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Abstract— A novel approach for robust controller synthesis,
which models uncertainty as an elliptical set, is proposed in
the paper. Given a set of frequency response functions of linear
time-invariant (LTI) multiple-input multiple-output (MIMO)
systems, the approach determines the ‘best’ linear nominal
model and the corresponding elliptical uncertainty set, which
is consistent with the data. Using a novel split representation,
the uncertainty set is represented as an equivalent integral
quadratic constraint (IQC). Finally, this IQC is integrated into
a data-driven frequency-domain controller synthesis method
using convex optimisation. The proposed method is used to
design a controller, which is robust against mechanical un-
certainties for a hybrid micro-disturbance isolation platform
for space applications. The experimental results show that the
proposed method provides a less conservative uncertainty set
and improves attenuation performance compared to classical
methods that use disk uncertainty.

I. INTRODUCTION

Novel high-precision optical instruments designed for
Earth observation missions demand an exceptionally high
pointing accuracy. These line-of-sight stability requirements
constrain the admissible level of mechanical vibration that
can occur onboard a spacecraft. Micro-disturbances are
caused by primary satellite systems such as reaction wheels,
thrusters, cryocoolers, or solar array drive mechanisms, and
can potentially lead to a significant performance degradation
of the sensitive payloads.

A hybrid active-passive micro-disturbance mitigation sys-
tem was developed by Airbus in collaboration with the Eu-
ropean Space Agency (ESA) [1]. The platform was designed
to isolate the spacecraft from perturbations of a reaction
wheel. Based on this system, a methodology for uncertainty
modelling, robust control design, and the analysis of such
systems considering worst-case scenarios for typical satellite
observation missions were developed [2]. The study presents
a new disturbance model for the multi-harmonic perturbation
spectrum generated by rotating reaction wheels. This model
can be used for both controller synthesis and worst-case
analysis offering new possibilities for simulating the image
distortions induced by such disturbances.

Following the promising results achieved by [2], a hybrid
active-passive micro-disturbance isolation platform, aimed
at mitigating micro-disturbances and isolating the sensitive
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Fig. 1: Hybrid micro-disturbance isolation platform devel-
oped at CSEM, Switzerland

optical payload from external disturbances, was developed
at CSEM. The objective is to study in a more general
context the stabilisation of sensitive active payloads from
multiple unknown external perturbations. The modular plat-
form consists of an adjustable number of passive dampers,
a set of proof mass actuators (PMA) creating a 6 degree of
freedom (DoF) force tensor, and a payload interface allowing
to accommodate various types of sensitive instruments. The
platform utilises the accelerometer measurements in close
proximity to the payload to actively reject disturbances from
the satellite body. An image of the system is shown in Figure
1. All experimental tests with the platform are carried out
at the Microvibration Characterisation Facility at CSEM in
Neuchâtel, Switzerland [3].

Due to the modular nature of the setup and the payload,
a parametric plant model is difficult to identify. Further-
more, the passive stage of the setup is highly sensitive to
mechanical uncertainties, such as the applied screw torque
and other system properties. Hence a robust data-driven
control design technique, that can directly minimise a con-
trol criterion based on the measured input-output data, is
particularly advantageous. A common requirement for such
systems is rejecting perturbations within specific frequency
ranges. Hence, data-driven methods that utilise frequency-
domain data and convex optimisation for computing robust
controllers are pertinent here.

Use of frequency-domain data for fixed-structure H∞
controller synthesis generally leads to a non-convex optimi-
sation, which can be solved using non-smooth optimisation
techniques as proposed in [4]. Several solutions using a
convex approximation have also been proposed in the lit-
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erature. For instance, in [5] and [6], computation of SISO-
PID controllers is represented as a convex optimisation using
constraint linearisation. In [7], MIMO-PID controllers are
computed using a convex-concave optimisation by linearising
the quadratic matrix inequalities. Using similar linearisa-
tion, linearly parameterised MIMO controllers can also be
designed [8]. In [9], a frequency-based data-driven control
design methodology with H∞ control objective based on
coprime factorisation of the controller is proposed, and
extended to systems with sector nonlinearity in [10]. In
[11], this method is employed for linear parameter varying
controller design and used for the control moment gyro-
scopes (CMG) in [12]. Finally, a fixed-structure data-driven
controller design method for MIMO systems with mixed
H2/H∞ sensitivity performance is proposed in [13].

