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Abstract— We derive time and energy-optimal control policies
for a Connected Autonomous Vehicle (CAV) to complete lane
change maneuvers in mixed traffic. The interaction between
CAVs and Human-Driven Vehicles (HDVs) requires the best
possible response from a CAV to actions by its neighboring
HDVs. This interaction is formulated using a bilevel optimization
setting with an appropriate behavioral model for an HDV. An
iterated best response (IBR) method is then used to determine a
Nash equilibrium. However, we also show that CAV cooperation
can eliminate or greatly reduce the interaction between CAVs
and HDVs. We derive a simple threshold-based criterion to
select an optimal policy for the lane-changing CAV to merge
ahead of a cooperating CAV in the target lane. In this case, the
trajectory of the lane-changing CAV is independent of HDV
behavior. Simulation results are included to demonstrate the
effectiveness of our CAV controllers in terms of minimizing cost
and disruption to traffic flow while guaranteeing safety when
uncontrollable HDVs are present.

I. INTRODUCTION

The emergence of Connected Autonomous Vehicles (CAVs)
has the potential to significantly transform transportation
networks and enhance their performance. CAVs can assist
drivers in making decisions that reduce travel times, energy
consumption, air pollution, traffic congestion, and accidents.
In the context of highway driving, this potential is realized in
automating lane-changing maneuvers through proper trajec-
tory planning [1] or by accelerating maneuver evaluation using
car-following models [2]. However, executing a lane change
maneuver often requires cooperation from other vehicles,
especially in heavy traffic conditions [3]. The cooperation
among CAVs offers opportunities for safely [4] and optimally
[5] performing automated lane change maneuvers.

Since achieving 100% CAV penetration in the near future
is unlikely, a crucial question arises: how can we benefit from
the presence of at least some CAVs in mixed traffic, where
CAVs must interact with human-driven vehicles (HDV)? This
question has become the focal point of recent research.

For instance, researchers have developed adaptive cruise
controllers for mixed traffic environments, employing platoon
formulations for CAVs [6]. Car-following models have been
implemented to provide a deterministic quantification of HDV
states [7]. To accurately model HDV behavior, [8] introduced
the concept of social value orientation for autonomous driving,
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quantifying an agent’s degree of “prosocialness” or individu-
alism and applying a game-theoretic formulation to predict
human behavior. Vehicle interactions are considered in [9],
[10], using bilevel optimization to assist autonomous vehicles
in choosing the best possible response to an opponent’s action.
Similarly, learning-based techniques are applied in [11], [12].

In this paper, we consider the joint time and energy-
optimal automated lane change problem in the presence of
mixed traffic, while minimizing the overall traffic throughput
disruption. Fig. 1 illustrates that vehicle cooperation cannot
be guaranteed when the red vehicle is an HDV.

The primary contribution of this paper is the derivation
of optimal lane-changing trajectories for vehicle C in Fig.
1 along the longitudinal traffic direction in a mixed traffic
setting. Here, the two CAVs in the figure must interact with
the HDV. We limit our analysis to these triplets since they
allow two CAVs to cooperate while also interacting with
the HDV. For C to merge ahead of the HDV safely, it must
account for the driver’s behavior, as the HDV is otherwise
uncontrollable. Another option is for CAV C to merge ahead
of the cooperating CAV 1, effectively constraining the HDV
to “follow” CAV 1. we establish a game-theoretic framework
for the interactive decision-making process between the CAVs
and the HDV.

CAV C

CAV 1HDV

(1)
(2)

Fig. 1: The basic lane-changing maneuver process.

II. PROBLEM FORMULATION

The lane change maneuver is triggered by CAV C when
it detects an obstacle ahead or at a time determined by
the CAV. Our goal is to minimize maneuver duration and
energy consumption while minimizing disruptions to fast lane
traffic. Additionally, in the presence of HDVs, vehicle C must
consider HDV behavior to ensure safety, necessitating HDV
behavior estimation.

For each vehicle in Fig. 1, denoted by i = 1, C,H , their
dynamics are described as:

ẋi(t) = vi(t), v̇i(t) = ui(t) (1)

Here, xi(t) denotes the current longitudinal position
relative to a reference point, while vi(t) and ui(t) represent
the speed and controllable acceleration of vehicle i at time

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 5123



t, respectively. Actions for vehicles 1, C,H commence at
time t0, with xC(t0) marking CAV C’s initial position. The
maneuver concludes at time tf . Notably, we do not address
the lateral component of the lane change in this paper. Vehicle
C deals with lateral control, aiming to minimize time and
energy consumption, akin to [13]. Lateral motion can also
be managed using detailed models and auxiliary techniques
like model predictive control (MPC), as discussed in [14].

