
  

  

Abstract— Classical mean field games (MFG) have been 

concerned with large games amongst symmetrically influential 

agents with asymptotically negligible weight. In the absence of a 

common driving noise, propagation of chaos occurs. The 

analysis assumes that the initial agent's state probability 

distribution is known, making its future deterministic and 

computable via a fixed-point calculation under a limiting 

equilibrium policy, if it exists. However, oftentimes, despite 

equal mutual influence, a given agent can only observe a limited 

number of neighboring agents due to the agent observability 

structure characterized by an information access graph. This 

graph may have a low degree even with a large number of agents. 

The main question addressed is whether an MFG equilibrium 

can still potentially emerge asymptotically over time. The answer 

is affirmative, contingent on specific conditions that rely on the 

stability properties of agents' dynamics and the relative speed of 

communication to reactions, as derived in this study. The focus 

is on independent linear scalar agents correlated through a 

quadratic cost related to the mean state of the agents, which 

remains unobservable. To tackle convergence to a mean field 

equilibrium, the proposed model involves a fast communication 

time scale using a consensus algorithm, alongside a slower agent 

dynamic time scale. The research explores agents' ability to 

accurately estimate the system mean as both time and agent 

numbers increase. 

I. INTRODUCTION 

 Mean Field Game (MFG) problems gained a lot of interest 
over the past decade, leading to the development of various 
methods for solving different setups of MFG problems. A 
substantial body of literature on MFGs has emerged, building 
upon foundational works by Lasry, Lions [1, 2], Caines, 
Huang, and Malhamé [3, 4] who approached the analysis from 
a PDE perspective, and Carmona, and Delarue [5, 6] who 
adopted a probabilistic viewpoint. In this context, we will 
focus on papers directly relevant to the specific research issues 
we aim to address. MFG problems involve non-cooperative 
agents trying to minimize their cost functions, leading to a 
system of coupled Hamilton-Jacobi-Bellman equations. In 
large stochastic games with diminishing individual influence, 
agents become stochastically independent. In such cases, their 
joint probability distribution follows a Fokker-Planck-
Kolmogorov (FPK) equation. In MFG problems, limiting 
equilibria are described by a system of coupled forward-
backward partial differential equations [5]. 

A. Literature Review 

We review MFG literature based on their application to our 
problem. At the outset, studies delve into the core MFG 
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problem, introducing key concepts such as ε-Nash equilibrium 
and Nash certainty equivalence (NCE). Two main approaches 
are used to find Nash Equilibrium: the bottom-up method, 
which directly solves the finite game and derives limiting 
equations as the population size approaches infinity, and the 
top-down method, which involves solving an optimal control 
problem using a representative agent while assuming mass 
behavior for other agents. An equilibrium is reached when all 
agents follow their best response policy, and the FPK equation 
replicates the assumed mass behavior, forming the basis for 
NCE [7]. Other pertinent studies closely aligned with this 
research are stochastic games on graphs where agents' mutual 
influences are mediated by a weighted graph [8, 9]. Paper [9] 
is particularly instructive in that it provides a closed-form 
solution for the Nash equilibrium in a class of linear quadratic 
games where agents attempt to follow, at least cost, a weighted 
combination of the states of their direct neighbors in a so-
called transitive graph (essentially a graph which looks 
“similar” as seen by any agent). Note that this is a radical 
departure from the classical MFG formulation where agents 
within possibly distinct classes are exchangeable. An 
important feature of this paper is that the Nash equilibrium 
solution is computed under the assumption that agents can 
observe all other agent states at all times. It is precisely this 
somewhat unrealistic assumption that we wish to do without in 
our proposed research. Finally, papers that consider non-
cooperative aggregative games on networks. Aggregative 
games are static games where agent costs depend on both their 
actions and an aggregate measure of all the other agent actions, 
typically their mean [10]. In a series of papers [10-16], graph-
based information exchanges by agents in the form of 
consensus algorithms were assumed with the objective of 
helping achieve distributed computation of their Nash 
equilibria. While, unlike MFGs, the games in [17-23] are 
static, they relate from the modeling point of view to the 
question that we are attempting to explore here. 

B. Contribution of this Research 

In this preliminary work, we wish to explore scalar linear 
quadratic (LQ) MFGs where agents try to track system mean, 
while able to exchange information only with a limited number 
of agents over a transitive so-called information access graph 
(transitivity will preserve equivalent views of the graph as seen 
by arbitrary agents). The main question we are trying to 
address is the following: Can a mean field effect (agents 
guided by the population mean) still take hold in large 
populations of non-cooperative agents even though agents are 
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not able to always observe the statistics of the complete 
population?  

Motivated by what we believe to be a mean field effect 
taking hold in fish schools which display a high degree of 
nimbleness in reforming purposeful groups following 
disturbances, we contribute here: (i) a modeling framework 
where we consider a separation of time scales between 
“communication dynamics” over an information access graph, 
(it characterizes the agents whose states are observable at all 
times by a given agent, and with whom that agent can 
exchange information) and “motion dynamics” of the agents;  
(ii) an algorithm for estimating the current global state which 
relies on a consensus-based approach to improve the initial 
mean system state estimate, followed by a forecast. The 
forecast assumes that agents will use a "certainty equivalent" 
control law structure, i.e., based on their best response under 
the assumption of full state observation (iii) an analysis of the 
dependence of the bias and variance of the mean estimate 
based on the graph structure, the assumptions on the random 
nature of the initial state distribution, and the time at which the 
mean is estimated; (iv) how these quantities evolve as the 
number of agents increases to infinity. Note that under these 
assumptions, we assimilate a mean field effect taking place 
with the ability of agents to estimate at some point in time the 
system mean with reasonable accuracy. 

