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Abstract— In this paper, we study the relationship between
systems controlled via Control Barrier Function (CBF) ap-
proaches and a class of discontinuous dynamical systems,
called Projected Dynamical Systems (PDSs). In particular, under
appropriate assumptions, we show that the vector field of CBF-
controlled systems is a Krasovskii-like perturbation of the set-
valued map of a differential inclusion, that abstracts PDSs. This
result provides a novel perspective to analyze and design CBF-
based controllers. Specifically, we show how, in certain cases,
it can be employed for designing CBF-based controllers that,
while imposing safety, preserve asymptotic stability and do not
introduce undesired equilibria or limit cycles. Finally, we briefly
discuss about how it enables continuous implementations of
certain projection-based controllers, that are gaining increasing
popularity.

I. INTRODUCTION

Control Barrier Functions (CBFs) have been introduced as
a systematic methodology to impose safety on control sys-
tems [1]–[7]. Typically, given a nominal controller1, which
asymptotically stabilizes a given system, a modified version
of it is designed, such that the system’s trajectories never
leave a safe set. The safe controller is specified as the
solution of a Quadratic Program (QP), with its constraint,
termed the CBF constraint, preventing leaving the safe set.
The cost matrix in the QP’s objective function is subject to
design. A notorious problem in CBF-based controllers is that,
for the sake of safety, undesired equilibria or limit cycles are
often introduced, and thus stability is compromised [3]–[7].

A seemingly unrelated topic is that of Projected Dynam-
ical Systems (PDSs), a class of discontinuous constrained
dynamical systems [8]–[18]. They have been introduced to
study dynamic aspects of constrained problems, such as
variational inequalities [8] (e.g., traffic networks, oligopolies,
energy markets etc.) and constrained optimization [11], [12].
Recently, they have, also, gained considerable interest for
control purposes. They have been used to analyze a new
class of hybrid integrators, called HIGS, which overcome
limitations of linear controllers [13]–[15]. Moreover, they
have been used in antiwindup control [16], passivity-based
control [17] and constrained observers [18].
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1Alternatively, a Control Lyapunov Function (CLF, see [1]) is given, and
the controller is designed by employing both the CBF and the CLF.

Contributions

In this work, we investigate the relationship between CBFs
and PDSs. The main result of this work can be summarised
as: under suitable assumptions, we prove that the vector field
of a system controlled via CBF methods is a Krasovskii-like
perturbation (see [19, Definition 6.27]) of the set-valued map
of a differential inclusion (DI), that abstracts PDSs. In fact,
we provide a quantitative bound on that perturbation, that
depends on the tunable parameter a of the CBF constraint
and is decreasing and vanishing with a.

This result provides a new perspective to analyze and
design CBF-based controllers. To demonstrate this, we dis-
cuss how it can be used to design CBF-based controllers
that preserve asymptotic stability of the nominal ones, while
imposing safety and not introducing undesired equilibria or
limit cycles. Specifically, in the simple scenario of complete
control over the system dynamics (ẋ = f(x)+u), under the
assumption of an incrementally stabilizing nominal controller
and a convex safe set (although this can be relaxed; see
Remark 2), by picking a sufficiently large and choosing an
appropriate cost matrix for the QP, the CBF-based controller
guarantees asymptotic stability and does not introduce un-
desired equilibria or limit cycles. This design procedure is
showcased through a numerical example, which highlights
that proper selection of the QP’s cost matrix is an important
design step, as poor choice thereof leads to loss of stability.

Finally, our result has other implications as well, which
are not analyzed here, but are subject of future work. For
example, as we mention in Section V, it enables continuous
implementations of PDSs, in the form of CBF-controlled
systems. This is of particular interest for projection-based
controllers [13]–[17], as continuous implementations of them
can be beneficial, e.g., for additional robustness.