The control inputs and speeds for all vehicles are subject
to the following constraints:

uimin ≤ ui(t) ≤ uimax , vimin ≤ vi(t) ≤ vimax , ∀t ∈ [t0, tf ] (2)

Here, uimin and uimax represent the minimum and maximum
allowable accelerations for vehicle i. Similarly, vimin and
vimax

denote the minimum and maximum allowable speeds for
vehicle i, which are determined in accordance with established
traffic rules.

Safety Constraints: The minimum safe following distance
for each vehicle i, denoted as di(vi(t)), is determined based
on its speed relative to its preceding vehicle in the same lane:

di(vi(t)) = φvi(t) + δ (3)

Here, φ is the reaction time (typically set as φ = 1.8s [15]),
and δ is a constant. di(vi(t)) measures the distance from
the center of vehicle i to the center of its preceding vehicle.
All vehicles, including i = 1, C,H in Fig. 1, must adhere to
the following constraints to ensure safety during lane change
maneuvers.

x1(t)− xH(t) ≥ dH(vH(t)), ∀t ∈ [t0, tf ] (4a)
xC(tf )− xH(tf ) ≥ dH(vH(tf )), (4b)
x1(tf )− xC(tf ) ≥ dC(vC(tf )). (4c)

where (4a) is the rear-end safety constraint between CAV 1
and the HDV for all t ∈ [t0, tf ], whereas (4b),(4c) provide
safety guarantees that CAV C must satisfy only at tf .

Traffic Disruption: We adopt the disruption metric intro-
duced in [16] which includes both a position and a speed
disruption. Each disruption metric is measured relative to its
corresponding value under no maneuver. In particular, for
any vehicle i, the position disruption dix, speed disruption div ,
and total disruption Di(t) at time t are given by

dix(t) =

®
(xi(t)− x̄i(t))

2 , if xi(t) < x̄i(t)

0, otherwise.
(5a)

div(t) = (vi(t)− vd,i)
2 (5b)

Di(t) = γxd
i
x(t) + γvd

i
v(t) (5c)

where x̄i(t) = xi(t0)+vi(t0)(t−t0) is the position of i when
it maintains a constant speed vi(t0) (note that if xi(t) ≥ x̄i(t)
we do not consider this as a traffic disruption since i has
not decelerated). In the definition of div(t), vd,i ≤ vmax is
the desired speed of vehicle i which matches the fast lane
traffic flow. The weights γx, γv are selected to form a convex
combination emphasizing one or the other term to reflect the
total disruption generated by vehicle i.

In the next two sections, for CAV C to merge ahead of
HDV or CAV 1 is analyzed and the optimal trajectories are
determined. By comparing the overall costs resulting from

C

H 1

xH(t0)− xC(t0)

C

H 1

xH(t1) = xC(t1)

t0 t1

Fig. 2: The relative positions of 1, C, H at t0 and t1

each decision, we may then determine the optimal option.
We note that the latter maneuver can be executed without
any knowledge of the HDV behavior; the only possible effect
such a maneuver has on the HDV is causing some disruption
if the HDV has to decelerate to maintain a safe distance from
CAV 1.

III. CAV C MERGES AHEAD OF HDV

Let us assume that at the start of the maneuver t0, we have
xC(t0) < xH(t0) < x1(t0). Thus, we begin by separating
the maneuver into two phases, [t0, t1) and [t1, tf ], where t1
is defined as

t1 = min{t | t ≥ t0, xH(t) ≤ xC(t)} (6)

Thus, t1 denotes the first time instant that the HDV considers
any possible reaction to CAV C (if xC(t0) ≥ xH(t0), then
t1 = t0). In other words, there is no interaction between
CAV C and the HDV until t1. The relative position of the
triplet (1, C,H) over the two phases is shown in Fig. 2. In
Phase I, CAV C plans a trajectory that jointly minimizes
t1 and its energy consumption over [t0, t1). In Phase II,
CAV C estimates the behavior of the HDV and solves a
bilevel optimization problem leading to a solution based on
an iterated best response (IBR) algorithm.

