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Abstract— Over the past few years, differentiable optimization
has gained interest within machine learning, control, and
robotics communities. It consists in computing the derivatives
of the solutions of a given optimization problem which can
then be used in learning algorithms. Until now, dedicated
approaches have been proposed to compute the derivatives
of various optimization problems (LPs, QPs, SOCPs, etc.).
However, these approaches assume in general well-conditioned
problems, limiting de facto their application to general optimal
control problems (OCPs) widely used in robotics. In this work,
we focus on the differentiation of solutions to such problems.
We notably introduce a differentiable proximal formulation
of equality-constrained LQR problems that accurately solves
rank-deficient problems. This allows us to compute accurate
gradients even in the case of problems that do not satisfy the
standard linear independence constraint qualification (LICQ).
Because any optimal control problem can be cast as an equality-
constrained LQR problem in the vicinity of the optimal solution,
we show that our robust LQR derivative computation can be
exploited to obtain the derivatives of general optimal control
problems. We demonstrate the effectiveness of our approach in
dynamics learning and parameter identification experiments in
both linear and nonlinear optimal control problems.

I. INTRODUCTION

Trajectory optimization is a key part of programming
robot motions. The task is encoded as a cost term, and
physical constraints are encoded as path constraints. Over the
past decades, differential dynamic programming (DDP) [1]
and the iterative linear quadratic regulator (iLQR) [2] have
become widespread and tractable approaches for solving
complex robotic problems, ranging from UAVs navigation [3]
to legged locomotion [4]. While DDP was originally designed
for unconstrained problems, variants have been proposed to
account for diverse types of path constraints, ranging from
simple bounds on the control inputs [5] to equality [6], [7]
and inequality constraints [8], [9], [10].

With recent progress in the development of advanced
computational frameworks in machine learning (e.g., PyTorch
[11], TensorFlow [12], JAX [13]), differentiable optimization
has emerged as a generic approach for computing the
derivatives of computational layers involved in mathematical
programming problems. It can be used, for instance, to find
the optimal design parameters of a robotic mechanism (aka co-
design) given a target task [14] or to estimate the sensitivity
of an optimal solution to the parameters of the problem [15].
Differentiable optimization generally relies on differentiating
the optimality conditions (e.g., the Karush–Kuhn–Tucker
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conditions) associated with a given problem. In the field of
convex optimization, effective approaches are now available
for computing derivatives of solutions to standard quadratic
programming (QP) instances [16], LQR problems [17], and
more general convex programming problems [18], which
are very common in control and robotics. However, when
deriving the KKT conditions, these approaches often assume
that they are well-conditioned at the optimum (e.g., linearly
independent constraints qualification, low condition number of
the KKT matrix), which cannot be ensured for a large majority
of control problems (e.g., inverse or forward dynamics
of legged robots making redundant contacts with their
environment or singular configurations of robotic arms). This
is even more true in machine learning applications, where
optimization stages are used as differentiable layers, and
the intermediate problems that are being solved during the
learning process are not guaranteed to satisfy the required
optimality qualifications since they are never enforced during
training.

We propose to overcome these limitations by leveraging the
proximal method of multipliers [19] to evaluate the derivatives
of solutions to optimal control problems robustly. In particular,
we develop a generic solution to the computation of these
derivatives in the case of the equality-constrained linear
quadratic regulator (LQR), which is, as highlighted in [17],
the core block required to compute the derivatives of solutions
to general nonlinear optimal control problems. Following the
experimental validation procedure of [17], we demonstrate
that unlike existing solutions, our proximal approach properly
handles ill-conditioned system identification problems. We
also show that our framework can be used on top of
an external nonlinear optimal control solver, enabling our
approach to operate on nonlinear problems.