Remark: This research focuses on a non-cooperative game 
where individual agents aim to minimize their own cost 
functions. Despite being non-cooperative, the agents are 
assumed to share specific information. This sharing of 
information can be understood either as a scenario where 
agents seek decentralized control strategies while desiring 
cooperation or as agents recognizing the mutual benefit of 
exchanging states, as seen in apps like Google Maps or Waze. 

Notation: In this paper, 𝐸[𝑥] stands for the expected value 

of a random variable 𝑥. The 𝑁 × 1 column vector of all ones 

is denoted 𝟏.Vector 𝑒𝑖 is 𝑁 × 1 vector whose 𝑖𝑡ℎ element is 1 

(𝑒𝑖 = [0 ⋯ 1 ⋯ 0]𝑇). Also, small letters are used for 

scalar variables and capital letters for vectors or matrices. Set 

ℝ denotes real numbers. 

II. BACKGROUND  

In our analysis of MFG with information access graphs, we 

shall follow the bottom-up approach, i.e., starting from finite 

agent population games and moving towards infinite 

population games. Thus, in this section, under full state 

observation assumptions (or equivalently a full information 

access graph) and based on [7, 17], we first summarize useful 

results on the existence and Nash equilibrium (NE) control 

policy in linear quadratic games.  

A. NE Policies in Finite Population, Finite Horizon, 

Scalar LQ Games with Full State Observations [7] 

Consider a non-cooperative game in a population of 𝑁 
agents that are uniform and have scalar dynamics. The 
dynamics equation for agent 𝑖 is written in (1) which is a linear 
and stochastic differential equation.  

𝑑𝑥𝑖(𝑡) = (𝑎𝑥𝑖(𝑡) + 𝑏𝑢𝑖(𝑡))𝑑𝑡 + 𝜎𝑑𝑤𝑖(𝑡),    𝑡 ≥ 0    (1) 

In (1), 𝑥𝑖(𝑡) is the state of agent 𝑖 and 𝑢𝑖(𝑡) is the control input 
or action of agent 𝑖. Coefficients 𝑎, 𝑏 are in ℝ and 𝜎 is 
nonnegative finite value. Noises 𝑤𝑖(𝑡), 𝑖 = 1,2, … , 𝑁 are 
scalar mutually independent zero mean Wiener processes and 
independent from initial states. The agents’ initial conditions 
are assumed to be random with finite variance. 

Agents wish to track 𝜙(�̅�𝑁(𝑡)) which is taken to be an 

affine function of the empirical mean with the cost given by: 

𝐽𝑖(𝑢𝑖 , 𝑥𝑖 , �̅�) = 𝐸 [∫ [𝑞 (𝑥𝑖(𝑡) − 𝜙(�̅�𝑁(𝑡)))
2

+ 𝑟𝑢𝑖
2(𝑡)] 𝑑𝑡

𝑇

0

 

+ ℎ (𝑥𝑖(𝑇) − 𝜙(�̅�𝑁(𝑇)))
2

|𝑥𝑖(0)] (2)

 

𝜙(�̅�𝑁) = 𝛤�̅�𝑁 + 𝜂,   �̅�𝑁 =
1

𝑁
∑ 𝑥𝑗

𝑁

𝑗=1

(3) 

Coefficients 𝑞 and ℎ are non-negative real numbers, and 𝑟 is a 
positive real number.  
By solving a system of 𝑁 coupled Hamilton-Jacobi-Bellman 
equations, it is possible to show (see [7, 17]) that a NE policy 
for an arbitrary agent  𝑖 can be written as: 

𝑢𝑖(𝑡) = −
𝑏

𝑟
(𝑝(𝑡)𝑥𝑖(𝑡) + 𝛼(𝑡)�̅�𝑁(𝑡) + 𝛽(𝑡))    (4) 

𝑑𝑝(𝑡)

𝑑𝑡
=

𝑏2

𝑟
𝑝2(𝑡) − 2𝑎𝑝(𝑡) − 𝑞    (5) 

𝑝(𝑇) = ℎ 

𝑑𝛼(𝑡)

𝑑𝑡
= −2 (𝑎 −

𝑏2

𝑟
𝑝(𝑡)) 𝛼(𝑡) +

𝑏2

𝑟
𝛼2(𝑡) + 𝑞𝛤 (6) 

𝛼(𝑇) = −ℎ𝛤 
In (5), 𝑝(𝑡) is the solution of a standard Riccati differential 
equation guaranteed to exist under our assumptions, while, 
given 𝑝(𝑡), 𝛼(𝑡) in (6) corresponds to the solution of another 
Riccati differential equation which in general is not guaranteed 
to exist. However, we will show later that if 𝛤 < 1, the 
solution to 𝛼(𝑡) exists, and discuss motivations for 𝛤 < 1. 
Remark: For simplicity and without loss of generality, we 
assume 𝜂 = 0, so 𝛽(𝑡) will be zero over time [7]. 
Remark: In this paper, we consider 𝛤 ≤ 1, since if 𝛤 > 1 
finite escape time happens and one should be cautious in the 
time interval of the game to avoid finite escape times [7].  