A. Optimal Trajectory for CAV C in Phase I

Assuming that CAV 1 and the HDV travel with constant
speed in Phase I, CAV C can solve the following optimal
control problem termed OCP[t0,t1):

JI
1 = min

t1,uC(t)

∫ t1

t0

[αt +
αu

2
u2
C(t)]dt+ αv(vC(t1)− vd,C)

2

(7a)
s.t. (1), (2)

xC(t1) = xH(t1) (7b)
t0 ≤ t1 ≤ T (7c)

The cost (7a) combines the travel time t1 − t0 and an
energy term u2

C(t) along with a terminal cost on the speed
vC(t1), where α{u,t,v} are adjustable non-negative properly
normalized weights. Constraint (7b) follows from (6), and
(7c) gives a maximum allowable time T for C to perform a
lane change maneuver. If (7c) is violated, the maneuver is
aborted at t0.

However, OCP[t0,t1) may be infeasible if the initial states
are such that vH(t0) > vC(t0), xH(t0) > xC(t0) and the
allowable maneuver time T is small. To allow for such
possible infeasibility, we consider two additional policies
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that CAV C can adopt. The first is to simply speed up with
a constant acceleration uimax

so that

uC(t) =

{
uCmax , ∀t ∈ [t0,

vCmax−vC(t0)

uCmax
)

0, ∀t ∈ [
vCmax−vC(t0)

uCmax
, t1)

(8)

which allows for the possibility that the maximum speed
vCmax

is achieved before t1, which is obtained from xC(t1) =
xH(t0) + vH(t0)(t1 − t0). Using the same cost function as
(7a) with uC(t) in (8) we obtain the cost JI

2 for this constant
acceleration policy.

The second alternative policy exploits the cooperation
capabilities between CAVs, so that CAV 1 may decelerate
to induce a deceleration of the HDV due to the safety
requirement (4a). If the HDV decelerates, the time for C
to catch up with the HDV is reduced. The resulting OCP can
be formulated as

JI
3 = min

t1,u1(t),uC(t)

∫ t1

t0

[
αu

2
u2
1(t) +

αu

2
u2
C(t) + αt]dt

+ αv[(vC(t1)− vd,C)
2 + (v1(t1)− vd,1)

2] (9a)
s.t. (1), (2), (7c), x1(t1) = xC(t1) + dH(vH(t1)) (9b)

Different from (7a), the cost (9a) minimizes travel time,
energy, and speed disruption for both CAVs 1 and C. In
(7) and (8), the cost incurred by CAV 1 is 0 since it travels
with constant speed. (9b) ensures that the rear-end safety
constraint (4a) is activated by CAV 1’s action. Note that (7b)
is used in (9b) to eliminate any dependence on xH(t) and
we set dH(vH(t1)) = φvH(t0) + δ. Thus, JI

3 is obtained.
The solution to (7) and (9) can be analytically obtained

through Hamiltonian analysis similar to the OCPs formulated
and solved in [13]. Thus, we omit the details. In summary, the
non-cooperative OCP (7), constant acceleration formulation
(8), and cooperative OCP (9) provide three different control
policies for CAV C. The optimal policy is given as

JI = min{JI
1 , J

I
2 , J

I
3 }, (10)

Consequently, we can also determine the optimal time t∗1
marking the end of Phase I for CAV C.

B. Optimal Trajectory for CAV C in Phase II

The ideal optimal trajectory for CAV C in Phase II to merge
ahead of the HDV is obtained by an OCP we term OCP[t∗1 ,tf ]

,
since it shares the same cost function as OCP[t0,t1) in (7a)
except for the new time interval. It also shares the vehicle
dynamics (1), speed and control limits (2), and (7c) which
becomes t∗1 ≤ tf ≤ T . OCP[t∗1 ,tf ]

differs only in the terminal
state constraint which is now the rear-end safety requirement:

xC(tf ) ≥ xH(t∗1) + vH(t∗1)(tf − t∗1) + dH(vH(t∗1)) (11)

The solution is “ideal” because it assumes the HDV travels at
constant speed in (11), hence ignoring any reaction that the
human driver might have when detecting the lane changing
action of CAV C. In reality, for C to complete this maneuver
safely and optimally, C has to estimate the behavior of H and
adjust its own trajectory based on H’s response. Similarly,
H then needs to adjust its trajectory by reacting to C’s
response. To model this process, we formulate a bilevel

optimization problem for each i = 1, C,H in the following
three subsections. We emphasize that this problem is solved
by CAV C and we describe its structure in Fig. 3.