This paper is organized as follows. We first introduce our
proximal formulation of equality-constrained LQR problems
(Sec. II). We then present our proximal method for differen-
tiating through these problems (Sec. III), and the extension
of our approach to the nonlinear case (Sec. IV). In section
V, we evaluate and benchmark the proposed solution against
alternative solutions of the state of the art on various system
identification problems of the literature.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 6307



II. PROBLEM STATEMENT AND PROXIMAL RESOLUTION
OF EQUALITY-CONSTRAINED LQR

A. Problem statement

We address the equality-constrained LQR problem of
finding the optimal sequence of states and controls that solve

min
X,U

T−1∑
t=0

lt(xt, ut) + lT (xT ), s.t

 xt+1 = ft(xt, ut)
x0 = x∗

0

ct(xt, ut) = 0
,

(1)

where X =
[
xT
0 ... xT

T

]T
, U =

[
uT
0 ... uT

T−1

]T
, lt is

a quadratic cost function, ft is a linear dynamics function
and ct are path constraints. We define the running cost:

lt(xt, ut) =
1

2
(xT

t Qtxt + uT
t Rtut) + qTt xt + wT

t ut, (2)

the terminal cost:

lT (xT ) =
1

2
(xT

TQfxT ) + qTT xT , (3)

the dynamics:

ft(xt, ut) = Atxt +Btut + dt, (4)

and the path constraints

Ctxt +Dtut − et = 0 and x0 = x∗
0. (5)

In the case of LQR problems, several approaches [20]
can be used to solve problem (1). We follow here the
Bellman principle of optimality [21]. Starting from t = T ,
we introduce the value function Vt computed recursively
backward in time as:

Vt(xt) = min
ut,xt+1

lt(xt, ut) + Vt+1(xt+1) (6)

s.t. xt+1 = ft(xt, ut) and ct(xt, ut) = 0,

with the terminal condition VT (xT ) = lT (xT ). Here, Qt and
Rt are symmetric positive semi-definite matrices, At, Bt, Ct

and Dt are general matrices, and et and dt are vectors, for
all t. x∗

0 is the initial state. It is worth mentioning that Ct

and Dt might be rank deficient.

B. Multiple-shooting

Following [22], we also relax the dynamics constraints
under Eq. (6) by using multiple shooting [23], which consists
in adding auxiliary state variables in order to stabilize
the optimization procedure, especially for numerically or
intrinsically unstable systems. We introduce an auxiliary
variable yt, such that Eq. (6) maps to:

Vt(xt) = min
ut,yt

lt(xt, ut) + Vt+1(yt) (7)

s.t. yt = ft(xt, ut) and ct(xt, ut) = 0.

The new problem converges to the solution of problem (6)
as demonstrated by Schmidt et al. in [24]. In the sequel, we
use the usual shorthands Vx and Vxx to denote respectively
the first and second derivatives of Vt, and V ′ to denote Vt+1.

At time t, we solve problem (7) by solving the equivalent
min max problem:

Vt(xt) = min
yt,ut

max
λt,νt

Lt(xt, ut, yt, λt, νt), (8)

where Lt is the Lagrangian of the problem:

Lt(xt, ut, yt, λt, νt) = lt(xt, ut) + V ′(yt)

+ λT
t (yt − ft(xt, ut)) (9)

+ νTt ct(xt, ut).

Here, yt and ut are the primal variables and λt and νt are the
dual ones. In the LQR setting, VT (xT ) =

1
2x

T
TQfxT +qTT xT ,

hence Vt is also quadratic for each t [21]. The LQR problem
can then be solved using the dynamic programming principle
by solving at each time t the linear system obtained by
deriving the KKT conditions at optimality:

Rt 0 BT
t DT

t

0 V ′
xx −I 0

Bt −I 0 0
Dt 0 0 0



ut

yt
λt

νt

 = −


wt

V ′
x

Atxt + dt
Ctxt − et

 , (10)

where the leftmost matrix is the so-called KKT matrix.
Because of the multiple shooting approach, this system has an
additional variable yt. However, the KKT matrix has a block-
sparse structure, which can be efficiently exploited when
solving the system. It should be noted that such a matrix can
have very poor conditioning, especially when V ′

xx or Rt is not
positive definite or when Dt is rank-deficient. As mentioned
in the introduction, such a scenario is likely to happen in
practice, especially in a machine learning context where the
cost matrices Rt and Qt and the path constraints matrix Dt

are learnable parameters. To cope with these limitations, we
propose solving a proximal reformulation of this problem,
which we detail in the following.