Related work

In [20], in the context of gradient flows (i.e., when the
unconstrained dynamics is the gradient of an optimization
problem’s objective function), it is shown that, as a → ∞,
the CBF-controlled system tends to a PDS. Nonetheless,
contrary to ours, this result refers only to the limit case,
without providing a quantitative bound on the “closeness”
between the PDS and the CBF-controlled system. In fact,
the result in [20] is partially2 recovered by our result.

2“Partially”, as we consider the DI-representation of PDSs, whereas [20]
considers the original discontinuous PDS vector field.
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In [11], it is shown that a specific type of antiwindup
control systems is a Krasovskii-like perturbation of PDSs.
This result is subsequently used to derive algorithms for
online feedback optimization with input constraints. Here
we establish that a similar relationship exists between PDSs
and CBF-controlled systems, which is, in general, a different
class than the one of antiwindup control systems. Nonethe-
less, these two results suggest that the relationship between
antiwindup control and CBFs is also of interest.

The problem of preserving asymptotic stability and elim-
inating undesired equilibria in CBF-based methods has re-
ceived quite some interest lately [3]–[7]. Nonetheless, none
of [3]–[7] approaches the problem by analyzing the PDS that
is related to the CBF-controlled system. Thus, while there is
no clear indication if our approach outperforms any of [3]–
[7], it provides a novel promising method and perspective to
reason about and design CBF-controlled systems.

II. NOTATION AND PRELIMINARIES

Given a set S ⊆ Rn, denote its boundary by ∂S and
its interior by Int(S). Moreover, given any x ∈ Rn, its
Euclidean distance to S is d(x,S) := miny∈S∥x − y∥,
where ∥·∥ denotes the Euclidean norm. Its projection to S
is projS(x) := argminy∈S∥x − y∥. The tangent cone to
S at x ∈ S, denoted by TS(x), is the set of all vectors
w ∈ Rn for which there exist sequences {xi} ∈ S and
{ti}, ti > 0, with xi → x, ti → 0 and i → ∞, such that
w = limi→∞

xi−x
ti

. Define the normal cone3 of S at x ∈ S
as NS(x) := {η ∈ Rn | η⊤v ≤ 0, ∀v ∈ TS(x)}. For more
information on tangent and normal cones, see [21].

Denote the set of positive-definite symmetric matrices
in Rn×n by Sn+. Given P ∈ Sn+, denote its minimum
and maximum eigenvalues by λ(P ) and λ(P ), respectively.
Given P ∈ Sn+ and x, y ∈ Rn, denote ⟨x | y⟩P = x⊤Py

and ∥x∥P=
√
x⊤Px. Given P ∈ Sn+, a set-valued map

f : Rn ⇒ Rn is called strongly P -monotone, if for any
x, y ∈ Rn and any x′ ∈ f(x), y′ ∈ f(y), one has ⟨x − y |
x′ − y′⟩P ≥ α∥x− y∥2P , for some α > 0. Given a function
f : Rn → Rn×m and a differentiable function h : Rn → R,
denote Lfh(x) := ∇h⊤(x) · f(x). A continuous function
γ : [0,∞) → R is said to belong to K∞, if γ(0) = 0, γ is
strictly increasing, and lima→∞ γ(a) = +∞.

III. CONTROL BARRIER FUNCTIONS AND PROJECTED
DYNAMICAL SYSTEMS

Both CBF-based controlled systems and PDSs are systems
constrained in some set S. As commonly done in the
literature [1]–[7], we consider sets given as super-zero-level-
sets of a control barrier function h : Rn → R:

S = {x ∈ Rn | h(x) ≥ 0}

We, also, make the following assumptions on h and S:

Assumption 1. S and h satisfy the following:

3As we work with sets satisfying constraint qualification conditions (see,
e.g., [20]), we do not distinguish between different kinds of normal cones.

1) S is nonempty, compact, and 0 ∈ S.
2) h is continuously differentiable, x 7→ ∇h(x) is locally

Lipschitz, and its Lipschitz constant on S is L∇h.
3) For all x ∈ Rn such that h(x) = 0, we have that

∇h(x) ̸= 0.
4) There exists γ ∈ K∞, such that d(x, ∂S) ≤ γ(|h(x)|),

for all x ∈ S.