Fig. 3: Bilevel optimization problem solved by CAV C. Initialization
consists of solving OCP[t0,t1) to obtain t∗1 and OCP[t∗1 ,tf ] to
obtain t∗f , x

∗
C(t), v

∗
C(t). In addition, x∗

1(t) = x1(t
∗
1) + v1(t

∗
1)(t−

t∗1), v
∗
1(t) = v1(t

∗
1), t ∈ [t∗1, t

∗
f ]. Upon convergence, the lane change

maneuver is executed with the final x∗
C(t), v

∗
C(t), t ∈ [t∗1, t

∗
f ].

1) Estimate HDV Trajectory (OCP-HDV): We estimate
the trajectory of an HDV by assuming that a human driver
considers three factors: (i) maintaining a constant speed
that minimally deviates from some desired value vd,H , (ii)
if it needs to change speeds, it does so by minimizing
its acceleration/deceleration, which also saves fuel, (iii)
guaranteeing its safety (collision avoidance). To model the
latter, we define a risk function s(·) as a decreasing function
in xC(t)− xH(t) since a closer distance between H and C
corresponds to a higher collision risk. We adopt a sigmoid
function of the form

s(xC(t)−xH(t)) = 1/(1+µ exp (µ(xC(t)− xH(t)− d))) (12)

where µ is adjustable to capture different unsafe regions for
different drivers. One can also adjust d to define the size of
the unsafe region.

We can now formulate OCP-HDV as the problem whose
solution is the estimated trajectory that CAV C uses in
adjusting its own response by updating uC(t):

min
uH (t)

∫ t∗f

t∗1

[
βu

2
u2
H(t)+βv(vH(t)−vd,H)2+βss(x

∗
C(t)−xH(t))]dt

(13a)
s.t. (1), (2), x∗

1(t)− xH(t) ≥ dH(vH(t)), ∀t ∈ [t∗1, t
∗
f ] (13b)

where β{u,v,s} are the non-negative appropriately normalized
weights that describe the characteristics of the HDV, i.e., the
behavior of the driver. Constraint (13b) denotes the safety
constraint between the HDV and its current preceding vehicle
CAV 1 for all t ∈ [t∗1, t

∗
f ]. We immediately note that x∗

C(t) and
x∗
1(t) are unknown to the HDV (except in the first iteration in

Fig. 3 where the initial “ideal” trajectories are used). In fact,
these are determined by the two lower-level problems (14)
and (15) defined next, in response to the HDV’s behavior
expressed through x∗

H(t), v∗H(t), t ∈ [t∗1, t
∗
f ] from (13).

2) Update CAV C Trajectory (OCP-CAVC): Similar to
OCP-HDV, we formulate a bilevel optimization problem
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OCP-CAVC for CAV C:

min
uC(t)

∫ t∗f

t∗1

αu

2
u2
Cdt+ αv(vC(t

∗
f )− vd,C)

2 (14a)

s.t. (1), (2), xC(t
∗
f ) ≥ x∗

H(t∗f ) + dH(v∗H(t∗f )) (14b)

The position x∗
H(t∗f ) in the safety constraint (14b) is the

optimal terminal position of H given by (13). Problem
(14) then provides the best response strategy of CAV C
and determines x∗

C(t), v
∗
C(t), u

∗
C(t), t ∈ [t∗1, t

∗
f ]. Note that

this information can now be provided to OCP-HDV and
OCP-CAV1 as shown in Fig. 3.

3) Update CAV 1 Trajectory (OCP-CAV1): Since CAV 1
is cooperating with CAV C, CAV 1’s strategy is based on
the optimal policy of CAV C by applying a similar bilevel
optimization problem OCP-CAV1:

min
u1(t)

∫ t∗f

t1

αu

2
u2
1(t)dt+ αv(v1(t

∗
f )− vd,1)

2 (15a)

s.t. (1), (2), x1(t
∗
f )− x∗

C(t
∗
f ) ≥ dC(v

∗
C(t

∗
f )). (15b)

The position x∗
C(t

∗
f ) in the safety constraint (15b) is the opti-

mal terminal position of C from OCP-CAVC. The solution of
(15) provides the optimal trajectories x∗

1(t), v
∗
1(t), u

∗
1(t), t ∈

[t∗1, t
∗
f ] for CAV 1. Note that this information can now be

provided to OCP-HDV as shown in Fig. 3.
4) Iterated Best Response: The solution to each of the

problems (13), (14) and (15) is complicated by the fact that it
is coupled to the others through safety constraints or the safety
cost. Nonetheless, the problems can be jointly solved through
an iterated best response (IBR) process [17] as shown in Fig.
3 to obtain a Nash equilibrium and the corresponding optimal
trajectory of vehicle i = 1, C,H , x∗

i (t), v
∗
i (t), t ∈ [t∗1, t

∗
f ].