C. Proximal reformulation

As shown by Rockafellar in [19], solving the min-max
problem (8) is equivalent to solving the equivalent problem

min
yt,ut

max
λt,νt

Lt,ρµ(xt, ut, yt, λt, νt), (11)

where ρ and µ are positive constants,

Lt,ρµ(xt, ut, yt, λt) = lt(xt, ut) + Vt+1(yt)

+ λT
t (yt − f(xt, ut)) + νTt ct(xt, ut)

+
ρ

2
∥ut − u−

t ∥22 +
ρ

2
∥yt − y−t ∥22 (12)

− µ

2
∥λt − λ−

t ∥22 −
µ

2
∥νt − ν−t ∥22,

and the four L2 regularization terms vanish over the iterations
of a backward/forward procedure for solving problem (11)
for all t. The so-called proximal regularization [25] of the
primal variables ut, yt and dual variables λt, νt is used
for solving problems that are not both primally and dually
strictly convex, as shown in [7] and [26]. It is central to our
approach and will be notably used to solve constrained LQR
problems and estimate the sensitivity of their solutions to
problem parameters robustly.
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Let us now present the backward/forward procedure asso-
ciated with our approach.
Backward pass. For all t backward in time, the new KKT
conditions at time t are given by:
Rt + ρI 0 BT

t DT
t

0 V ′
xx + ρI −I 0

Bt −I −µI 0
Dt 0 0 −µI



dut

dyt
dλt

dνt

 = −


Rtu

−
t +BT

t λ
−
t +DT

t ν
−
t + wt

V ′
xxy

−
t + V ′

x − λ−
t

Atxt +Btu
−
t + dt − y−t

Ctxt +Dtu
−
t − et

 ,

(13)

where dv = v − v−, for v in {ut, yt, λt, νt}. When solving
Eq. (13) backward in time, xt is unknown, but dut, dyt, dλt

and dνt can be expressed as affine functions of xt:
dut = Γtxt + γt,
dyt = Mtxt +mt,
dλt = Ξtxt + ξt,
dνt = Ωtxt + ωt,

, (14)

and the coefficients Γt, γt, Mt, mt, Ξt and ξt can be obtained
by solving the linear system:

Kt


Γt γt
Mt mt

Ξt ξt
Ωt ωt

 = −


0 Rtu

−
t +BT

t λ
−
t +DT

t ν
−
t + wt

0 V ′
xxy

−
t + V ′

x − λ−
t

At Bu−
t + dt − y−t

−Ct Dtu
−
t − et

 ,

(15)

where Kt is the KKT matrix from Eq. (13). In the backward
pass of the algorithm, we compute the coefficients from
Eq. (15) and update the value function’s first and second
derivatives Vx and Vxx for each t (which is straightforward
since Vt is quadratic).

Forward pass. We update ut, yt, λt and νt for all t, forward
in time. 

u+
t = u−

t + dut,
y+t = y−t + dyt,
λ+
t = λ−

t + dλt,
ν+t = ν−t + dνt.

. (16)

We thus solve the LQR problem by iteratively repeating this
backward/forward procedure until convergence. Our stopping
criterion uses the infinity norm of the gradient of Lρ,µ∥∥∥∥[∇y,uLρµ(y, u)

∇λ,νLρµ(λ, ν)

]∥∥∥∥
∞

≤ ϵ, (17)

where Lρµ stacks Lt,ρµ for all t and ϵ is a fixed tolerance
parameter.

