secu-
rity concerns, and achieves integrity, unforgeability and—
very importantly—non-transferability. However, as in [12],
the prover is assumed to be a trusted entity which supposedly
does not publish users’ identity and data.

B. Contributions

We present a generalised model for a class of decentralised
proof-of-position algorithms, called T-PoP. We present a
mathematical model to describe the operation of this class
of algorithm and to facilitate further analysis. Simulations
are presented that validate our mathematical model, and we
present a framework for users to tailor the operating condi-
tions of the algorithm to satisfy their security and reliability
requirements. We also provide probabilistic guarantees of
detecting dishonest provers and collusion attacks.

Comment: T-POP can also be implemented in a privacy
preserving manner, since it does not require the agent to re-
veal their true position. Instead, a cryptographic commitment
[13] to one’s position suffices. Depending on the security
requirements of the application, T-PoP users can pick a
commitment scheme with varying binding and hiding, as
long as the commitment scheme supports the computation
of Euclidean distance between two points 3.

1An agent that verifies that they see another agent wishing to prove their
position.

2An agent that wishes to prove their position.
3We showcase a proof of concept in our GitHub repository whereby

the Euclidean distance between two agents can be computed in a privacy
preserving manner using the Zama fully homomorphic encryption library
[14]

Finally, we do not constrain the freedom of adversarial
agents to misbehave. We consider not only the possibility
that they are dishonest about their own position, but also
that they are colluding to lie about other agents’ position(s).

C. Structure of the paper

Our paper is structured as follows: first we introduce the
T-PoP protocol and explain its functioning in section II;
next, we present a theoretical model for the T-PoP class of
algorithms in section III; finally, we simulate T-PoP in a more
realistic scenario in section IV, thereby also validating our
theoretical model.

II. TREE - PROOF OF POSITION (TPOP) PROTOCOL

We begin by providing a high level explanation of how the
protocol operates. Subsequently, we will provide the neces-
sary definitions for each stage, and explain them in detail. We
assume that agents willing to participate in the protocol are
situated in T ⊆ R2 (the protocol can be seamlessly extended
to a three-dimensional space). Each agent ai is characterised
by their true position si = (xi, yi) ∈ T and by their claimed
position ŝi = (x̂i, ŷi) ∈ T , while the set of all agents is
denoted by A. Notice that it is possible that ŝi ̸= si (in the
event an agent is lying). An agent, aj , is (allegedly) ai’s
neighbour if ||ŝi − ŝj || < ri, where ri > 0 is each agent’s
range of sight. T-PoP is performed in three steps, as depicted
in Figure 1:

• Commit: At the beginning of T-PoP, each agent, ai ∈
A, commits to their claimed position, ŝi nd publishes
ŝi on a distributed ledger (DL). This ensures that the
agent’s commitment4 cannot be changed later.

• Tree Construction: Each agent, ai, then constructs a
tree of depth d ∈ N+, incorporating the committed
positions of agents, called witnesses, at levels l ∈
{0, . . . , d}. A specific ai—which we denote as g—is
the root of the resulting tree. These g ∈ A-indexed trees
are also committed to the DL as they are part of the
proof-of-position protocol. For every prover, g, the tree
is constructed as follows:

– g is is the root node at level 0.
– For each l ∈ {1, ..., d}, each node at level l−1 will

name wl witnesses. A witness at level l is an agent,
aj , that is a neighbour (see above) of a witness,
ai ∈Wl−1, at level l− 1 (note that, if ŝi ̸= si, and
ai is lying about their position, it is possible that
ai and aj might not actually be true neighbours).

4The only necessary requirement for our protocol is that the commitment
is binding [13] To ensure user privacy, we favour schemes that allow for
the computation of the Euclidean distance between two points which can
be achieved by leveraging encryption schemes that are fully homomorphic.
It is also necessary to achieve non-repudiation, which can be done through
the use of digital signatures. Frequently used examples include [15] and
[16]. This ensures an agent cannot later deny having claimed to be in a
given position [17]. Finally, non-transferability is needed to ensure that if an
honest prover generated a valid location proof through T-PoP, they cannot
then transfer their honest proof to a malicious actor. A user’s identity is
unique upon being issued, and should this be in the form of a private key,
we introduce the assumption that users do not share it.