The aim of the discussed robust control design methods
is to optimise the performance of a nominal model, while
also being robust to the uncertainties in the model. This ro-
bustness introduces conservatism in the controller. Therefore,
it is crucial to identify the ‘best’ nominal model and the
smallest uncertainty set. Classically, one of the measurements
or their average is chosen as the nominal system model
and the smallest disk that covers all realisations as the
uncertainty set [14]. Hindi et al. [15] proposed a technique
for the simultaneous identification of the nominal model and
the disk uncertainty set, which reduces the radius of the
uncertainty set compared to classical methods. More recently,
simultaneous identification of the nominal model and the
elliptical uncertainty set was presented for SISO systems in
[16] and integrated with the controller design method of [13]
using the IQC framework of [17].

This paper provides a method for the simultaneous iden-
tification of the best linear nominal model and the optimal
elliptical uncertainty set of MIMO systems with elementwise
uncertainty. First, the notations and a brief introduction
to IQC and data-driven controller design using frequency-
domain data are given (Section II). Then, the elliptical
uncertainty set is represented in the form of a non-parametric
IQC, which is then integrated into the data-driven robust
controller design reducing conservatism compared to the
existing methods (Section III). Finally, the proposed method
is used to design a controller for the hybrid micro-disturbance
isolation platform which is robust with respect to mechanical
uncertainties (Section IV). The contribution of this paper
covers that of [16] for SISO systems as a special case.

II. PRELIMINARIES

Notations

The set of real rational stable transfer functions with
bounded infinity norm is denoted by RH∞. M ≻ (⪰)N
indicates that M −N is a positive (semi-) definite matrix
and M ≺ (⪯)N indicates M −N is negative (semi-) defi-
nite. The zero and identity matrices of appropriate size are
denoted 0 and I respectively. The transpose of a matrix
M is denoted by MT and its conjugate transpose by M∗.
Right inverse of M is denoted as MR = M∗(MM∗)−1,
and its left inverse is denoted as ML := (M∗M)−1M∗.

H

Δ

w

v

Fig. 2: Basic feedback configuration

Kronecker product of two matrices M and N is denoted
using M ⊗ N . diag(M1, · · · ,Mn) is a block diagonal
matrix with M1, · · · ,Mn lying along the diagonal. For
continuous-time systems Ω := R and for discrete-time sys-
tems Ω := [−π/Ts, π/Ts), where Ts is the sampling time.
G(jω) will be used to denote the frequency response of G
in both cases.

A decomposition function C : Cm×n 7→ R2m×n and its
inverse C−1 are defined as

C(x) ≜

[
Re{x}
Im{x}

]
and C−1(y) ≜

[
I jI

]
y.

A. Integral Quadratic Constraint

Two signals v and w are said to satisfy the IQC defined
by a multiplier Π, if∫

Ω

[
V (jω)
W (jω)

]∗
Π(jω)

[
V (jω)
W (jω)

]
dω ≥ 0 (1)

where V (jω) and W (jω) are the Fourier transform of v
and w respectively. From [17, Theorem 1], the feedback
connection between H , a stable LTI system with bounded
infinity norm, and a bounded causal operator Δ (see Fig. 2)
is stable if,

1) Interconnection of H and τΔ is well-posed for all τ ∈
[0, 1];

2) τΔ satisfies the IQC defined by Π for all τ ∈ [0, 1];
3) ∃ ϵ > 0 such that[

H(jω)
I

]∗
Π(jω)

[
H(jω)

I

]
⪯ −ϵI ∀ω ∈ Ω (2)

Remark 1: If the upper left corner of Π is positive semi-
definite and the lower right corner is negative semi-definite,
then using [17, Remark 2], τΔ satisfies the IQC defined by
Π for all τ ∈ [0, 1] if and only if Δ satisfies the IQC.