III. PROXIMAL DIFFERENTIATION OF
EQUALITY-CONSTRAINED LQR

Our objective is to compute derivatives of LQR outputs
(i.e., the trajectories x and u) with respect to the problem
parameters (i.e., the dynamics and cost matrices At, Bt, Qt,
Rt, the path constraints Ct, Dt, dt, et, and the initial condition
x∗
0) to be able to plug the LQR solver as a differentiable layer

in a trainable model. Following [17], we first reformulate
(6) as the minimization of an equivalent QP problem of the
form:

min
X

1

2
XTHX + qTX, s.t ÂX = b̂, (18)

with the following augmented matrices:

H = diag(Qt, ..., Rt, ...),

q = [qT0 ... qTT wT
0 ... wT

T−1]
T
,

Â =



−I 0 0 ... 0 0 0 ... 0
A0 −I 0 ... 0 B0 0 ... 0
0 A1 −I ... 0 0 B1 ... 0
... ... ... ... ... ... ... ... ...
... ... ... AT−1 −I 0 ... 0 BT−1

C0 ... ... 0 0 D0 ... 0 0
... ... ... ... ... ... ... ... ...
0 ... ... CT−1 0 DT−1 ... 0 0
0 ... ... 0 CT 0 ... 0 0


,

X = [xT
0 ... xT

T uT
0 ... uT

T−1]
T
,

and

b̂ = − [x∗T
0 dT1 ... dTT eT0 ... eTT ]

T
.

The KKT conditions associated with problem 18 at the
optimum correspond to:

K̂

[
X∗

Λ∗

]
=

[
−q
b

]
, where K̂ =

[
H ÂT

Â 0

]
(19)

and Λ∗ is a vector of multipliers associated with the
constraints ÂX = b and containing the stacked multipliers
λt and νt from Eq. (9). for all t. We drop the "∗" superscript
for clarity in the following.

In machine learning problems, we are looking for deriva-
tives of the form ∂r/∂p, where r is a scalar function and
p is a parameter of the problem . Here, p lies in Pt =
{At, Bt, Qt, qt, wt, Ct, Dt, x

∗
0, dt, et}. To obtain ∂r/∂p di-

rectly, we use the same trick as in [17] and [27], and obtain
expressions for the partial derivatives

∂r/∂At = λt+1G
T
x,t + xtG

T
λ,t+1,

∂r/∂Bt = λt+1G
T
u,t +Gλ,t+1u

T
t ,

∂r/∂Qt = xtG
T
x,t, ∂r/∂Rt = Gu,tu

T
t ,

∂r/∂Ct = −xtG
T
ν,t, ∂r/∂et = Gν,t,

∂r/∂Dt = −utG
T
ν,t, ∂r/∂dt = Gλ,t,

∂r/∂qt = Gx,t, ∂r/∂wt = Gu,t,

(20)

as functions of a vector G that verifies

K̂G = Z, (21)

where Z is the vector obtained by stacking all the vectors
∂r/∂vt with vt in {xt, ut, λt, νt}, for all t. The quantities
in Z are assumed to be known. In fact, they correspond to
the derivatives of r with respect to the outputs of the LQR,
i.e., the derivatives of the computational block following the
LQR block in the considered computational graph, and can
be obtained with back-propagation. We can also write G by
stacking the vectors Gv,t for all t, with vt in {xt, ut, λt, νt}
where each vector Gv,t is the same size as vt. In [17], Amos
et al. notice that G verifies the same equation that the vector
[XT ΛT ]

T verifies in Eq. (19). Thus, G is the solution to a
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new LQR problem, and as such can be obtained efficiently
without explicitly inverting the large KKT matrix K̂ in Eq.
(21). Instead, we solve a similar LQR problem to the one
to which x and u are solutions. The KKT matrices of this
new problem, which we refer to as the LQR derivatives
problem, are the same as the original ones. Only the values
of the right-hand side term in the large QP formulation are
modified, which correspond to the parameters qt, wt, dt,
and et in the LQR formulation. Their values for the LQR
derivatives problem are:{

qt = ∂r/∂xt wt = ∂r/∂ut

dt = ∂r/∂λt et = ∂r/∂νt
. (22)

In [17], the authors assume the LICQ conditions are
satisfied, whether it is to solve the LQR problem or to compute
its derivatives, which implies that Kt is always invertible.
However, as discussed in the introduction, this limits the type
of control problems the method can be applied to since it is
not the case for many of them. Thus, unlike [17], we cope
with these limitations by leveraging the proximal formulation
introduced in section II-C.