Most of the above assumptions are standard in the liter-
ature of CBFs (that is, items 2 and 3, as well as item 1,
without the compactness assumption). Compactness of S is
needed for several bounds in the proof of Theorem III.1.
Extending Theorem III.1 to non-compact sets is subject of
future investigations. Moreover, item 4 holds a-priori, if h is
real-analytic, by the Łojasiewicz inequality (e.g., see [22]).

Consider the following “nominal” (unconstrained) system:

ẋ = f(x) (1)

where f : Rn → Rn.

Assumption 2. f is locally Lipschitz, and its Lipschitz
constant on S is Lf . Moreover, the origin is the only
equilibrium of (1) in S.

Both CBF-based control methods and PDSs start from
an unconstrained system (1) and end up with one that is
constrained in S. Given a tunable parameter a > 0 and a
P ∈ Sn+, consider

ẋ = fcbf,a(x) :=

argmin
µ

∥µ− f(x)∥2P

s.t. : Lµh(x) + ah(x) ≥ 0
(2)

Under the stated assumptions, the Quadratic Program (QP)
in the above equation has a unique solution, for any x,
which can be written in closed form as follows (see, e.g.,
[5, Theorem 1]):

fcbf,a(x) = f(x)−min
(
0,Lfh(x) + ah(x)

) P−1∇h(x)

∥∇h(x)∥2P−1

(3)
Essentially, the unconstrained vector-field is modified when-
ever Lfh(x) + ah(x) ≤ 0, i.e., whenever the value of h de-
creases along the trajectories of the nominal system (1) faster
than a state-dependent tunable threshold −ah(x). Vector
fields such as (2) and (3) are basically the closed-loop vector-
fields in control systems of the form ẋ = f(x)+u(x), where
the controller u(x) is designed via CBF-based methods. For
more details, see the discussion in Section IV. From standard
CBF theory [1], it follows that trajectories of (2) starting in
S stay in S. Moreover, fcbf,a is locally Lipschitz, thereby
implying existence and uniqueness of solutions of (2).

Now, consider the discontinuous dynamical system

ẋ = fpds(x) :=


f(x), x ∈ Int(S)

argmin
µ∈TS(x)

∥µ− f(x)∥2P , x ∈ ∂S

(4)
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Systems of the form (4) are called Projected Dynamical Sys-
tems (PDSs) [8]. In contrast to (2), in PDSs, the modification
of the vector field takes place only at the boundary of S.
Specifically, at x ∈ ∂S, a vector µ in the tangent cone of
S is chosen (the one that minimizes ∥µ − f(x)∥2P ), thus
keeping trajectories inside S. Under Assumptions 1 and 2,
solutions of the PDS (4) are equivalent to the solutions of
the following Differential Inclusion (DI) (see [12]):

ẋ ∈ F (x) := f(x)− P−1NS(x), x ∈ S (5)

In what follows, we focus on (5), as it is more amenable to
analysis.

A. Main result

The main result of this work, Theorem III.1 below, indi-
cates that (2) and (5) are intimately related: fcbf,a belongs
in a Krasovskii-like perturbation of the set-valued map F .

Theorem III.1. Let Assumptions 1 and 2 hold. For an
arbitrarily small ϵ, such that 0 < ϵ < minz∈∂S∥∇h(z)∥,
define

a∗ =
maxz∈S |Lfh(z)|

γ−1
(

minz∈∂S∥∇h(z)∥−ϵ
L∇h

)
Moreover, denote

M1 := min
z∈∂S

∥∇h(z)∥

M2 := max
z∈∂S

∥∇h(z)∥

M3 := M2 + L∇hγ(
1

a∗
max
z∈S

|Lfh(z)|)

L1 :=
λ(P )