113

Fig. 1: High-level Overview of the T-PoP protocol

ai is called the parent of witness aj . The set of all
witnesses at level l is called Wl, with |Wl| ≡ nl.

– If aj , was named a witness at some point in the
tree, it should not be named again by another
agent. If this happens, the prover will be considered
dishonest.

In practice, the root node, g, names w1 witnesses who
in turn name w2 witnesses and so on, until we reach
depth d. The number of witnesses per level, nl, can
therefore be computed recursively:

nl = wlnl−1, l = 1, . . . , d, (1)

with n0 ≡ 1. Figure 2 depicts the operation of this
process.

• Verification: The agent wishing to prove their position
runs the verification stage with the tree as an input,
initialized with l = d.

1 Each witness at level l states whether their parent
at level l−1 is their neighbour or not. If the answer
is yes, and the witness has not yet been named in
the tree, this witness becomes a confirmed level
l witness. The total number of confirmed level l
witnesses is denoted as Ml ≤ nl, and the total
number of witnesses that confirm parent b at any
level, l, is denoted by Kb ≤ wl. It follows that

Ml =
∑
b∈Wl

Kb ≤ nl (2)

2 If Kb < twl, t ∈ (0, 1], parent b is eliminated from
the tree. Here, t is a parameter of T-PoP, called the
threshold, which is used to regulate the security
and reliability properties of the algorithm, defined
in Section III.

3 If Ml < tnl then the algorithm interrupts and
outputs that root g is lying about their position.
Otherwise, we move on to level l − 1 and we
repeat this process. Note that any parent removed
by the previous step will not be included in this
next iteration of T-PoP.

T-PoP is therefore an algorithm depending on a set of
parameters, θ ≡ {t, d, w1, ..., wd}. The influence of these
parameters on the performance of the algorithm will be
explored in Section IV, via two examples. The pseudo-
code for the Tree Construction and Verification stages of the
protocol can be found in Algorithms 1 and 2 respectively.

Fig. 2: Tree building examples. Agent ai commits their
alleged position ŝi to a distributed ledger. The panel on the
top right shows the construction of a tree for d = 1 and
w1 = 4, while the panel on the bottom right shows the
construction of a tree for d = 2, w1 = 2, w2 = 2.

Example: Consider the T-PoP example in Figure 3, in
which θ = {t = 0.5, d = 2, w1 = 2, w2 = 2}, and so n1 = 2
and n2 = 4 (1). Solid arrows mean that a witness approves
their parent and dotted lines mean that a witness does not
approve their parent. Agents a5 and a6 are dishonest agents,
so that their committed positions, ŝ5 and ŝ6, are different
from their true positions. However, agent a2 does not know
this, it saw those cars next to it and it picked a5 and a6
as witnesses. So, a5 and a6 do not confirm that a2 is a
neighbour of theirs, whereas a3 and a4 confirm that a1 is
a neighbour of theirs. In line with point 2 of Verification
(above), agent a1 has enough confirmed witnesses (Ka1

=
2 ≥ t × w2 = 0.5 × 2) and stays in the tree, while agent
a2 does not have enough confirmed witnesses (Ka2 = 0 <
0.5×2), and so a2 is removed from the tree. However, since
the total number of confirmed witnesses at level 2 is M2 =
2 ≥ t×n2 = 0.5×4, T-PoP does not stop for g (Verification,
point 3), and we move to level 1. At level 1, a2 has been
removed but a1 confirms that g is its neighbour. As per points
2 and 3 of Verification, the final output of T-PoP is that g is
truthful about their position. As can be seen in the example
above, t is critical in determining the output of T-PoP. For
instance, if t = 1, then M2 = 2 < t × n2 = 1 × 4 = 4,
causing T-PoP to stop at point 3 of Verification, and returning
an output of untruthful for g.