We solve the LQR problem of which Gx,t, Gu,t, Gλ,t and
Gν,t are the solutions and multipliers by solving iteratively
until convergence the following linear system for all t,
backward in time starting from t = T :

Kt


dGu,t

dGy,t

dGλ,t

dGν,t

 = −


RtG

−
u,t +BT

t G
−
λ,t +DT

t G
−
ν,t + ∂r/∂ut

V ′
xxG

−
y,t + V ′

x −G−
λ,t

AtGx,t +BtG
−
u,t + ∂r/∂λt −G−

y,t

CtGx,t +DtG
−
u,t − ∂r/∂νt

 ,

(23)

where

Kt =

Rt + ρI 0 BT
t DT

t

0 V ′
xx + ρI −I 0

Bt −I −µI 0
Dt 0 0 −µI

 (24)

and obtain new updates
Gu,t

Gy,t

Gλ,t

Gν,t

 =


G−

u,t + dGu,t

G−
y,t + dGy,t

G−
λ,t + dGλ,t

G−
ν,t + dGν,t

 . (25)

This allows us to find the optimal variable G accurately, even
in ill-conditioned problems (e.g., rank-deficient matrices Kt).
This is extremely important in practice since the gradients of
interest, ∂r/∂p where p is in P , are functions of the values
of G (equation (20)). Thus, any inaccurate solution G would
lead to back-propagating incorrect gradients ∂r/∂p, resulting
in unstable training procedures.

IV. EXTENSION TO NONLINEAR CASES

When f , l, and c are nonlinear, problem (1) corresponds
to an equality-constrained nonlinear optimal control problem.
A standard method for solving it is the so-called iterative
LQR (iLQR) algorithm [2], performing a cascade of LQR
problems by linearizing the dynamics and making a quadratic
approximation of the cost function around the nominal state

and control trajectories. In the case of equality-constrained
nonlinear optimal control problems, the approximations can
be written as follows:

min
δX,δU

T−1∑
t=0

1

2
δxT

t Lt,xxδxt +
1

2
δuT

t Lt,uuδut + xT
t Lt,xuδut

+ lTt,xδxt + lTt,uδut (26)

s.t. Ft,xδxt + Ft,uδut + f0 = 0, (27)
Ct,xδxt + Ct,uδut + c0 = 0,

where δxt and δut stand for the step directions and Dl,f =
{Lt,xx, Lt,uu, Lt,xu, lt,x, lt,u, Ft,x, Ft,u, Ct,x, Ct,u} is the set
of first and second-order derivatives of l, f and c respectively.

iLQR-based approaches for solving unconstrained and con-
strained problems of this kind [5], [9], [22] proceed iteratively
until a convergence criterion is met. At the optimum, the
KKT conditions of the nonlinear constrained optimal control
problem (1) correspond to those of the last LQR problem
solved in the iLQR. Thus, the derivatives of problem (1) in
the general case can be obtained with the method described
in III. The solution extends to OCPs containing inequality
constraints, since active inequality constraints at the optimum
play the role of pure equality constraints.

Finally, if we assume that the dynamics f , constraints c,
and cost function l are parameterized by some parameter θ,
then it follows that the set of first and second-order derivatives
Dl,f , and specifically the one at optimality D∗

l,f will also be
parameterized by this parameter θ. In a learning framework,
the derivative of interest, i.e., ∂r/∂θ, with r some scalar
loss function over the parameters can thus be obtained by
applying the chain rule, leading to:

∂r

∂θ
=

∑
p∈D∗

l,f

∂r

∂p

∂p

∂θ
, (28)

where the derivatives ∂r/∂p can be obtained with the method
described in paragraph III, and the derivatives ∂p/∂θ are
obtained with backpropagation.