λ(P )ϵ2
L∇h

[
1 +

M2λ(P )
(
M2 +M3

)
λ(P )M2

1

]
Finally, define

σ(a, x) := max

{
γ(

1

a
|Lfh(x)|),(

Lf + L1|Lfh(x)|
)
γ(

1

a
|Lfh(x)|)

}
Then, for any a ≥ a∗, it holds that for all x ∈ S:

fcbf,a(x) ∈ Ka(F (x))

where Ka(F (x)) := F
(
(x+σ(a, x)B)∩S

)
+σ(a, x)B and

B ⊆ Rn is the closed unit ball.

Proof. See Appendix.

Observe that, due to Assumption 1 item 3, M1 > 0,
and, hence, there is always an ϵ such that 0 < ϵ <
minz∈∂S∥∇h(z)∥. Moreover, σ is continuous on both ar-
guments, strictly decreasing on a, and satisfies σ(a, x) ≥ 0,
σ(a, 0) = 0 and lima→∞ σ(a, x) = 0. As such, the larger a
is picked, the closer is the dynamics of (2) to the DI (5).

IV. PRESERVING STABILITY IN CBF-BASED CONTROL

As Theorem III.1 provides quantitative information, that
depends on a, on how much of a perturbation fcbf,a is to F ,
and as that perturbation is vanishing as a increases, by tuning
a sufficiently large, robust properties of F may be transferred
to fcbf,a. In this section, we sketch how this perspective
can be exploited to design the parameters of CBF-based
controllers, such that they retain asymptotic stability of
a given nominal controller, without introducing undesired
equilibria or limit cycles, while guaranteeing safety. First,
we provide a short discussion on the design methodology,
and then we demonstrate it on a numerical example.

A. Sketch of the design methodology

We consider a control system ẋ = f(x) + u, for which
a nominal control law4 u0 : S → Rn has been designed,
without taking any safety considerations into account:

ẋ = f0(x) := f(x) + u0(x) (6)

Assumption 3. We impose the following assumptions:
• f0 is locally Lipschitz. Moreover, the origin is the only

equilibrium of (6) in S. Finally, −f0 is strongly G-
monotone, with G ∈ Sn+.

• S is convex.

In particular, strong G-monotonicity of −f0 implies that
(6) is quadratically incrementally stable5; i.e., u0 has been
designed to incrementally stabilize the control system. As the
origin is an equilibrium, incremental stability implies global
asymptotic stability of the origin, with Lyapunov function
V (x) = x⊤Gx. Convexity of S is needed to make use of
Proposition IV.1 below. Nonetheless, as discussed in Remark
2, this assumption can be relaxed, by extending Proposition
IV.1 to prox-regular sets (see [12] for a definition).

Given the nominal controller u0, CBF-based control meth-
ods design a safe controller ucbf,a : S → Rn as follows:

ucbf,a(x) :=

{
argmin

v
∥v − u0(x)∥2P

s.t. : Lf+vh(x) + ah(x) ≥ 0
(7)

where both P ∈ Sn+ and a > 0 are subject to design. From
CBF theory [1] we know that ucbf,a renders S forward-
invariant for the closed-loop (safety), for any P and a. Here,
we seek for a selection of P and a such that ucbf,a, retains
asymptotic stability, on top of its safety properties.

Towards this, we employ tools from PDS theory in com-
bination with Theorem III.1. First, we recall the following:

Proposition IV.1 ([18, Theorem 2] adapted). Let Assump-
tions 1 and 3 hold. Then −F0(x) := −f0(x) + G−1NS(x)
is strongly G-monotone.

4In the CBF literature, it is common that a nominal stabilizing (but,
generally, unsafe) controller u0 is given, and the CBF-based controller is
derived as a modification of the nominal one (see, e.g., [1], [5]).