A. Possible Adversarial Behaviours

In order to analyse the properties of T-PoP, we introduce
two qualities that each agent, ai ∈ A, will exhibit:

Definition 1 (Honest and Dishonest agents). Every ai ∈ A
is either honest or dishonest. The set of honest agents is
denoted by H ⊆ A, and the set of dishonest agents is denoted
by H . A dishonest agent will always commit a position ŝi ̸=
si. A honest agent on the other hand will always commit a
position ŝi = si.

Definition 2 (Coerced and Non-Coerced Agents). Every ai ∈
A is either coerced or non-coerced. The set of coerced agents

114

(a) We start by evaluating the outer level of the tree and we
evaluate the witnesses in W2. Agents a5 and a6 do not confirm
that they see agent a2, even though a2 is an honest agent. This
leads to agent a2 being eliminated from the tree.

(b) We go down one level, and now evaluate the witnesses in
W1. a2 has been eliminated by the tree (shown in grey) and so
only agent a1 is left.

Fig. 3: Example of T-PoP algorithm with d = 2, w1 =
2, w2 = 2.

is denoted by C ⊆ A, and the set of non-coerced agents by
C. A coerced agent will claim to see agents that are not
actually in its vicinity, if the latter are dishonest.

ai will interact with its neighbours in different ways—as
defined next—depending on which of the four possible states
it falls into with respect to the two 2-state qualities above.

Definition 3 (Neighbour-adding logic). Every agent, ai ∈ A,
adds neighbours, aj , according to the following logic:

• If ai ∈ H , it can add aj as a neighbour if aj’s position,
is within the range of sight ri, of ai’s fake position,
ŝi ̸= si. This implies that ai checks who is in the ri-
neighbourhood of the fake position that they committed.

• If ai ∈ H , it can add aj as a neighbour if aj’s
committed position is within the range of sight, ri, of
ai’s true position, si.

• If ai ∈ C, it can only add aj’s true position, sj , if this
is within ai’s range of sight, ri.

• If ai ∈ C, it can add aj’s true position, sj , if aj is
honest, and its fake position, ŝj , if aj is dishonest.

III. THEORETICAL ANALYSIS

The stochastic nature of T-PoP is modelled via the graph-
ical probability model in Figure 4, for the case where
d = 2, w1 = 2, w2 = 2. We assume that the Honesty
and Coercion states of each agent are independently and
identically distributed (iid) Bernoulli trials, B(·). Formally,
for each agent, we define two independent random variables,
h ∼ B(ph) and c ∼ B(pc), where ph ∈ [0, 1] and pc ∈ [0, 1]

Algorithm 1 Tree Construction

Require: Prover ai, Depth d, Number of witnesses
w1, ..., wl

1: Initialise ai as the root of the tree g and as a witness of
level 0

2: for l = 0, 1, ..., d− 1 do
3: for Each witness a at level l do
4: a names wl+1 witnesses among its neighbours
5: All the named neighbours are added as nodes

of G at level l + 1, with a as parent node
6: end for
7: end for
8: return G

Algorithm 2 Verification

Require: Tree G, Threshold t
1: Initialise M0,M1, ...,Ml−1 to 0
2: for l = d− 1, d− 2, ..., 0 do
3: for Each witness a at level l do
4: Set C = 0
5: for Each b that has been named by a do
6: if b confirms a and b unique in G then
7: C ←− C + 1
8: Ml ←−Ml + 1
9: end if

10: end for
11: if C < twl+1 then
12: Remove b from G
13: end if
14: end for
15: if Ml < #{witnesses at level l + 1}t then
16: return False
17: end if
18: end for
19: return True

are the probabilities of any agent being honest and coerced,
respectively (and it follows that 1 − ph and 1 − pc are the
probabilities of an agent being respectively dishonest and
non-coerced). Depending on the outcome of these trials for
a witness at level l, it will then deterministically confirm
that the witness at level l − 1, which named them, is its
neighbour or not (note that agents might be lying about
whether another agent is their true neighbour or not). The
outcome of this interaction has been described in definition
3, and is summarized in the truth table (Table I). If agent,
ai, verifies agent aj’s position, the outcome is 1, and 0
otherwise.