Remark 2: If Δ is a linear operator such that V (jω) =
Δ(jω)U(jω), then Δ satisfies the IQC defined by Π, if[

I
Δ(jω)

]∗
Π(jω)

[
I

Δ(jω)

]
⪰ 0 ∀ω ∈ Ω (3)

B. Data-driven frequency-domain controller synthesis

To design a controller for a given control performance
criterion, the data-driven approach presented in [18] can
be used. A generalised LTI system, mapping exogenous
disturbances d ∈ Rnd and control inputs u ∈ Rnu to
performance channels z ∈ Rnz and measurements y ∈ Rny

is given as follows:

z = G11d+G12u

y = G21d+G22u
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It is assumed that only the frequency response function (FRF)
of the generalised system

G(jω) =

[
G11(jω) G12(jω)
G21(jω) G22(jω)

]
(4)

is available, where Gij(jω) are FRFs of appropriate size. As
an example, the frequency response of the discrete-time plant
G22 can be estimated using the Fourier analysis technique
from nu sets of finite sampled input/output data, as [19]:

G22(jω) =

[
N−1∑
k=0

Y(k)e−jωTsk

][
N−1∑
k=0

U(k)e−jωTsk

]−1

(5)

where N is the number of data points for each experiment
and Ts is the sampling period. Each column of U(k) and
Y(k) represents, respectively, the inputs and outputs at
the time sample k from one experiment, and nu different
experiments are needed to extract G22(jω) from the data.
It is assumed that the input signal is persistently exciting.
During the synthesis process, consideration can be given
to the errors arising from both truncation and noise in the
estimated frequency response of the plant.

The objective of the synthesis is to design a fixed-structure
feedback controller K which regulates the effect of the
exogenous disturbances w onto the performance channels z.
The closed-loop system from w to z is given as,

Tzw = G11 +G12K(I −G22K)−1G21. (6)

Under the assumption that the closed-loop system is stable,
the norm of Tzw can be expressed using only its FRF:

∥Tzw∥2∞ = sup
ω∈Ω

σ (Tzw(jω)
∗Tzw(jω)) (7)

where σ(·) is the maximum singular value and Ω the fre-
quency spectrum. So, the minimisation of the norm can be
represented as an optimisation problem,

min
K, γ

γ (8)

s.t. T ∗
zw(jω)Tzw(jω) ⪯ γI ∀ω ∈ Ω

In this paper, only the summary of the case when the left
inverse of G12 such that GL

12G12 = I exists ∀ω ∈ Ω is given.
The controller K can be structured as K = Y −1X , where X
and Y are both RH∞ matrix functions that are affine with
respect to the controller parameters. Denoting

Φ = (Y −XG22)G
L
12,

the transfer function Tzw can be rewritten as

Tzw = G11 +G12 (I −KG22)
−1

KG21

= G11 +ΦRXG21

= (ΦRΦ+Ψ)G11 +ΦRXG21

= ΦR (ΦG11 +XG21) + ΨG11

where,
Ψ = I − ΦRΦ = I −G12G

L
12,

So, the constraint can then be reformulated as,

T ∗
zwTzw = (ΦG11 +XG21)

∗
(ΦΦ∗)

−1
(ΦG11 +XG21)

+(ΨG11)
∗(ΨG11) ≺ γI (9)

using the fact that Ψ∗ΦR = ΨΦR = ΦR − ΦRΦΦR = 0 and
(ΦΦ∗)

R
= (ΦΦ∗)

−1. Using the Schur complement lemma
on (9), [

γI − Λ (ΦG11 +XG21)
∗

(ΦG11 +XG21) ΦΦ∗

]
≻ 0 (10)

where Λ = (ΨG11)
∗(ΨG11). A convex lower-bound on the

quadratic term ΦΦ∗ can be obtained,

ΦΦ∗ ⪰ ΦΦ∗
c +ΦcΦ

∗ − ΦcΦ
∗
c (11)

where Φc = (Yc −XcG22)G
L
12, and Kc = Y −1

c Xc is an
initial controller, leading to:

min
X,Y,Γ

γ (12)[
γI − Λ (ΦG11 +XG21)