Remark: An application for 𝛤 < 1 is decentralized power 
control of cellular phones within the same cell. The latter 
compete to enhance their signal to noise ratio. Increasing 
power levels generates more noise on other phones within the 
cell, compelling those phones to boost their power as well. 
This scenario can be viewed as a static game whose dynamic 
version has been the inspiration behind [18]. A motivation for 
𝛤 = 1 is an attempt to reproduce collective dynamics within 
fish schools, with individual fishes aiming to follow their 
school with least effort.  

For a known (considered deterministic) initial empirical mean 
�̅�𝑁(0), and if the solution of (6) exists, �̅�𝑁(𝑡) evolves 
according to: 

𝑑�̅�𝑁 = (𝑎 −
𝑏2

𝑟
(𝛼(𝑡) + 𝑝(𝑡))) �̅�𝑁(𝑡)𝑑𝑡 + 𝜎𝑑�̅�𝑁(𝑡)    (7) 

where �̅�𝑁(𝑡) =
1

𝑁
∑ 𝑤𝑖(𝑡)𝑁

𝑖=1 .                      

Denoting �̅�(𝑡) = 𝐸[�̅�𝑁(𝑡)], and using the state transition 
matrix 𝜑�̅�(𝑡, 𝑡0) (it is scalar) for the interval [𝑡0, 𝑡] we have:  
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�̅�(𝑡) = 𝜑�̅�(𝑡, 𝑡0)�̅�(𝑡0)    (8)                                                 

Remark: Note that the implementation of the NE control law 
in (4) requires that besides an agent’s own state, the agent be 
able to observe the empirical global mean state at all times. 

Furthermore, as N grows without bounds, the law of large 

numbers dictates that it becomes sufficient to only know the 
initial empirical global mean.  This indeed becomes the MFG 
solution concept. However, these global mean quantities are 
no longer available in the presence of a sparse information 
access graph. 
Remark: The stability characteristics of the transition function 
𝜑�̅�(𝑡𝑛, 𝑡0) are determined by the properties of the Riccati 
equation derived from the addition of equations (5) and (6): 

𝑑(𝑝(𝑡) + 𝛼(𝑡))

𝑑𝑡
=

𝑏2

𝑟
(𝑝 + 𝛼)2 − 2𝑎(𝑝 + 𝛼) − 𝑞(−𝛤 + 1)

𝑝(𝑇) + 𝛼(𝑇) = ℎ(1 − 𝛤)    (9)

 

We analyze the stability behavior of 𝑝(𝑡) + 𝛼(𝑡) in two 
scenarios for the parameter Γ. Case 1: for 𝛤 < 1, the boundary 
condition ℎ(1 − 𝛤) is positive and 𝑞(−Γ + 1) is also positive. 
These two conditions are adequate to ensure the existence of a 
positively bounded solution for the Riccati equation, leading 
to a stabilizing gain [19], and thus  𝜑�̅�(𝑡𝑛, 𝑡0) will be stable. 
Case 2: for 𝛤 = 1, it can be readily demonstrated that 𝛼(𝑡) +
𝑝(𝑡) equals zero. The stability of either �̅�𝑁 or 𝜑�̅�(𝑡𝑛, 𝑡0) 
hinges on the sign of parameter 𝑎. 

B. Consensus Algorithm 

In this section, we briefly review some notions of consensus 

algorithms (see for example [20, 21]). Consensus algorithms 

are quite useful when an average is to be estimated from a 

collection of observation points and agents can only exchange 

information over a graph. 
Assume agents observe each other through an undirected 

information access graph (IAG) 𝐺. The continuous time 
consensus algorithm dynamics is written as follows: 

𝑑𝑋∗

𝑑𝑡
= −𝐿𝑋∗    (10) 

where 𝑋∗ is an 𝑁 × 1 vector comprising the scalar states of all 
agents, and 𝐿 is the Laplacian matrix of the graph G. We 
assume 𝜆𝑖 for 𝑖 = 1, … , 𝑁 are eigenvalues of 𝐿 in ascending 
order and 𝑉𝑖 for 𝑖 = 1, … , 𝑁 are corresponding eigenvectors. 
Two important lemmas regarding the transition matrix of the 
Laplacian matrix, 𝜑𝐿(𝑡, 𝑡0), are stated in the following. We do 
not provide their proofs here since these are well established 
materials in the consensus algorithm references [20, 21]. 
Lemma 1: Assume 𝐿 is the Laplacian matrix of an undirected 
and connected graph, then the following formula holds.  