In this model, we assume that the density of agents in T is
very high. This means that provers, which are constructing
their tree following Algorithm 1, are always able to find
wl witnesses at each level and that each witness is always
unique. This assumption may not be satisfied in practice,
since agents may be isolated and therefore not have enough
witnesses around them. Nevertheless, studying the behaviour

115

Fig. 4: Graphical Probability Model of T-PoP with parame-
ters d = 2, w1 = 2, w2 = 2. The red lines indicate that those
variables influence the output of a specific node.

ai

aj
h and c h and c h and c h and c

h and c 1 1 1 1

h and c 1 1 0 0

h and c 1 0 1 0

h and c 1 0 0 1

TABLE I: A truth table showing confirmation (1) or rejection
(0) of a parent’s (ai) position by a witness (aj), depending on
the honesty (h) and coercion (c) states of each agent. Notice
that the relationship between ai and aj is symmetrical.

of the model in this high-density scenario provides insight
into the properties of T-PoP. Indeed, we argue that if an
agent is honest but does not have sufficient witnesses, it
is fair to consider them less trustworthy. Once the tree has
been created, the Verification step can be used to provide
the outcome of the algorithm, which can be either 0 (if the
algorithm deems the prover dishonest) or 1 (if the algorithm
deems the prover honest). Given a prover, g (the root of the
tree), we define a random variable, C(g) ∈ {0, 1}, whose
outcome depends on the ensemble of iid random variables,
h, c, in its constructed tree, and on T-PoP parameters, θ ≡
{t, d, w1, ..., wd}. In order to analyse T-PoP’s performance,
we consider two metrics: reliability and security.

Definition 4. Security, S, is a conditional probability quan-
tifying the ability of the algorithm to detect malicious agents.
Specifically, it is the true-negative conditional probability,
which, under stationarity assumptions, is independent of
i ∈ {1, . . . , |A|}:

S ≡ Pr[C(g) = 0|ai ∈ H]

Definition 5. Reliability, R, is a conditional probability
quantifying the ability for the algorithm to detect honest
agents. Specifically, it is the true-positive conditional prob-

ability. Once again, under stationarity assumptions:

R ≡ Pr[C(g) = 1|ai ∈ H]

In Figure 5, we display empirically evaluated R and S
for two sets of parameters, respectively: θ1 = {t = 1, d =
1, w1 = 6} and θ2 = {t = 1, d = 2, w1 = 2, w2 = 2},
in each case varying ph and pc in their ranges, [0, 1], with
steps of 0.02. To emphasize the functional dependence of
these probabilistic performance metrics on the honesty and
coercion probabilities of the iid agents, we denote these
metrics by R(ph, pc) and S(ph, pc), respectively. These are
evaluated empirically via extensive Monte Carlo simulations
of the graphical model. Specifically, we simulated 5000 trees
for each of the two parameter settings above.

IV. SIMULATIONS

In this section, we present an agent-based simulator, coded
in Python, to replicate a more realistic scenario for T-PoP and
to validate the graphical theoretical model that we presented
in the previous Section. Each agent has a number of varying
attributes such as their range of sight, position, velocity,
unique identifier and whether they are honest or dishonest,
and coerced or not. Depending on the latter variables, each
agent will commit to their true position or a fake one, and
will add agents to their set of neighbours as outlined in
definition 3. We then create an environment with a fixed den-
sity of agents in it, and place these randomly and uniformly
across the environment. We allow them to move according to
their velocity vector, within the bounds of the environment.
Each time the agents move, all agents construct a new set of
neighbours and discard the previous one. Next, each agent
wishing to claim their position runs T-PoP; namely, they run
the Tree Construction and the Verification algorithms. Our
simulator can be found in this GitHub Repository.

Other key variables are the threshold, depth and number
of witnesses used. A greater threshold increases security, but
also reduces reliability. Increasing the number of witnesses
increased both security and reliability. However, this may not
be a suitable measure for sparser scenarios, or cases where
agents are moving at high speed, potentially incurring a
communication overhead. We advocate for the users to select
the appropriate threshold, depth and number of witnesses
based on the individual needs of their own application.
Lowering the threshold can lower security, but provides
more flexibility in the system. The user can then select
an appropriate number of witnesses based on the expected
density of their network, and use the depth parameter to find
an appropriate trade-off between security and reliability, and
communication overhead and flexibility.