∗

⋆ ΦΦ∗
c +ΦcΦ

∗ − ΦcΦ
∗
c

]
(jω) ≻ 0 ∀ω ∈ Ω

When the initial controller Kc is known to be stabilising,
it can be shown using [18] that the controller K is also
stabilising. For a stable plant G22, a controller with a
sufficiently small gain can in general stabilise the closed-
loop system. In the case of an unstable plant, a stabilising
controller must be available already for system identification.
To solve the optimisation problem, a grid-based approach can
be employed, where the controller K is used as the initial
stabilising control for the next optimisation. This sequence of
convex optimisation problems will converge towards a local
optimal solution of the original problem due to the fact that
the initial controller already satisfies the constraint and any
optimisation can only improve the objective.

In cases where the number of models is small, the
approach can handle multimodel uncertainty by adding
constraints for each model with Φi =

(
Y −XGi

22

)
GL

12.
However, when the set of models is either continuous or has
a large number of models, the optimisation problem may
become intractable.

C. Basic problem statement

The focus of this paper is on computing a frequency-
domain uncertainty model for a MIMO system, which is
consistent with data and not invalidated as defined in [20].
Furthermore, the paper also explores the application of this
uncertainty model for robust data-driven control design of
hybrid active-passive micro-disturbance mitigation systems.

For a MIMO plant with m input channels and n output
channels, its frequency response function (FRF) matrix is
the matrix where {k, l}th element is the FRF from the input
channel l to the output channel k. The FRF for each mea-
surement i is denoted using P i(jω). These measurements
could be several independent measurements of the plant P ,
either at the same or different operating points or of multiple
plants. The objective is to find a nominal FRF P̂ with an
uncertainty set such that it is consistent with the data.
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In this paper, the aim is to minimise the impact of
uncertainty on the controller performance with a ‘tight’ un-
certainty set. The set is defined as the elementwise elliptical
uncertainty around the nominal FRF of each input-output pair
and ‘tightness’ is defined as the minimisation of the area of
uncertainty at all frequencies.

For robust data-driven control design using the obtained
FRF, a robustness constraint for stability has to be found.
Since traditional approaches only allow disk uncertainties
for each FRF, an IQC-based approach based on [16] is
presented for elementwise elliptical uncertainties. Finally,
this constraint would be integrated into the approach in
Section II-B to find a robust controller while minimising a
performance objective.

III. MAIN RESULTS

The first step of the approach involves identifying the
‘best’ linear nominal model P̂ and the corresponding elemen-
twise additive elliptical uncertainty sets that are consistent
with the available data. Next, this uncertainty set is trans-
formed into an equivalent IQC formulation, which is then
converted into a robust stability constraint in the frequency
domain. Finally, the resulting constraint is added to the data-
driven approach presented in Section II-B.

A. Optimal Additive Uncertainty Set

An optimal non-parametric additive uncertainty set rep-
resented as elementwise elliptical uncertainty is computed
using tools from convex optimisation. The systems under
consideration are linear time-invariant (LTI) plants repre-
sented using FRF {P i(jω)} which can be obtained from
a series of m experiments using the Fourier analysis on the
sampled input-output data as presented in [19].

Definition 1: A frequency response function (FRF) matrix
with the elementwise additive elliptical uncertainty set can be
represented as M(P̂, A)(jω) ≜ P̂ (jω)+∆, where P̂ (jω) is
the nominal FRF model and ∆ is the additive uncertainty
set characterised by a matrix A. The element ∆kl of ∆
represents the additive uncertainty of P̂kl(jω) from the
input channel l to the output channel k and belongs to the
following elliptical set:

∥Akl(ω)C(∆kl)∥2 ≤ 1 (13)

where, Akl(ω) ∈ R2×2 represents the ellipse parameters
and C(∆kl) ∈ R2×1. The total area of the uncertainty of
M(P̂, A)(jω) is given as

∑
k

∑
l π det

{
A−1

kl (ω)
}
.