𝟏𝑇𝜑𝐿(𝑡, 𝑡0) = 𝟏𝑇 

Lemma 2: In the transition matrix 𝜑𝐿(𝑡, 𝑡0), in the asymptotic 
cases when time goes to infinity, the following equation holds: 

𝑙𝑖𝑚
𝑡⟶∞

𝜑𝐿(𝑡, 𝑡0) =
1

𝑁
𝟏𝟏𝑇  

III. A MATHEMATICAL MODEL FOR MEAN FIELD GAMES ON 

A PARTIAL IAG 

In subsection A above, we approached the original MFG 
problem on a finite control horizon through a bottom-up 
approach.  The latter is more restrictive than the top-down 
approach, starts from finite games, and views the MFG 
equilibrium as the limit if it exists of the Nash equilibria, if 

they exist, of the finite games. [7] developed for the LQ case, 
sufficient conditions for the bottom-up and top-down 
approaches to produce equivalent results. Our interest in the 
bottom-up approach is that it produces a state feedback policy 
involving the current agent state and current global empirical 
mean. Thus, it clearly displays the role of global empirical 
state observations needed at all times to compute the NE 
control action. In the limit MFG situation where the number of 
agents goes to infinity, the empirical global agents mean needs 
to be observed at least at the initial time. However, this is no 
longer possible when the agents interact on a partial IAG. In 
what follows, we propose a mathematical model where 
inspired again by the fish school situation, we consider 
separate dynamics for information exchange and physical 
motion. More precisely, one could hypothesize that in large 
groups of interacting agents, information could travel at a 
speed much higher than the rates of change of agent states. 
Thus, for example, in a fish school, fish exchange visual and 
pressure signals which travel much faster than they can move. 
The same goes for individuals moving as part of a crowd, cars 
within traffic, or banks reacting to market signals. This 
indicates that while the assumption of a complete IAG is 
inadequate in general, an intermediary more realistic model is 
one where agents on a partial IAG can exchange information 
about their current state (voluntarily or otherwise) at speeds 
which are significant relative to that of their state dynamics. 

In this context of partial information access, we simplify 
analysis by assuming that agent state actions evolve discretely 
over time intervals of length �̃�. During these intervals, agents 
exchange information about a system quantity and use it to 
synthesize a better-informed control action. The dynamics of 
information exchange follow a continuous time consensus 
process (as in (10)), with a relative information exchange rate 
characterized by the coefficient 𝑟𝑐/𝑑, acting as an accelerator 

of consensus dynamics. Agents employ a "certainty 
equivalent" best response policy analogous to (4), replacing 
the empirical mean state with its best non-anticipative estimate 
based on all past and current information at time 𝑡𝑛 = 𝑡0 + 𝑛�̃�, 
𝑛 = 0, 1, 2, …. Consequently, consensus algorithm dynamics 
including the ratio between communication time scale and 
dynamics time scale, 𝑟𝑐/𝑑, is rewritten in (11) as: 

𝑑𝑋∗

𝑑𝑡
= −𝑟𝑐/𝑑𝐿𝑋∗    (11) 

Remark: We should notice that the presence of 𝑟𝑐/𝑑 in the 

differential equation of the consensus algorithm results in 

multiplying eigenvalues of 𝐿 by 𝑟𝑐/𝑑 which leads to faster 

convergence if 𝑟𝑐/𝑑 > 1.  

IV. THE SPECIAL CASE OF INITIAL GLOBAL EMPIRICAL 

MEAN INFORMATION EXCHANGE 

In this study, we use an interlaced information 
exchange/motion dynamics model to improve estimates of the 
initial global empirical mean state (GEMS) over consensus 
cycles �̃�. Agents use these estimates to forecast the most 
current GEMS for their individualized certainty equivalent 
control law (4). We analyze the quality of the forecast-based 
estimator and how it evolves over time. As time progresses, 
two competing effects influence the estimator quality: (i) More 
agents reached through consensus propagation lead to 
improved initial GEMS estimation, and (ii) the current forecast 
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becomes more compromised by process noise due to 
increasing forecast intervals. 

A. Empirical Mean Estimation Procedure 

At time 𝑡𝑛 = 𝑡0 + 𝑛�̃�, generic agent 𝑖 calculates its current 

estimate �̂̅�0𝑖
𝑁 (𝑡𝑛) of the initial global empirical mean state 

�̅�𝑁(𝑡0). Using this estimate, agent 𝑖 produces a forecast 

�̂̅�𝑖
𝑁(𝑡𝑛) of the GEMS �̅�𝑁(𝑡),  assuming all agents follow 

trajectories dictated by (1) and (4) with �̅�𝑁(𝑡𝑛) replaced by 

�̂̅�𝑗
𝑁(𝑡𝑛), 𝑗 = 1, … , 𝑁. The dynamics of GEMS as observed by 

agent 𝑖 remain governed by (8) under the proposed certainty 

equivalent control policy. Thus, agent 𝑖 uses (8) initialized 

with �̂̅�0𝑖
𝑁 (𝑡𝑛) to estimate GEMS at time 𝑡𝑛. 

The summary of how the calculations proceed over time is 

written in table Algorithm 1. 

Algorithm 1: Empirical Mean Estimation Using 
Consensus Algorithm 

Initialization: 𝑡 = 𝑡0, �̂̅�0𝑖
𝑁 (𝑡0) = 𝑥𝑖(𝑡0), 𝑖 = 1,2, … , 𝑁 

Iteration: For 𝑛 = 0,1, … , 𝑟𝑜𝑢𝑛𝑑(
𝑇

𝑡
) 

𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] 
Action: Use �̂̅�𝑖

𝑁(𝑡𝑛) for the calculation of 𝑢𝑖(𝑡) based on 

(4) and (8) initialized with �̂̅�0𝑖
𝑁 (𝑡𝑛) 

Communication and Estimation: Use �̂̅�0𝑖
𝑁 (𝑡𝑛) to 

communicate with neighbors until 𝑡𝑛+1 to get an 

estimation of �̂̅�0𝑖
𝑁 (𝑡𝑛+1) at 𝑡𝑛+1 

 Forecast: compute forecast, �̂̅�𝑖
𝑁(𝑡𝑛+1), using �̂̅�0

𝑁(𝑡𝑛+1) 

based on (8) 

Before stating Theorem 1 in the next section, we delve into the 
assumptions needed for it. 
Assumption 1: The agent population is made up of 𝑁 
homogeneous agents in a connected partial IAG which is time-
invariant, undirected, and transitive. Also, agents do not have 
prior information on the initial state distribution of the 
population. Initial agent states are arbitrary random variables 
with finite first and second moments. 