Overall, our approach is quite general and we can use
any off-the-shelf iLQR solver to get the set of derivatives of
the OCP at optimality D∗

l,f to formulate the quadratic cost
problem with linear equality constraints at optimality, which
we then solve with our approach.

V. EXPERIMENTS

We first evaluate our method for solving LQR problems
with terminal constraints. We then evaluate it on cost and
parameter identification problems for both linear (LQR)
and nonlinear systems (pendulum and cartpole). The code
associated with this paper, written in Python, will be released
as open-source.

A. LQR problems with terminal constraints

We solve an LQR problem with a terminal equality
constraint (Sec. II-A) following the approach described in
section II-C. We compare the solutions of both our solver and
CVXPY [28], [29], which is based on OSQP [30]. We run
both solvers on three sets of parameter sizes {n, d, T}, where
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TABLE I
SOLVERS PERFORMANCE: COMPARISON OF LQR PROBLEMS WITH

TERMINAL EQUALITY CONSTRAINTS.

Parameters solver success feasibility distance to goal
T = 20,
n = 15, d = 3

cvxpy 2 6.10−6 6.10−6

ours 93 9.10−9 9.10−9

T = 20,
n = 10, d = 2

cvxpy 32 2.10−8 2.10−8

ours 98 4.10−9 4.10−9

T = 20,
n = 15, d = 5

cvxpy 100 9.10−12 9.10−12

ours 100 2.10−14 3.10−15

n is the system dimension, d is the control dimension, and
T is the time horizon. For each set of parameter sizes, we
run 100 experiments with randomly generated time-invariant
LQR problems. The dynamics matrix A is forced to have all
singular values lower than 1, and B is a matrix with random
coefficients sampled uniformly in [0, 1]. The cost matrices
Q and R are set to respectively 10−2In and 10−1Id. All
experiments are run on a single CPU. A solver is considered
successful when both primal and dual constraints are satisfied.
Feasibility denotes the infinity norm on primal constraints
(dynamics constraints ∥x∗

t+1 −Ax∗
t −Bu∗

t ∥∞). Distance to
goal is the average infinite norm ∥xT − x∗

T ∥∞, with x∗
T the

target terminal constraint.
Tab. I reports the average results of our experiments. In

the first and second rows, our solver converges to a solution
for almost every experiment, while CVXPY only converges
to a solution for up to 32% of them on average. We explain
this difference by the fact that for these problems, the KKT
matrix involved in the last step of the dynamic programming
problem has a condition number of 1017 in the unregularized
formulation, and of 107 in our regularized approach. In
examples where both solvers converge, the proposed approach
converges to a more accurate solution. This first set of results
shows both increased robustness and better accuracy of the
proximal solver against a more classic approach for solving
LQR problems.

We also report the average results on well-conditioned
cases (third row). In such cases, both solvers converge to
equally good solutions, but CVXPY is much faster since our
implementation is in an interpreted language (Python) that
could easily be moved to a compiled one (e.g., C++) for
much better efficiency.

B. System identification: LQR problems

We reproduce the system identification experimental setting
of [17]. Given optimal trajectories in states and controls of
systems with linear dynamics and quadratic cost, the goal is
to identify these dynamics and cost parameters. Formally, we
solve the LQR problem of equations (2)-(5) with qt = 0 and
wt = 0:

min
X,U

1

2

T−1∑
t=0

(xT
t Qxt + uT

t Rut) +
1

2
xT
TQfxT ,

s.t xt+1 = Axt +But for t in 0, . . . , N − 1,

x0 = x∗
0.

(29)

TABLE II
SUCCESS RATE OF IDENTIFICATION METHODS: WE COMPARE

LEVENBERG-MARQUARDT AND RMSPROP OPTIMIZATION SUCCESS

RATES (IN %).