5Incremental stability is a form of stability where trajectories of the
system converge to each other. For the technical definition, see, e.g., [18].
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The above proposition implies that, under its assumptions,
any well-posed (in the sense of existence of solutions) system
ẋ = g(x), with g(x) ∈ F0(x) = f0(x) − G−1NS(x) is
incrementally stable. In fact, it can be shown that, under
suitable assumptions on σ(a, x) (which, e.g., are satisfied in
the numerical example of Section IV-B), there exists some
astable > 0 such that any system ẋ = g(x) ∈ Ka(F0(x))
with a ≥ astable is asymptotically stable, where Ka(F0(x))
and σ(a, x) are given by Theorem III.1.

Moreover, we observe that the closed-loop vector-field
fcl = f(x) + ucbf,a(x) can be written as

ẋ = fcl(x) :=

argmin
µ

∥µ− f0(x)∥2P

s.t. : Lµh(x) + ah(x) ≥ 0
(8)

which is like fcbf,a from (3), where f is replaced by f0.
The above suggest that the following selection for P and

a:
P := G, a ≥ {a∗, astable} (9)

guarantees asymptotic stability for the CBF-controlled
closed-loop ẋ = fcl(x). That is because, by Theorem III.1,
since a ≥ a∗ and P = G, we have that fcl(x) ∈ Ka(F0(x)),
where F0(x) = f0(x) − G−1NS(x). Then, from what we
mentioned above, since a ≥ astable, we know that ẋ =
fcl(x) ∈ Ka(F0(x)) is asymptotically stable.

Evidently, apart from the sufficiently large value of a,
particular care is needed in choosing the cost matrix P
of the QP in (7): P has to be equal to G, which comes
from the Lyapunov function of the nominal system. In fact,
the numerical example in Section IV-B shows that a wrong
choice of P in (7) may result in stable undesired equilibria
and loss of stability. That is because poor choice of P might
imply that the PDS ẋ ∈ f0(x)−P−1NS(x) that is associated
to the CBF-controlled system (8) is not incrementally stable
(see [18, Example 1]), thus possibly implying instability
of the CBF-dynamics, since PDS and CBF-dynamics are
intimately related, as Theorem III.1 suggests.

Remark 1. The proposed controller is similar to what is
proposed in [5], albeit in the simple scenario of ẋ =
f(x)+u. Nonetheless, in [5], no method on how to design the
QP’s cost matrix is given (except for a class of mechanical
systems). This highlights how Theorem III.1 and the connec-
tion between PDSs and CBFs provide new perspectives on
how to design CBF-based controllers.

Remark 2. To extend our results to general control-affine
dynamics ẋ = f(x) + g(x)u(x), that is typically considered
in the CBF literature, we would have to consider PDSs
with positive-semidefinite projection matrices P or state-
dependent ones P (x) ∈ Sn+. Moreover, the convexity assump-
tion on S can be relaxed, by extending Proposition IV.1 to
e.g. prox-regular sets (for the definition of prox-regularity,
see [12]), by employing hypomonotonicity of their normal
cones. These considerations are left for future work, as this
work’s main aim is to present Theorem III.1 and provide a
discussion on its possible implications.

B. Numerical Example

Consider the following 2-D control system, which has also
been considered in [6] and [7]:

ẋ = x+ u

where x, u ∈ R2. The nominal controller u0(x) =(
−2x1 − 4x2 x1 − x2

)⊤
incrementally stabilizes the nom-

inal system ẋ = f0(x) = x + u0(x) (−f0 is strongly G-
monotone), with a corresponding Lyapunov function V (x) =
x⊤Gx, where

G =

(
0.625 0.125
0.125 2.625

)
(10)

Consider, also, the ellipsoidal set S = {x ∈ R2 | h(x) ≥ 0},
where

h(x) = 9− x⊤
(
3 2
2 2

)
x

Observe that both S and f0 satisfy Assumptions 1 and 3.
We seek to design a controller ucbf,a : S → R2, such
that the closed-loop system ẋ = fcl(x) = x + ucbf,a(x)
is asymptotically stable, with fcl(0) = 0, and the set S is
forward invariant (i.e., safety is imposed).