It can be easily shown that a measurement P i(jω) belongs
to M(P̂, A)(jω) iff∥∥∥Akl(ω)C(P

i
kl(jω)− P̂kl(jω))

∥∥∥
2
≤ 1 ∀k ∀l. (14)

So, given the dataset {P i(jω)}, a model M(P̂, A)(jω)
needs to be found such that

P i(jω) ∈ M(P̂, A)(jω) ∀i ∀ω

and M(P̂, A)(jω) should have a minimal area of uncertainty
at all frequencies for all input-output pairs. This can be
defined as an optimisation problem at each frequency,

min
P̂, A

areaM(P̂, A)(jω) (15)

s.t.
∥∥∥Akl(ω)C(P

i
kl(jω)− P̂kl(jω))

∥∥∥
2
≤ 1 ∀i ∀k ∀l

The objective function can be replaced by a convex
function for each input-output pair such that the optimisation
remains equivalent,

min
P̂, A

areaM(P̂, A)(jω) ⇔ min
P̂kl, Akl

− log det{Akl(ω)}

To convert the constraint into a convex constraint, a change
of variable bkl(ω) = Akl(ω)C(P̂kl(jω)) can be performed
such that∥∥Akl(ω)C(P

i
kl(jω))− bkl(ω)

∥∥
2
≤ 1 ∀i.

This leads to a convex optimisation problem with a log-
det objective and a conic constraint for each measurement
in the dataset at all frequencies and for each input-output
pair. In practical implementation, since the optimisation for
controller synthesis will be performed at a finite set of
frequency points Ω the following optimisation needs to be
solved at these finite number of points:

min
Akl,bkl

− log det{Akl(ωn)} (16)

s.t.
∥∥Akl(ωn)C

(
P i
kl(jωn)

)
− bkl(ωn)

∥∥
2
≤ 1 ∀i

If we denote the optimal solutions of the above convex
optimisation problem as A◦

kl(ωn) and b◦kl(ωn), the best FRF
P̂kl(jωn) for the elliptical uncertainty will be:

P̂kl(jωn) = C−1
(
[A◦

kl(ωn)]
−1b◦kl(ωn)

)
.

Note that, in general, the best FRF might not be any of
the measured FRF of the system or their average.

Remark 3: For the matrix A◦
kl(ω) to be finite, the area

of the elliptical uncertainty should be non-zero. So, there
should exist at least three non-colinear points. The presence
of noise, in practical scenarios, makes it improbable for this
assumption to be violated.

B. Uncertainty set as IQC

In this section, the IQC multiplier Π is found such that
the uncertainty of M(P̂, A◦) satisfies the IQC defined by Π.

Consider a transformation matrix

J =

[
1 0
0 j

]
with J∗J = I.

From the definition of M(P̂, A◦), ∆kl satisfies

∥A◦
kl(ω)C(∆kl)∥2 ≤ 1 ∀ω

⇔
∥∥A◦

kl(ω)J
∗C̄(∆kl)

∥∥
2
≤ 1 ∀ω

where, C̄(∆kl) = JC(∆kl). This can be written as,[
1

C̄(∆kl)

]T [
1 0
0 −Ā∗

kl(jω)Ākl(jω)

] [
1

C̄(∆kl)

]
≥ 0 ∀ω
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Fig. 3: Feedback system with additive uncertainty block

where Ākl(jω) = A◦
kl(ω)J

∗. So, the uncertainty can be
shown to satisfy the IQC defined by

Πkl(jω) =

[
1 0
0 −Ā∗

kl(jω)Ākl(jω)

]
. (17)

Note that Πkl(jω) is a dynamic multiplier for the elliptical
uncertainty set, in contrast to the frequency-dependent static
gain for the disk uncertainty set. Since (17) satisfies the
condition of Remark 1, τ C̄(∆kl) also satisfies the IQC
defined by Πkl for all τ ∈ [0, 1].

For robust controller synthesis, a single IQC for the full
uncertainty block ∆ is needed. By abuse of notation, denote

C̄(∆) =

[
Re{∆}
j Im{∆}

]
.