T=5, n=3, d=3 T=20, n=3, d=3 T=10, n=5, d=2
RMSProp 21 20 21

LM 91 85 90

We observe M trajectories [x∗,i
0 , . . . x∗,i

T ] and [u∗,i
0 , . . . , u∗,i

T−1]
(i in 1, . . . ,M ) that are optimal solutions to problem (29)
with different initial conditions x∗

0 (chosen at random). The
states xt are vectors of size n (between 2 and 10), the controls
ut are vectors of size d (between 3 and 10), and the control
horizon is T (between 5 and 20). Our goal is to identify the
dynamics matrices (A,B) and the cost matrices (Q,Qf , R).
In other words, we want to estimate θ, where θ can be any
of A,B,Q,Qf , R, or a combination of two or more of these
matrices. We solve:

min
θ

M∑
i=1

T∑
t=0

∥x∗,i
t − xi

t(θ)∥22 + ∥u∗,i
t − ui

t(θ)∥22 (30)

where xi
t and ui

t are solutions of the LQR problem parameter-
ized by θ with initial condition x∗,i

0 . Using the same notations
as in [17], we define the optimal trajectory vector i, τ∗,i as

τ∗,i =
[
x∗,i
0

T
. . . x∗,i

T

T
u∗,i
0

T
. . . u∗,i

T−1

T
]T

. (31)

Here, τ∗,i is a vector of size p = (T+1)n+Td. The problem
is now reduced to solving

min
θ

Mp∑
k=0

∥rk(θ)∥22, (32)

where rk(θ) = Γ∗
k − Γk, τ∗,ik (respectively τ ik(θ)) is the k-th

component of vector τ∗,i(respectively τ i), and Γ∗
k(respectively

Γk) contains stacked vectors τ∗,i (respectively τ i). Problem
(32) is a non-linear least-squares problem that can be solved
using methods such as Gauss-Newton (GN) [31] or Levenberg-
Marquardt (LM) [32]. When a step in a solution of an
optimal control problem boils down to least squares, stochastic
gradient descent should not be used for this step (as expected
from the optimization literature), which partly explains what
happens in [17], where the identification experiments fail in
half the trials when using gradient descent to optimize Eq.
(30).

Table II shows results averaged on 100 experiments. An
experiment is considered successful if the identification
error ∥θ − θ∗∥∞ reaches the threshold 5.10−6 in less
than 50 iterations of the LM algorithm or 2000 epochs
of RMSProp [33]. We see that the identification succeeds
85% of the time when using a least-squares method, while
it only succeeds 20% of the time when using RMSProp,
which demonstrates the ineffectiveness of stochastic gradient
methods in this setting. Note that for the experiments using
RMSProp, we have selected the hyperparameters (learning
rate and batch size), which achieved the lowest errors. It
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Fig. 1. Identification error on identifying the matrices A and B with
Q = 10−4In. Pairs of curves with the same colors are identification
experiments on the same problem parameters solved using different solvers:
diff-mpc in dashed lines and ours in solid lines. The same convention is
used in all figures.

Fig. 2. Optimization loss on identifying the matrices A and B with
Q = 10−4In.

should be noted, however, that implementing Levenberg-
Marquardt-like methods requires computing the full Jacobian
matrix of the residual function r (instead of just Jacobian-
vector products as in SGD methods), which is a function that
scales linearly with T , n and d.

In the following experiments, the identification problem
(32) is solved using the LM method for both our solver and
the solver from [17]. When using our solver, the proximal
parameters ρ and µ from equation (12) are set to 10−8.
Problem (11) still converges to the same solution with higher
values of these parameters, provided more iterations are run.
Strategies where the parameters ρ and µ are updated over
the iterations like the bound-constrained lagrangian (BCL)
method from [34] may be adopted to enhance convergence
speed when it is a limitation, but it has not been the case in
our experiments.