Figure 1 depicts two trajectories, with the same initial
condition: a) one that corresponds to the closed-loop system
with the controller designed as in (7) with the correct P -
matrix (i.e., the one suggested by (9), which is given by
(10)), and b) one that corresponds to a closed-loop system
with a controller designed as in (7), but with a wrong P -

matrix, namely
(
3 0
0 1

)
. In both cases, the parameter a

has been chosen as a = 1. It is clear from the figure that
the proposed controller (case a) safely stabilizes the origin,
whereas the controller with the “wrong” P -matrix (case b)
introduces a stable undesired equilibrium at the boundary
of S (at approximately (−2.985, 2.777)). That is because in
case (a) the associated PDS is incrementally stable, whereas
in case (b) it is not. This demonstrates the power of the
insights that Theorem III.1 provides, when designing CBF-
based controllers.

Remarkably, in the experiments it appeared that, irrespec-
tive of the value of a, the correct controller was able to
stabilize the origin. This might be due to the linearity of
the dynamics combined with the ellipsoidal safe set, as well
as because σ(a, x) in Theorem III.1 has been derived in
a conservative way (e.g., employing Lipschitz constants).
Further investigations on this are subject of future work.

V. CONCLUSION AND FUTURE WORK

We have proven that CBF-controlled systems are
Krasovskii-like perturbations of PDSs, and provided a quan-
titative bound on that perturbation. This provides novel per-
spectives on analyzing and designing CBF-based controllers
for safe stabilization. In the simple scenario of convex safe
sets and complete control over the dynamics ẋ = f(x) + u,
we have demonstrated how it can be used to design safe
CBF-based controllers that preserve asymptotic stability of
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Fig. 1: Trajectories of the closed-loop system for two dif-
ferent controllers: a) controller designed as in (7) with the
correct P -matrix (i.e., the one given by (10)), and b) con-
troller designed as in (7), but with a wrong P -matrix. Initial
condition is (−1, 2). The correct controller (case a) safely
stabilizes the origin, whereas the wrong controller (case b)
introduces a stable undesired equilibrium at (−2.985, 2.777).

the origin and do not introduce undesired equilibria or limit
cycles. Future work will focus on formalizing the design
method of Section IV, and extending it to more general
dynamics and safe sets.

Finally, the implications of Theorem III.1 extend beyond
the design of CBF-based controllers. Following steps similar
to [11], it can be shown that trajectories of the CBF-
controlled system (2) uniformly converge to trajectories of
the PDS (4). Thus, CBF-controlled systems may serve as
continuous implementations/approximations of discontinu-
ous PDSs. This is of particular interest for projection-based
controllers [13]–[17], as continuous implementations of such
controllers might provide additional robustness.
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APPENDIX: TECHNICAL LEMMAS AND PROOF OF
THEOREM III.1

In the following, we denote Ucbf,a := {z ∈ S | Lfh(z) +
ah(z) ≤ 0}. To prove Theorem III.1, we make use of the
following Lemmas:

Lemma V.1. Given a > 0, consider any x ∈ Ucbf,a and any
y ∈ proj∂S(x). It holds that

∥x− y∥≤ γ(
1

a
|Lfh(x)|)

Proof of Lemma V.1. It is proven by combining Assumption
1 item 4 with the fact that 0 ≤ h(x) ≤ − 1

aLfh(x).

Lemma V.2. For any a ≥ a∗, for all x ∈ Ucbf,a, we have

0 < ϵ ≤ ∥∇h(x)∥≤ M3

Proof of Lemma V.2. It is proven by combining Assumption
1 item 2, the triangle inequality and Lemma V.1.