A. Preliminary results

Our objective in this section is twofold. On the one-hand,
we want to show some preliminary results on the perfor-
mance of T-PoP for a given choice of operating conditions.
On the other hand, we are interested in validating the results
from the graphical probability model (Figure 4), with a view
to creating an analytical framework for analysis of the T-PoP

116

Fig. 5: T-PoP performance for the graphical probability model (Figure 4). The panels in the left column show reliability,
R, while the panels in the right column show security, S. The first row is associated with model parameters, θ1, while the
second row is associated with model parameters, θ2.

Fig. 6: T-PoP performance for the agent-based model. The panels on the left show reliability R, while the panels on the
right show security, S. The first row is associated with model parameters θ1, while the second row is associated with model
parameters θ2. Notice the close similarity to Figure 5.

class of algorithms. This gives us confidence that the results
obtained for simple model parameter settings (e.g. d small)
still hold in more realistic scenarios.

The simulations have been set up as follows: we consid-
ered each possible combination of ph and pc in the ranges
[0, 1], with steps of 0.02. For each combination we ran
50 Monte Carlo simulations and we computed empirical
estimates of the values of R(ph, pc) and S(ph, pc). Sim-
ulations are set up in such a way that on average each
agent has 50 neighbours in their range of sight ri. While
this number might appear very high, we wanted to make
sure that the results obtained were comparable to the ones
obtained with the graphical probability model. Moreover,
real-life situations with high density of pedestrians (e.g., the

underground during peak hours) would map well into this
scenario. We ran these simulations for each set of parameters,
θ1 and θ2. The results are shown in Figure 6.

T-PoP with θ1 yields better performance overall (as both
R(ph, pc) and S(ph, pc) are higher for each choice of ph and
pc). The simulations with θ2 show that decreasing the number
of witnesses by a third and increasing the depth level by 1
allows us to achieve similar results. This is useful because—
while the total number of nodes in each prover’s tree is the
same for both scenarios—a tree of depth 2 with 2 witnesses
per parent places a smaller communication overhead on the
prover, because it only needs to name 2 witnesses, as opposed
to 6. Hence, the load is shared among the prover and the
witnesses.

117

Fig. 7: Jensen-Shannon divergence (JSD) between Rs and Rm (left column) and between Ss and Sm (right column) for θ1
(top row) and θ2 (bottom row).

Overall, in high density scenarios, the results of both
simulations show that—if ph > 0.9 and pc < 0.2—T-PoP
is capable of achieving S > 0.85% and R > 0.9% for θ1,
and S > 0.7% and R > 0.9% for θ2.

For lower proportions of honest agents and higher pro-
portions of coerced agents (i.e. in the presence of many
colluding, dishonest and coerced agents), the performance
of T-PoP degrades. This is to be expected in a decentralised
system such as T-PoP, since it is virtually impossible to
distinguish between a group of honest agents verifying
each other and a group of dishonest and coerced agents
collaborating to verify each other in a fraudulent manner.
Accordingly, we can observe across all figures that—even
when the percentage of honest agents is low—the security
remains high at the expense of reliability. We observe that—
whilst, indeed, T-PoP can detect true negatives (i.e. be
secure) in highly (and perhaps even unrealistically highly)
adversarial environments—the drawback is that it penalises
honest agents too harshly (i.e. is unreliable). This is a
consequence of the collaborative nature of the algorithm.
When the number of honest agents in the system is low
(i.e. ph ↓ 0), they will—with high probability (w.h.p.)—be
misclassified as dishonest because they will select dishonest
witnesses w.h.p.

The density of agents in the environment vastly affected
the performance of T-PoP. This was especially noticeable
when the average number of agents per range of sight in the
environment was lower than or equal to the total number of
nodes of the tree being constructed, which greatly increased
the number of False Negatives, thus making T-PoP unsuitable
for low density environments. This is because—when the
density is lower—the probability of selecting the same agent
twice, or of not having sufficient neighbours to construct the
tree, greatly increases.