This, in turn, provides the optimal cost of all three vehicles
for Phase II, JII . Combining this with JI in (10) yields the
optimal cost of the CAV C policy “merge ahead of HDV”,
JC,H = JI + JII .

Note that problems (14) and (15) can be solved analytically
through standard Hamiltonian analysis as in [13]. The solution
of (13) is complicated by the presence of the nonlinear safety
function, but can be numerically solved.

IBR convergence. The convergence of the IBR process in
Fig. 3 is generally hard to establish. However, the specific
structure of the problems here facilitates such analysis. In
particular, convergence depends on the initial states of the
vehicles. Since the process starts with (13), observe that
its solution depends on x∗

1(t) only through the constraint
(13b) and on x∗

C(t) through the risk function s(xC(t) −
xH(t)). Therefore, if the distance between vehicles 1 and
H is larger than the minimum safety distance of the HDV,
constraint (13b) remains inactive so that the dependence on
x∗
1(t) is eliminated. Similarly, if C’s speed is greater than

H at t1, their relative distance will increase and the value of
s(xC(t)−xH(t)) becomes zero, leading to the solution of (13)
becoming independent of x∗

C(t) as well, hence also leading
to the convergence of the iteration process. Conversely, if
vehicles 1 and H are close, or the speed of the HDV exceeds
that of C, the dependence on x∗

1(t) and x∗
c(t) may not vanish,

hence reducing the convergence rate. In this case, however,

as we will see next, the optimal action of CAV C becomes
that of merging ahead of CAV 1, thus rendering the IBR
process irrelevant.

Formal convergence analysis of the IBR process has yet
to be carried out. In practice (see Section V), to implement
the IBR process, we predetermine a maximum number of
iterations N and an error tolerance ε. If convergence within ε
has not been attained after N iterations, we relax the terminal
time t∗f and repeat the process. If the terminal time exceeds
the upper bound T , we end the process and apply the final
u∗
C(t) as the CAV C control.

IV. CAV C MERGES AHEAD OF CAV 1

In this section, we consider the alternative CAV C policy to
merge ahead of CAV 1 rather than the HDV. We immediately
see that if this policy leads to an optimal cost JC,1 such
that JC,1 ≤ JC,H , this makes it not only optimal but also
independent of the HDV behavior since the HDV’s action
cannot affect CAV C and the HDV is limited to maintaining
a safe distance from CAV 1.

The optimal trajectory, in this case, is obtained jointly with
that of the cooperating CAV 1 by solving the problem:

min
tf ,u1(t),uC(t)

∫ tf

t0

[
αu

2
(u2

1(t) + u2
C(t)) + αt]dt

+
αv

2
[(vC(tf )− vd,C)

2 + (v1(tf )− vd,1)
2] (16a)

s.t. (1), (2), xC(tf )− x1(tf ) = d1(v1(tf )). (16b)

where α{t,u,v} are adjustable properly normalized weights
for travel time, energy, and speed deviation, respectively. A so-
lution for t∗f and x∗

i (t), v
∗
i (t), u

∗
i (t), i = 1, C for t ∈ [t0, t

∗
f ]

can be analytically obtained (omitted here, but shown in the
extended version of this paper in [18]). The corresponding
cost is denoted by JC,1. Clearly, if JC,1 ≤ JC,H then CAV
C selects this policy which depends only on the cooperation
between CAVs 1 and C, thus making it independent of the
HDV’s behavior. Lastly, in this case, the HDV trajectory is
estimated using (13) with βs = 0, since CAV C would not
merge ahead of the HDV.