It is well-known that operators with diagonal structure,
in which each sub-operator meets the IQC defined by a
certain multiplier, also meet the IQC defined by a structured
multiplier [21]. So, the representation C̄(∆) = LDR where,
D = diag(C̄(∆11), C̄(∆12), · · · , C̄(∆nynu

)) is desired. It can
be verified that

L =

[
Iny ⊗ 11×nu ⊗

[
1 0

]
Iny ⊗ 11×nu ⊗

[
0 1

]] , and R = 1ny×1 ⊗ Inu

satisfies the desired representation. Then, it can be shown
that D satisfies the IQC defined by

Π(jω) =

[
I 0
0 −Ā∗Ā

]
where, Ā = diag(Ā11, . . . , Ākl, . . . , Ānynu

).

C. Design for Robust Stability

A robust controller K needs to be synthesised for the
system M(P̂, A◦), which is graphically represented in Fig. 3.
Using the data-driven approach described in Section II-B, a
stabilising controller for P̂ can be designed while minimising
the performance costs. To make the controller robust, an
additional robustness constraint is added at all frequency
points. For the uncertainty models described by M(P̂, A◦),
the uncertainty block can be split and structured as shown
in Fig. 4 where U is the closed loop transfer function from
the output to the input of the uncertainty block. Using the
controller parametrization K = Y −1X ,

U = (I +KP̂ )−1K = ϕ−1X

where, Φ = Y +XP̂ .
The transfer function seen by D (see Fig. 4) is

H = R(11×2 ⊗−U)L = −RΦ−1X̄L

with X̄ = 11×2 ⊗ X . Since U is stable by design (refer
Section II-B), H is also stable. Then, using [17], if[

H(jω)
I

]∗
Π

[
H(jω)

I

]
≺ 0 ∀ω ∈ Ω (18)

then the feedback connection between system H and D is
stable. Using the fact that R∗R = nyInu and

H∗H = L∗X̄∗Φ−∗R∗RΦ−1X̄L

= nyL
∗X̄∗ (ΦΦ∗)

−1
X̄L,

the inequality (18) can be written as,

nyL
∗X̄∗ (ΦΦ∗)

−1
X̄L− Ā∗Ā ≺ 0.

Using the Schur complement lemma, an equivalent matrix
inequality can be found,[

ΦΦ∗ X̄L(
X̄L

)∗ 1
ny

Ā∗Ā

]
(jω) ≻ 0 ∀ω ∈ Ω. (19)

A convex lower bound on the quadratic term ΦΦ∗ is:

ΦΦ∗ ⪰ ΦΦ∗
c +ΦcΦ

∗ − ΦcΦ
∗
c (20)

where Φc = Yc + XcP , and Kc = Y −1
c Xc is the initial

controller. This gives a sufficient condition for robust stability
as a linear matrix inequality (LMI),[

ΦΦ∗
c +ΦcΦ

∗ − ΦcΦ
∗
c X̄L(

X̄L
)∗ 1

ny
Ā∗Ā

]
(jω) ≻ 0 ∀ω ∈ Ω

(21)
which can be added as an additional constraint in the data-
driven approach presented in Section II-B.

IV. EXPERIMENTAL RESULTS

A robust controller using the presented approach was
designed for the hybrid active-passive micro-disturbance
isolation platform presented in Section I. Due to the modular
design, the FRF of the passive system stage can significantly
vary depending on the applied screw torque and other
mechanical system properties. The here presented method
is used to design a controller which is robust with respect
to variations in the torque applied to the screws holding
the upper plate. A controller is designed for a configura-
tion where the actuators are placed along the main axes
having two parallel actuators per axis. In addition, three
accelerometers (one along each axis) are mounted for a local
measurement of the disturbances at the payload interface.
The parallel nature of the actuator placement together with
the three accelerometers leads to a MIMO system with three
inputs and three outputs. A multimodel FRF is acquired
from five different experiments with different screw torques
between 6Nm and 8Nm. The resulting FRFs are presented
in Fig. 5. The screw torque directly influences the rigidity of
the system, which can be seen by the shift in the frequency
of the first mode in the interval from 45Hz to 60Hz.