Figures 1 and 2 show the system identification error and
optimization loss as functions of the number of iterations
using both the solver from [17], which we refer to as diff-mpc,
and our solver on 4 trials (100 experiments were run, each
with a different set of parameters to identify, but we only
show 4 randomly selected ones here). In this experiment, the
parameters to identify are the dynamics and control matrices
A and B. The control cost matrix R is set to the identity

Fig. 3. Identification error. Identification of Q.

Fig. 4. Optimization loss. Identification of Q.

matrix, and the state cost matrix Q is set to 10−4In. In this
experiment, both solvers converge, but our regularized solver
converges in half as many iterations on all the trials.
Figures 3 and 4 show the system identification error and
optimization loss as functions of the number of iterations
using both solvers again, on experiments where the parameter
to identify is the matrix Q (the identity matrix). The approach
of [17] fails on all trials, demonstrating the importance of
regularizing the LQR solver to avoid performing optimization
steps with wrong gradients.

C. System identification: nonlinear dynamics

We demonstrate the effectiveness of our approach in
identifying parameters of a nonlinear system from observed
state and control trajectories. We consider a pendulum
parameterized by its mass and its pole length and a cartpole
parameterized by its pole mass, its cart mass, and its
pole length. We seek to recover these parameters for both
systems. The state of the pendulum at time t is defined
by st = [cos θt, sin θt, θ̇t], and the state of the cartpole by
st = [xt, ẋt, cos θt, sin θt, θ̇t] (translation over the x axis). We
have conducted experiments with pendulums and cartpoles
with 10 various sets of parameters and report the losses for 4
of them for each system (see table III). The state cost matrix
is set to Q = 10−3In for the pendulum and to Q = 10−1In
for the cartpole. The control cost matrix is set to R = 10−1Id
for both systems. A linear cost term is added to bring the
pole upward (for both systems) and the cart centered at the
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origin (for the cartpole).
Here, the problem is also a nonlinear least-squares one,

and it can be formulated as in Eq. (32), with θ = {m, l} for
the pendulum, and θ = {m,mc, l} for the cartpole. We solve
it using the LM method for both solvers and report the results
in Figures 5, 6, 7 and 8. Here again, the proximal parameters
ρ and µ are set to 10−8 when using our solver, similar to
the experiments in Sec. V-A. We see that, unlike diff-mpc,
our method converges to the ground truth parameters in all
experiments. When both methods converge, ours converges
in fewer iterations to a better solution.

Fig. 5. Pendulum. Identification error. Identification of m and l.

Fig. 6. Pendulum. Optimization loss. Identification of m and l.

Fig. 7. Cartpole. Identification error. Identification of m, mc and l.

TABLE III
GROUND TRUTH PARAMETERS (m, l) AND (mc,m, l) FOR THE

IDENTIFICATION EXPERIMENTS RESPECTIVELY ON THE PENDULUM AND

CARTPOLE. MASSES ARE IN kg AND LENGTHS ARE IN m. THE COLORS

CORRESPOND TO THE ONES IN THE ERROR AND LOSS FIGURES.

Red – Green – Blue – Grey –
Pendulum (1, 1) (2, 0.5) (1.5, 1) (0.5, 1)
Cartpole (1, 0.1, 0.5) (1, 0.2, 0.5) (1, 0.5, 0.5) (2, 1, 1)

Fig. 8. Cartpole. Optimization loss. Identification of m, mc and l.

VI. CONCLUSION

We have introduced a regularized differentiable equality-
constrained LQR solver with a generic formulation that
handles path constraints. When used in learning frameworks,
our solver is robust to ill-conditioned problems and performs
better on system identification experiments than the unregular-
ized approach introduced in [17]. Since our formulation of the
LQR problem is generic, it can also be applied to differentiate
accurately through more general optimal control problems.
Future work should focus on experiments on real robotic
systems to demonstrate the effectiveness and robustness of
this approach on real-world robotic tasks.
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