Optimal threshold policy. Observe that JC,H is clearly
independent of x1(t1)−xH(t1), while JC,1 is monotonically
increasing in x1(t1)− xH(t1) since CAV C needs to spend
more time and energy to merge ahead of CAV 1 as its
distance from CAV 1 increases, while CAV 1 may also need
to decelerate to decrease C’s travel time, which leads to a
higher total cost in (15). Therefore, there exists a threshold θ
such that if x1(t1)−xH(t1) ≤ θ, CAV C chooses the policy
“merge ahead of CAV 1” which is independent of the HDV’s
behavior (see Fig. 4). Conversely, if x1(t1) − xH(t1) > θ,
CAV C chooses “merge ahead of H”. In this case, since
x1(t1)− xH(t1) is relatively large, the interaction between
H and CAV C is minimal (i.e., the constraint (13b) remains
inactive and the value of s(xC(t)−xH(t)) is near zero so that
once again CAV C’s optimal trajectory is robust to the HDV
behavior. An analytical determination of the threshold value
is the subject of ongoing work, but it can also be numerically
determined as seen in Figs. 4, 5(a).
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V. SIMULATION RESULTS
This section provides simulation results illustrating the

time and energy-optimal lane-changing trajectories for the
CAVs in mixed traffic and demonstrates the threshold-based
nature of the optimal policy selection for CAV C. Our
simulation setting is that of Fig.1. The allowable speed
and acceleration ranges are v ∈ [15, 35]m/s and u ∈
[−7, 3.3]m/s2 respectively. The desired speed for the CAVs is
set to 30m/s, while HDV’s desired speed is assumed to be the
same as its initial speed. To guarantee safety, the inter-vehicle
safe distance is given by δ = 1.5m, and the reaction time is
φ = 0.6s. The disruption in (5c) is evaluated with parameters
γx = 0.2, γv = 0.8. When any of the problems (13), (14)
and (15) is infeasible or the IBR process has not converged,
we relax the terminal time with the relaxation rate λ = 1.8.
The numerical solutions to the optimization problems are
obtained using an interior point optimizer (IPOPT) on an
Intel(R) Core(TM) i7-8700 3.20GHz.

“Merge ahead of HDV” policy. As discussed in Section
III, for C to evaluate the cost of this policy, it breaks down
its trajectory into two phases if its initial position is behind
H . Thus, in Phase I, we solve problems (7), (9) and (8) to
obtain the minimum cost, hence the optimal Phase I trajectory.
The weights α{t,u,v} in the cost functions are set to 0.55,
0.2, and 0.25, respectively. The maximum maneuver time
is set to T = 15s. If any of the OCPs is infeasible in this
phase, its corresponding cost is set to “Inf”. The results are
shown in Table. I, where we see that, with these particular
parameter settings, it is optimal for C to travel with constant
acceleration and t∗1 = 3.54s. Proceeding to Phase II, we now
solve problems (13), (14) and (15) and carry out the IBR
process in Fig. 3. The weights for OCP-HDV in (13a) are
set to βu = 0.9, βv = 0.1, βs = 0.1 and µ = 1, d = 0 in (12)
when C is in the unsafe region of H . We set the maximum
number of iterations for the IBR process to N = 5 and the
error tolerance ε = 0.01.

TABLE I: Vehicle C Sample Results in Phase I.

OCPs
States XC(t0)

[m, m/s]
X1(t0)
[m, m/s]

XH(t0)
[m, m/s] cost I t1

[s]

(7) [0,23] [30,28] [10,26] Inf Inf
(9) [0,23] [30,28] [10,26] 2.99 4.18
(8) [0,23] [30,28] [10,26] 2.73 3.54

“Merge ahead of CAV 1” policy. CAV C evaluates the
cost of this policy by solving problem OCP (16).

Computational cost. We considered the “worst case” from
a computational cost perspective and solved this problem
numerically: our results took an average of 204 ms. We also
note that the OCPs (13), (14), (15) each took an average of
50 ms to solve.
TABLE II: Vehicle C sample results for complete maneuvers

Cases
States XC(t0)

[m, m/s]
X1(t0)
[m, m/s]

XH(t0)
[m, m/s] cost tf

[s]
dH,1

[m]

C merges ahead of HDV [0,23] [30,28] [10,26] 4.47 5.74 27.07
C merges ahead of CAV 1 [0,23] [30,28] [10,26] 6.84 6.06 27.07
C merges ahead of HDV [0,24] [20,28] [0,24] 4.37 3.41 20
C merges ahead of CAV 1 [0,24] [20,28] [0,24] 3.99 5.29 20

The total costs and maneuver time are summarized in
Table II. We can see that the optimal policy depends on

dH,1 := x1(t1) − xH(t1): as expected when this distance
decreases (from 27.07 to 20), it becomes optimal for CAV C
to merge ahead of CAV 1; otherwise, it is optimal to merge
ahead of H , in which case the gap between CAV 1 and HDV
is large enough for C to execute an optimal maneuver.