B. Validation of the graphical model (Figure 4)

For validation of the graphical probability model, we make
use of the Jensen-Shannon Divergence (JSD) [18] to quantify
how close the probability distributions obtained through the
agent-based model (i.e. the T-PoP implementation) and the
graphical model are. In what follows, we refer to the values
of R and S obtained from the simulated agent-based model
as Rs and Ss, and the ones obtained from the graphical
model as Rm and Sm. We compute two JSD-based metrics:
(i) the (ph, pc)-indexed (i.e. pointwise) JSD map between
Rm and Rs, and between Sm and Ss, respectively; and
(ii) the global JSD between the normalized Rm and Rs

maps, and the normalized Sm and Ss maps, respectively.
By “normalized”, we mean that each of these positive maps
is divided by its element sum, yielding a probability mass
function (pmf). In case (ii), we can therefore condense into
a single number the relative performances displayed in the
figures (R and S, respectively) for the simulated T-PoP
system (s) and its graphical model (m) (Figure 4).

The results for the point-wise evaluation ((i) above) of the
JSD are shown in Figure 7, while the global evaluation ((ii)
above) is summarised in table II. Note that 0 ≤ JSD ≤ 1,
with lower values achieved when probabilities are close in
value (i.e. in cases of good agreement between the behaviour
of the simulated system and the graphical model). It is clear
that—at least for high density scenarios—the behaviour of
the graphical model closely mirrors that of the implemented
T-PoP system. Nevertheless, the pointwise JSD results reveal
significant discrepancies in the security (S) metric when ph ↑
1 (i.e. for high proportions of honest users).

V. COMPARISON OF GRAPHICAL PROBABILITY MODEL
AND SIMULATED ENVIRONMENT

In the graphical model, we consider only the agent’s
coercion and honesty attributes when it comes to witness
approval, whereas in the simulated environment the approval

118

Parameters JSD(Rm, Rs) JSD(Sm, Ss)

θ1 0.139 0.095

θ2 0.174 0.059

TABLE II: Jensen-Shannon divergence (JSD) between the
normalized reliability (R) and security (S) maps for two sets
of model parameters.

is dependent not only on the honesty and coercion variables
of the agents, but also on their range of sights, positions and
velocity. The attributes that influence the agents’ behaviour
are their honesty and coercion status, and thus, for the
graphical model, we do not consider variables such as range
of sight, positions and velocities. In the graphical model,
agents do not move and they do not build the tree for T-PoP
according to other agents that are within their range of sight.
Rather, agents build their trees assuming that other agents
are always present, and approvals are made following Table
I only. Upon building a more realistic simulation scenario,
where we introduce variables that add noise and uncertainty
to the behaviour defined in I, we observe that, at least for
a high density scenario, T-PoP behaves, both qualitatively
and quantitatively, in a similar way to the one characterised
by our graphical model. This validates the hypothesis that,
indeed, the most important attributes for the performance of
T-PoP are those of honesty and coercion, in high density
scenarios. It also suggests that the graphical model should
be expanded to take into account different density settings.

VI. CONCLUSION

We have presented a proof-of-position class of algorithms
that are fully decentralised. They can be run by any agent
participating in the network and they do not assume trust in a
central authority, nor do they rely on physical infrastructure.
We also considered a range of attack vectors by allowing
agents not only to lie about their own position, but also
about others’ positions. Our algorithm can also be computed
in a privacy-preserving manner, as there is no need for the
true location of an agent to be revealed to the network. We
developed a graphical probability model for this class of
proof-of-position algorithms, and statistically validated the
model via comparative analysis of their respective perfor-
mances. In future work, we will use the theoretical model
to predict the performance of T-PoP as a function of its
operating conditions, θ. Specifically, we will be interested in
characterising the effect of the depth (d), threshold (t) and
number of witnesses (wl) on the security and reliability of
the T-PoP class of algorithms. Developing such a framework
can allow users to select the optimal operating conditions of
the algorithm to meet their needs, based on their expected
density, fault tolerance and proportion of honest and non-
coerced agents in their system. The theoretical model will
also allow performance guarantees to be deduced for T-
PoP. Finally, we intend to explore the suitability of T-PoP
for specific use-cases in the presence of more complex
adversarial scenarios.