The computed elliptical uncertainty set is compared to the
disk uncertainty set from [15]. From Fig. 6, it can be seen
that a significant reduction of the uncertainty area can be
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Fig. 4: Feedback system with uncertainty block split into its real and imaginary components
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Fig. 5: Multimodel FRF from uncertain screw torque
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Fig. 6: Area of uncertainty model using the elliptical domains
computed with the proposed method compared to circular
uncertainty domains

achieved when using the elliptical uncertainty set compared
to the disk uncertainty set. For the elliptical uncertainty set,
the uncertainty area will always be smaller than the disk
uncertainty set and in the worst-case scenario, it would be
equal. A reduction factor of approximately 2.5 is observed
around the frequency of the first mode.

A robust controller using the proposed method is designed
for both elliptical and disk uncertainty sets. In terms of
performance, the objective is the rejection of a sinusoidal
perturbation at a frequency of 80Hz. A performance objec-

tive can be added to the optimisation problem by using the
following generalized system:

¯
G(jω) =

[
W −WP̂

I −P̂

]
(jω) (22)

A performance weighting filter W is accordingly chosen as
a peak filter with a centre frequency of 80Hz. The inverse
of the weighting filter along with the resulting closed-loop
sensitivity functions are presented in Fig. 7. The complete
optimisation problem to be solved is given by:

min
X,Y,Γ

γ (23)[
γI − Λ (

¯
Φ
¯
G11 +X

¯
G21)

∗

⋆
¯
Φ
¯
Φ∗

c + ¯
Φc

¯
Φ∗ −

¯
Φc

¯
Φ∗

c

]
(jω) ≻ 0 ∀ω ∈ Ω[

ΦΦ∗
c +ΦcΦ

∗ − ΦcΦ
∗
c X̄L(

X̄L
)∗ 1

ny
Ā∗Ā

]
(jω) ≻ 0 ∀ω ∈ Ω,

where
¯
Φ = (Y −X

¯
G22)

¯
GL

12. From Fig. 7, one can observe
that the performance objective is not attained for the disk
uncertainty model because of the additional conservatism.
However, the elliptical uncertainty model can ensure the
desired robustness while achieving the desired performance.
The computed infinity norms are 0.826 and 1.146 for the
elliptical uncertainty model and disk uncertainty model re-
spectively. When using a similar weighting filter W with
a more profound notch depth, it can occur that the prob-
lem becomes infeasible using Hindi’s method whereas the
presented method leads to a feasible solution even if the
achieved infinity norm might be larger than 1.

The designed controllers were implemented and tested on
the platform for a sinusoidal perturbation at a frequency
of 80Hz injected using an external shaker along the x-
axis. The achieved performance of the two controllers is
presented in Fig. 8. An attenuation of 15.00 dB along the
perturbed axis can be achieved compared to 10.64 dB for
the controller designed with Hindi’s method. The resulting
attenuation performances are summarised in Table I.

V. CONCLUSION

Given a set of FRFs of LTI-MIMO systems, the “best”
linear nominal model and the corresponding elementwise
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Fig. 7: Closed-loop sensitivity function comparison and
performance weighting filter W−1

TABLE I: Resulting attenuation performance for the two
controllers along the different axes

Attenuation Performance [dB]

X-axis Y-axis Z-axis

Proposed Method 15.00 5.60 11.93
Hindi et al. (2002) 10.64 1.74 8.39

Improvement 4.36 3.86 3.54

elliptical uncertainty set, which is consistent with the data,
is found using convex optimisation. Next, the elementwise
uncertainty is represented as structured diagonal uncertainty
and an equivalent IQC is obtained. The resulting IQC is
integrated into a data-driven frequency-domain controller
synthesis method by converting it into a set of LMI con-
straints for robust stability. A robust controller was designed
for a hybrid micro-disturbance isolation platform using the
proposed method. The obtained elliptical uncertainty model
showed a ”tighter” uncertainty set compared to the disk
uncertainty set. The experimental results demonstrated that
using the elliptical uncertainty set, the area of uncertainty
could be reduced up to 2.5 times and achieved an improve-
ment of up to 4.36 dB in attenuation performance compared
to the controller synthesised for the disk uncertainty set.
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Fig. 8: Attenuation performance for the two controllers by
comparison of open-loop (from 0 s to 2 s) with the closed-
loop system (after 2 s)
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