Assumption 2: The transition function 𝜑�̅�(𝑡𝑛, 𝑡0) exhibits 
stable dynamics associated with condition 𝛤 < 1. 

B. Evaluation of Quality of GEMS Estimation by 

Individual Agents 

In what follows, we develop an expression for the mean of 

the GEMS estimation error by a generic agent 𝑖. In order to 

follow the solution easily, we denote �̂̅�0𝑛
𝑁  and �̂̅�𝑛

𝑁 the 𝑁 × 1 

concatenated vectors of respectively initial GEMS estimates 

after running the consensus algorithm for time duration 𝑛�̃�,  

and current GEMS estimates of agents at the time 𝑡𝑛. The error 

between the estimated GEMS and its true value for agent 𝑖 at 

time 𝑡 is denoted 𝑒𝑟𝑟𝑖(𝑡). 

𝑒𝑟𝑟𝑖(𝑡) = �̅�𝑁(𝑡) −  �̂̅�𝑖
𝑁(𝑡)    (12) 

Theorem 1: Under Assumptions 1 and 2 and provided that 
agents employ Algorithm 1 for mean estimation and control 
action: (i) The GEMS achieves asymptotic unbiasedness as 
time increases indefinitely; (ii) Convergence to zero bias is 
geometric with a rate governed by the second smallest 
eigenvalue of 𝐿 (Fiedler eigenvalue). 

Proof: The proof follows from calculating the error 𝑒𝑟𝑟𝑖 and 
showing that its expectation converges to zero as time grows 
indefinitely. We assume the global vector 𝑋(𝑡) contains all 
agent states. The empirical mean �̅�𝑁 is written based on 𝑋: 

𝑋(𝑡) = [𝑥1(𝑡) ⋯ 𝑥𝑁(𝑡)]𝑇 ,   �̅�𝑁(𝑡) =
1

𝑁
𝟏𝑻𝑋(𝑡)    (13) 

The initial condition for the consensus algorithm differential 
equation in (11) is 𝑋∗(𝑡0) = 𝑋(𝑡0). The solution for the 
consensus state at the time 𝑡𝑛 is expressed as 

𝑋∗(𝑡𝑛) = 𝜑𝐿(𝑡𝑛, 𝑡0)𝑋∗(𝑡0) = 𝜑𝐿(𝑡𝑛, 𝑡0)𝑋(𝑡0)    (14) 

At time 𝑡𝑛, agents find their 𝑛𝑡ℎ estimation of the GEMS for 
time 𝑡0 by using the state of consensus at 𝑡𝑛 in (14).  

�̂̅�0𝑛
𝑁 = 𝑋∗(𝑡𝑛)    (15) 

Employing equations (8), (14), and (15), agents forecast the 

mean for time 𝑡𝑛: �̂̅�𝑛
𝑁 = 𝜑�̅�(𝑡𝑛, 𝑡0)�̂̅�0𝑛

𝑁 . The predicted mean 

value for agent 𝑖, �̂̅�𝑖
𝑁(𝑡𝑛), corresponds to time 𝑡𝑛. 

�̂̅�𝑛
𝑁 = [�̂̅�1

𝑁 ⋯ �̂̅�𝑁
𝑁]𝑇 , �̂̅�𝑖

𝑁(𝑡𝑛) = 𝑒𝑖
𝑇𝜑�̅�(𝑡𝑛, 𝑡0)𝜑𝐿(𝑡𝑛, 𝑡0)𝑋(𝑡0) (16) 

In order to calculate �̅�𝑁, we need to average the states of agents 
considering the estimated value of the mean in their dynamics. 
The details of the calculation for �̅�𝑁 is given in Appendix A. 

�̅�𝑁(𝑡) = 𝜑�̅�(𝑡, 𝑡0)
1

𝑁
𝟏𝑻𝑋(𝑡0) + 𝜎 ∫ 𝜑(𝑡, 𝑠)𝑑�̅�𝑁(𝑠)

𝑡

𝑡0

    (17) 

𝜑(𝑡, 𝑡0) = 𝑒𝑥𝑝 (∫ (𝑎 −
𝑏2

𝑟
𝑝(𝑠)) 𝑑𝑠

𝑡

𝑡0

) 

We have calculated the exact value for the mean and that 
estimated by agent 𝑖. Now, we calculate the error at 𝑡𝑛. 