Acknowledgments: The authors would like to thank the
IOTA Foundation for funding this research.

REFERENCES

[1] R. Cogill, O. Gallay, W. Griggs, C. Lee, Z. Nabi, R. Ordonez, M. Rufli,
R. Shorten, T. Tchrakian, R. Verago, et al., “Parked cars as a service
delivery platform,” in 2014 International Conference on Connected
Vehicles and Expo (ICCVE), pp. 138–143, IEEE, 2014.

[2] C. Fiesler and B. Hallinan, “‘we are the product’ public reactions to
online data sharing and privacy controversies in the media,” in Pro-
ceedings of the 2018 CHI conference on human factors in computing
systems, pp. 1–13, 2018.

[3] S. C. Desai, B. Xie, and B. K. Hayes, “Getting to the source of the
illusion of consensus,” Cognition, vol. 223, p. 105023, 2022.

[4] M. R. Nosouhi, S. Yu, M. Grobler, Y. Xiang, and Z. Zhu, “SPARSE:
privacy-aware and collusion resistant location proof generation and
verification,” in 2018 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6, IEEE, 2018.

[5] H. Alamleh and A. A. S. al-Qahtani, “A cheat-proof system to validate
GPS location data,” in 2020 IEEE International Conference on Electro
Information Technology (EIT), pp. 190–193, IEEE, 2020.

[6] C. Javali, G. Revadigar, K. B. Rasmussen, W. Hu, and S. Jha, “I
am Alice, I was in wonderland: secure location proof generation and
verification protocol,” in 2016 IEEE 41st conference on local computer
networks (LCN), pp. 477–485, IEEE, 2016.

[7] W. Wu, E. Liu, X. Gong, and R. Wang, “Blockchain based zero-
knowledge proof of location in IOT,” in ICC 2020-2020 IEEE Inter-
national Conference on Communications (ICC), pp. 1–7, IEEE, 2020.

[8] M. Amoretti, G. Brambilla, F. Medioli, and F. Zanichelli, “Blockchain-
based proof of location,” in 2018 IEEE International Conference
on Software Quality, Reliability and Security Companion (QRS-C),
pp. 146–153, IEEE, 2018.

[9] Z. Zhu and G. Cao, “Toward privacy preserving and collusion re-
sistance in a location proof updating system,” IEEE Transactions on
Mobile Computing, vol. 12, no. 1, pp. 51–64, 2011.

[10] Z. Zhu and G. Cao, “APPLAUS: A privacy-preserving location proof
updating system for location-based services,” in 2011 Proceedings
IEEE INFOCOM, pp. 1889–1897, IEEE, 2011.

[11] Y. Zheng, M. Li, W. Lou, and Y. T. Hou, “SHARP: Private prox-
imity test and secure handshake with cheat-proof location tags.,” in
ESORICS, pp. 361–378, Springer, 2012.

[12] F. Boeira, M. Asplund, and M. Barcellos, “Decentralized proof of
location in vehicular ad hoc networks,” Computer Communications,
vol. 147, pp. 98–110, 2019.

[13] O. Goldreich et al., “Foundations of cryptography–a primer,” Foun-
dations and Trends® in Theoretical Computer Science, vol. 1, no. 1,
pp. 1–116, 2005.

[14] Zama, “Concrete: TFHE Compiler that converts Python programs
into FHE equivalent,” 2022. https://github.com/zama-ai/
concrete.

[15] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” in Cryptographic Hardware and Em-
bedded Systems–CHES 2011: 13th International Workshop, Nara,
Japan, September 28–October 1, 2011. Proceedings 13, pp. 124–142,
Springer, 2011.

[16] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital
signature algorithm (ECDSA),” International journal of information
security, vol. 1, pp. 36–63, 2001.

[17] M. Swanson, J. Hash, and P. Bowen, “Guide for developing security
plans for federal information systems,” tech. rep., National Institute of
Standards and Technology, 2006.

[18] M. Menéndez, J. Pardo, L. Pardo, and M. Pardo, “The Jensen-Shannon
divergence,” Journal of the Franklin Institute, vol. 334, no. 2, pp. 307–
318, 1997.

119