A. Optimal CAV C policy subject to traffic disruption

In this section, we demonstrate how C can use a simple
threshold criterion to determine an optimal policy while also
taking into account the traffic disruption metric (5c). We omit
Phase I so as to focus on the maneuver phase that includes
interactions between the HDV and the two CAVs. The initial
states are set as the same with the last two rows in Table. II.
The weights are set as αu = 0.2, αv = 0.8,βu = 0.9, βv =
0.1. Fixing βs = 0.1, µ = 1, the threshold-based optimal
policy determination is illustrated in Fig. 4.

Figure 5(a) is similar to Fig. 4 and is intended to explore
the effect on the cost JC,H of the parameters βs, vd,H , µ,
which characterize the HDV behavior. We see that when
βs increases, the total cost JC,H will also increase because
a larger βs corresponds to a more conservative driver. The
parameter µ represents how HDV defines its safe region,
which decreases as µ increases. Hence, decreasing µ causes
the cost to increase. In Fig. 5(b), we see that “merge ahead
of H” (dashed lines) leads to a higher disruption than “merge
ahead of CAV 1” (straight line). The reason is that for C
to merge ahead of H may require additional deceleration
by H . Increasing βs (the HDV is more conservative) causes
H to decelerate and incur a higher disruption. If the HDV
aims to reach a higher desired speed vd,H , the disruption will
obviously also increase according to (5c). Note that “merge
ahead of CAV 1” makes HDV’s response irrelevant.

B. Comparison with Human-Driven Vehicles

We use the standard car-following models in the SUMO
simulator to simulate lane change maneuvers implemented by
HDVs (baseline) for a total simulation length of 80 seconds,
repeated 9 times. Vehicles 1 and H are defined as C’s left
leader and follower when C starts to change its lane. The
comparison of costs and disruptions is shown in Table III,
in which the Baseline results are the average over multiple
observed maneuvers. Using the same initial states as Baseline,
in this particular case C “merges ahead of H” provides a
lower cost and shorter maneuver time than “merge ahead of
CAV 1”, while causing extremely small disruptions to the
HDV (hence also all traffic that follows it). As expected, the
“merge ahead of CAV 1” policy causes no disruptions to the
HDV. The presence of the two optimally cooperating CAVs
can save more than 80% in cost while also causing virtually
no disruption to the fast lane traffic.
TABLE III: Cost, Disruption and Maneuver Time Comparison
with a Baseline of HDVs only

Scenarios TotalCost HDV disruption Maneuver Time [s]

Baseline 22.37 678.05 7.38
C merges ahead of H 2.85 0.17 2.92
C merges ahead of 1 3.92 0 6.39
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Fig. 4: Optimal policy determination for CAV C.
When dH,1 increases from 20m to 40m, the optimal
policy for CAV C switches from “merge ahead of
CAV 1” to “merge ahead of HDV” if C aims to
complete a minimal cost maneuver without taking
disruption into account.
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(a) Total cost under different parameters
βs, vd,H , µ
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(b) Disruption of HDV under different
parameters βs, vd,H , µ

Fig. 5: Cost and disruption comparison. Except for the varying parameter in each
plot, the other parameters are given by: (i) Two top plots: vd,H = 24m/s, µ = 1,
(ii) Two middle plots: βs = 0.1, µ = 1, (iii) Two bottom plots: βs = 0.1, vd,H =
24m/s.

VI. CONCLUSIONS AND FUTURE WORK

We have derived optimal control trajectories for a CAV to
complete a lane change maneuver in mixed traffic . Vehicle
interactions and cooperation have been considered to help
optimally perform the maneuver with a simple threshold-
based policy. We have shown that CAV cooperation can
eliminate or greatly reduce the interaction between CAVs
and HDVs. Simulation results show the effectiveness of the
proposed controllers and their advantages over a baseline
of traffic consisting of HDVs only. Our ongoing work aims
at formalizing the threshold-based policy and analytically
determining the optimal threshold to use. Moreover, since we
are assuming that the objectives and dynamics of HDVs are
known to CAVs, future work is directed at improving ways
to predict the behavior of human drivers, provide incentives
for them to cooperate with CAVs.
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