𝑒𝑟𝑟𝑖(𝑡𝑛) = �̅�𝑁(𝑡𝑛) − �̂̅�𝑖
𝑁(𝑡𝑛) = 𝜑�̅�(𝑡𝑛, 𝑡0)

1

𝑁
𝟏𝑻𝑋(𝑡0) + 

𝜎 ∫ 𝜑(𝑡𝑛, 𝑠)𝑑�̅�𝑁(𝑠)
𝑡𝑛

𝑡0

− 𝑒𝑖
𝑇𝜑�̅�(𝑡𝑛, 𝑡0)𝜑𝐿(𝑡𝑛, 𝑡0)𝑋(𝑡0)    (18) 

Since 𝐸[𝑑�̅�𝑁] = 0, the expected value of error is: 

𝐸[𝑒𝑟𝑟𝑖(𝑡𝑛)] = 𝜑�̅�(𝑡𝑛, 𝑡0) [
1

𝑁
𝟏𝑻 − 𝑒𝑖

𝑇𝜑𝐿(𝑡𝑛, 𝑡0)]  𝐸[𝑋(𝑡0)]    (19) 

Based on Lemma 2, when 𝑛 goes to ∞,  

lim
𝑛→∞

𝑒𝑖
𝑇𝜑𝐿(𝑡𝑛, 𝑡0) =

1

𝑁
𝟏𝑻 ⟹ lim

𝑛→∞
𝐸[𝑒𝑟𝑟𝑖(𝑡𝑛)] = 0 ∎ 

Remark: In Theorem 1, as indicated by equation (19), the 

convergence rate of 𝐸[𝑒𝑟𝑟𝑖(𝑡𝑛)] is determined by 

exp (∫ (𝑎 −
𝑏2

𝑟
(𝛼(𝜏) + 𝑝(𝜏))) 𝑑𝜏

𝑡𝑛

𝑡0
− 𝑟𝑐/𝑑𝜆2(𝑡𝑛 − 𝑡0)). With the 

condition Γ < 1, the stability of 𝜑�̅�(𝑡𝑛, 𝑡0) is assured, 

resulting in faster convergence of consensus facilitated by the 

stable dynamics of the agents. 
Theorem 2: Given Assumption 1 and Γ = 1, for 𝐸[𝑒𝑟𝑟𝑖(𝑡𝑛)] 
to converge to zero as 𝑛 goes to infinity, it is necessary and 

sufficient that 𝑟𝑐/𝑑 > 
𝑎

𝜆2
. 

Proof: When Γ = 1, as previously discussed, 𝜑�̅�(𝑡, 𝑡0) 
simplifies to exp(𝑎(𝑡 − 𝑡0)). Furthermore, according to 

equation (19), the convergence rate of 𝐸[𝑒𝑟𝑟𝑖(𝑡𝑛)] is 

represented by exp ((𝑎 − 𝑟𝑐/𝑑𝜆2)(𝑡𝑛 − 𝑡0)). Therefore, for the 

objective of driving 𝐸[𝑒𝑟𝑟𝑖(𝑡𝑛)] towards zero, it is essential that 
𝑎 − 𝑟𝑐/𝑑𝜆2 < 0. This condition ensures the desired outcome. ∎                                                                              

Remark: Among partial IAGs, cycle graphs offer a 
particularly illustrative worst-case scenario. Indeed, in these 
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graphs, each agent is linked to only two neighbors. The 
eigenvalues of cycle graphs are expressed by equation (20): 

𝜆𝑗 = 4 𝑠𝑖𝑛2 (
𝜋(𝑗 − 1)

𝑁
) ,   𝑗 = 1, … , 𝑁  (20) 

For cycle graphs, as the number of agents approaches infinity, 

it follows that 𝜆2 tends towards 4 (
𝜋

𝑁
)

2

. This observation 

highlights that for cycle graphs as 𝑁 increases, 𝜆2 diminishes 
in a manner proportional to 𝑁−2, consequently leading to a 
reduction in the convergence rate of the proposed algorithm. 

V. PROPERTIES OF GEMS ESTIMATOR 

In this section, assuming an i.i.d. initial distribution for 
agents, we shall provide an analysis regarding the expected 
value and variance of the error in (12).  

Assumption 3: Agents have i.i.d. initial distribution with finite 
mean 𝐸[𝑥𝑖(𝑡0)] = 𝑥0 and finite variance 𝐸[(𝑥𝑖(𝑡0) − 𝑥0)2] =
𝜎0

2 (𝑜𝑟 𝛴𝑋(𝑡0) = 𝜎0
2𝐼). 

Proposition 1: Under Assumptions 1 and 3 the GEMS 

estimated by agent 𝑖, �̂̅�𝑖
𝑁(𝑡𝑛), is an unbiased estimator of 

�̅�𝑁(𝑡𝑛) at all times. 

Proof:  We have: 

𝐸[𝑒𝑟𝑟𝑖(𝑡𝑛)] = 𝜑�̅�(𝑡𝑛, 𝑡0) [
1

𝑁
𝟏𝑻 − 𝑒𝑖

𝑇𝜑𝐿(𝑡𝑛, 𝑡0)]  𝐸[𝑋(𝑡0)] 

In view of the i.i.d. initial state distribution assumption, 
Lemma 2, and the symmetry of matrix 𝐿, one can write: 

𝐸[𝑋(𝑡0)] = 𝑥0𝟏,   𝑒𝑖
𝑇𝜑𝐿(𝑡𝑛, 𝑡0)𝟏𝑥0 = 𝑥0 

As a result, 𝐸[𝑒𝑟𝑟𝑖(𝑡𝑛)] = 0, and �̂̅�𝑖
𝑁(𝑡𝑛) is an unbiased 

estimator of �̅�𝑁(𝑡𝑛).                                                                                    ∎ 

A. Error Variance Analysis 

In this subsection, we derive the variance of error 

estimation. Our goal is to analyze the evolution of the GEMS 

estimator variance over time. 

𝛴𝑒𝑟𝑟𝑖
(𝑡𝑛) = 𝐸[(𝑒𝑟𝑟𝑖(𝑡𝑛) − 𝐸[𝑒𝑟𝑟𝑖(𝑡𝑛)])2] =

𝜎2

𝑁
∫ 𝜑2(𝑡𝑛, 𝑠)𝑑𝑠

𝑡𝑛

𝑡0

+

𝜑�̅�
2(𝑡𝑛, 𝑡0) [

1

𝑁
𝟏𝑻 − 𝑒𝑖

𝑇𝜑𝐿(𝑡𝑛, 𝑡0)] 𝛴𝑋(𝑡0) [
1

𝑁
𝟏𝑻 − 𝑒𝑖

𝑇𝜑𝐿(𝑡𝑛, 𝑡0)]
𝑇

 

In the following, the error variance is calculated under 

Assumption 3 using eigenvalues and eigenvectors of L. 

𝛴𝑒𝑟𝑟𝑖
(𝑡𝑛) =

𝜎2

𝑁
∫ 𝜑2(𝑡𝑛, 𝑠)𝑑𝑠

𝑡𝑛

𝑡0

+

𝜑�̅�
2(𝑡𝑛, 𝑡0)𝜎0

2 ∑ 𝑒𝑥𝑝2(−𝑟𝑐/𝑑𝜆𝑗(𝑡𝑛 − 𝑡0)) 𝑒𝑖
𝑇𝑉𝑗𝑉𝑗

𝑇𝑒𝑖

𝑁

𝑗=2

 (21)

 

We now discuss the behavior of GEMS estimation variance 
based on the stability properties of 𝜑�̅�(𝑡𝑛, 𝑡0). 

Remark: The first term in (21) is the variance contributed by 
the Wiener noise term in the GEMS forecast based on (1). It 
is affected by the state transition function 𝜑(𝑡𝑛, 𝑡0) which is 
guaranteed to fall to zero exponentially due to the stabilization 
properties of the associated Riccati equation-based gain. The 
second term is the variance associated with the forecast of the 
consensus-based initial GEMS estimate. 

Proposition 2: Given Assumptions 1, 3, and the condition 𝛤 <
1, it can be established that the variance of the error as defined 
in equation (21) remains bounded. 

Proof: As previously mentioned, in the scenario where 𝛤 < 1, 
the function 𝜑�̅�(𝑡, 𝑡0) exhibits exponential decay as time 
progresses. This behavior leads to the convergence of the 
second term in equation (21) to zero, leaving only the first 
term in play. Consequently, variance remains bounded.                                                                                                       

Proposition 3: Under Assumptions 1 and 3, when 𝛤 = 1, the 
variance experiences a downward trend as time progresses if 
the communication dynamics, represented by 𝑟𝑐/𝑑𝜆2, outpace 

the system dynamics, represented by 𝑎, signifying that 𝑟𝑐/𝑑 

should be greater than 
𝑎

𝜆2
. 

Proof: The long term behavior of the consensus-induced 
variance, as represented in (21), is determined by the term 
𝜑�̅�

2(𝑡𝑛, 𝑡0) 𝑒𝑥𝑝2(−𝑟𝑐/𝑑𝜆2(𝑡𝑛 − 𝑡0)), which equates to 𝑒𝑥𝑝2((𝑎 −

𝑟𝑐/𝑑𝜆2)(𝑡𝑛 − 𝑡0)). Analyzing this growth rate, it becomes 

evident that in order to ensure the boundedness of the variance, 
the condition 𝑟𝑐/𝑑𝜆2 > 𝑎 must be satisfied. 

Remark: In Theorem 2 and Proposition 3, as discussed earlier, 
in a worst case cycle graph, when the number of agents 𝑁 
approaches infinity, 𝜆2 diminishes at a rate proportional to 
𝑁−2. For these assertions to hold, it becomes necessary for the 
communication parameter 𝑟𝑐/𝑑 to escalate in proportion to 𝑁2. 

This observation underscores the need for communication 
speed to increase quadratically as the agents' network expands 
while the IAG remains sparse, ensuring that agents remain 
well-informed about the population mean for effective 
decision-making. 

B. Simulation of Error Variance 

In Figure 1, error variance (21) is plotted for 𝛤 = 0.6 across 
different population sizes. As N increases, noise-induced 
variance weakens, causing an overall reduction in variance. 
Additionally, higher N leads to a longer time to reach 
minimum variance. These trends suggest agents might 
eventually trust their GEMS estimates, implying a Nash 
equilibrium. 

 

Figure 1. The error variance for different 𝑁. Parameters of the simulation: 

a=0, b=1, q=1, r=0.1, h=1, σ=0.7, Γ=0.6, 𝑟𝑐/𝑑 = 1,𝜎0 = 0.2  

VI. CONCLUSION 

In this paper, we discussed the question of possible 
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convergence to a Nash equilibrium amongst large systems of 

exchangeable agents interacting through an incomplete but 

connected information access graph. An observations-

dynamics model was proposed to capture the possible 

separation of time scales between communications and 

dynamics. The communications part is assumed to be 

effectively equivalent to a consensus algorithm the 

information of which reaches the controller with some time 

delay. The agents use a particular estimation scheme to 

evaluate their cost and produce a Nash certainty equivalent 

policy. For the worst-case Partial IAG -cycle graphs- analysis 

suggests that for stable mean field dynamics, convergence to 

an ideal MFG equilibrium over time is helped by the 

consensus process and will always occur. For unstable mean 

field dynamics over a finite horizon, convergence for a given 

large network size can be helped by increasing the relative 

communication to dynamics speed. In future work, we shall 

explore more thoroughly the role of IAG structure, 

communication speed, and possibly more sophisticated 

estimation schemes on the cost regret relative to a complete 

IAG when the number of agents grows to infinity. 

APPENDIX 

In the following, we will calculate �̅�𝑁(𝑡) by averaging 𝑥𝑖(𝑡).  

𝑑𝑥𝑖 = ((𝑎 −
𝑏2

𝑟
𝑝(𝑡)) 𝑥𝑖 −

𝑏2

𝑟
𝛼(𝑡)�̂̅�𝑖

𝑁(𝑡)) 𝑑𝑡 + 𝜎𝑑𝑤𝑖   

𝑥𝑖(𝑡) = 𝜑(𝑡, 𝑡0)𝑥𝑖(𝑡0) −
𝑏2

𝑟
∫ 𝜑(𝑡, 𝑠)𝛼(𝑠)�̂̅�𝑖

𝑁(𝑠)𝑑𝑠
𝑡

𝑡0

+ 𝜎 ∫ 𝜑(𝑡, 𝑠)𝑑𝑤𝑖(𝑠)
𝑡

𝑡0

 

Lemma 3: By using Lemma 1, we can easily show that 

1

𝑁
∑ �̂̅�𝑖n

N

𝑁

𝑖=1

(𝑡) =
1

𝑁
𝟏𝑻𝑋(𝑡0)𝜑�̅�(𝑡, 𝑡0) = 𝐸[�̅�𝑁(𝑡)] 

Using Lemma 3, �̅�𝑁 is calculated. 

�̅�𝑁(𝑡) = 𝜑(𝑡, 𝑡0)
1

𝑁
𝟏𝑻𝑋(𝑡0) −

𝑏2

𝑟

1

𝑁
𝟏𝑻𝑋(𝑡0) ∫ 𝜑(𝑡, 𝑠)𝜑�̅�(𝑠, 𝑡0)𝛼(𝑠)𝑑𝑠

𝑡

𝑡0

+
𝜎

𝑁
∫ 𝜑(𝑡, 𝑠) ∑ 𝑑𝑤𝑖

𝑁

𝑖=1

(𝑠)
𝑡

𝑡0

 

Using the following equation to simplify the integral. 

𝜑(𝑡, 𝑠)𝜑�̅�(𝑠, 𝑡0) = 𝜑(𝑡, 𝑡0) 𝑒𝑥𝑝 (∫ −
𝑏2

𝑟
𝛼(𝑙)𝑑𝑙

𝑠

𝑡0

) 

So, �̅�𝑁(𝑡) is rewritten. 

�̅�𝑁(𝑡) = 𝜑(𝑡, 𝑡0)
1

𝑁
𝟏𝑻𝑋(𝑡0) (1 −

𝑏2

𝑟
∫ 𝛼(𝑠) 𝑒𝑥𝑝 (∫ −

𝑏2

𝑟
𝛼(𝑙)𝑑𝑙

𝑠

𝑡0

) 𝑑𝑠
𝑡

𝑡0

)

+
𝜎

𝑁
∫ 𝜑(𝑡, 𝑠)𝑑�̅�𝑁(𝑠)

𝑡

𝑡0

  

 

Using the fact that: 1 −
𝑏2

𝑟
∫ 𝛼(𝑠) exp (∫ −

𝑏2

𝑟
𝛼(𝑙)𝑑𝑙

𝑠

𝑡0
) 𝑑𝑠

𝑡

𝑡0
=

exp (∫ −
𝑏2

𝑟
𝛼(𝑠)𝑑𝑠

𝑡

𝑡0
). 

�̅�𝑁(𝑡) = 𝜑(𝑡, 𝑡0)
1

𝑁
𝟏𝑻𝑋(𝑡0) 𝑒𝑥𝑝 (∫ −

𝑏2

𝑟
𝛼(𝑠)𝑑𝑠

𝑡

𝑡0

) + 𝜎 ∫ 𝜑(𝑡, 𝑠)𝑑�̅�𝑁(𝑠)
𝑡

𝑡0

 

Finally, using 𝜑(𝑡, 𝑡0) exp (∫ −
𝑏2

𝑟
𝛼(𝑠)𝑑𝑠

𝑡

𝑡0
) = 𝜑�̅�(𝑡, 𝑡0), 

one can find �̅�𝑁(𝑡). 

�̅�𝑁(𝑡) = 𝜑�̅�(𝑡, 𝑡0)
1

𝑁
𝟏𝑻𝑋(𝑡0) + 𝜎 ∫ 𝜑(𝑡, 𝑠)𝑑�̅�𝑁(𝑠)

𝑡

𝑡0
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