Lemma V.3. Given any a ≥ a∗, it holds that, for any x ∈
Ucbf,a and y ∈ proj∂S(x)∥∥∥ P−1∇h(x)

∥∇h(x)∥2P−1

− P−1∇h(y)

∥∇h(y)∥2P−1

∥∥∥ ≤ L1∥x− y∥

where

L1 :=
λ(P )

λ(P )ϵ2
L∇h

[
1 +

M2λ(P )
(
M2 +M3

)
λ(P )M2

1

]
Proof of Lemma V.3. We have the following:∥∥∥ P−1∇h(x)

∥∇h(x)∥2P−1

− P−1∇h(y)

∥∇h(y)∥2P−1

∥∥∥ =∥∥∥P−1∇h(x)∥∇h(y)∥2P−1−P−1∇h(y)∥∇h(x)∥2P−1

∥∇h(x)∥2P−1∥∇h(y)∥2P−1

∥∥∥ ≤

λ(P−1)

(∥∥∥∇h(x)������∥∇h(y)∥2P−1 −∇h(y)������∥∇h(y)∥2P−1

∥∥∥
∥∇h(x)∥2P−1������∥∇h(y)∥2P−1

+

+

∥∥∥∇h(y)∥∇h(y)∥2P−1−∇h(y)∥∇h(x)∥2P−1

∥∥∥
∥∇h(x)∥2P−1∥∇h(y)∥2P−1

)
≤

λ(P−1)

(
∥∇h(x) −∇h(y)∥

∥∇h(x)∥2P−1

+∥∥∥∇h(y)
∥∥∥∣∣∣∥∇h(y)∥P−1+∥∇h(x)∥P−1

∣∣∣·
·

∣∣∣∥∇h(y)∥P−1−∥∇h(x)∥P−1

∣∣∣
∥∇h(x)∥2P−1∥∇h(y)∥2P−1

)
≤

λ(P−1)

[
∥∇h(x)−∇h(y)∥

λ(P−1)ϵ2
+

M2λ(P
−1/2)

(
M2 +M3

)
·

·λ(P
−1/2)∥∇h(x)−∇h(y)∥

λ2(P−1)ϵ2M2
1

]
≤

λ(P )

λ(P )ϵ2
L∇h

[
1 +

M2λ(P )
(
M2 +M3

)
λ(P )M2

1

]
∥x− y∥

where in the third inequality we used Lemma V.2.

Let us proceed to the proof of Theorem III.1.

Proof of Theorem III.1. First, due to Assumption 1 items 2
and 3, it holds that (see, e.g., [12, Example 2.10]):

NS(x) =

{
{0}, x ∈ Int(S)
{λ∇h(x) | λ ≤ 0}, x ∈ ∂S

We distinguish the following cases:
a) Case 1: x ∈ S and Lfh(x) + ah(x) > 0. Here we

have fcbf,a(x) = f(x) ∈ F (x), and the result holds trivially.

774



b) Case 2: x ∈ S and Lfh(x) + ah(x) ≤ 0. In this
case, we can write

fcbf,a(x) = f(x)− Lfh(x) + ah(x)

∥∇h(x)∥2P−1

P−1∇h(x) (11)

which is well-defined, as ∇h(x) ̸= 0, from Lemma V.2.
Notice that, since h(x) ≥ 0 and Lfh(x) + ah(x) ≤ 0, we
have that |Lfh(x) + ah(x)|≤ |Lfh(x)|.

Consider any y ∈ proj∂S(x). Observe that
η =

(
Lfh(x) + ah(x)

)
∇h(y)

∥∇h(y)∥2
P−1

∈ NS(y), since
Lfh(x)+ah(x)

∥∇h(y)∥2
P−1

≤ 0. Also, ∇h(y) ̸= 0, due to Assumption 1
item 2. We have the following:∥∥∥f(y)− P−1η − f(x) +

Lfh(x) + ah(x)

∥∇h(x)∥2P−1

P−1∇h(x)
∥∥∥ ≤

∥f(y)− f(x)∥+

+|Lfh(x) + ah(x)|
∥∥∥ P−1∇h(y)

∥∇h(y)∥2P−1

− P−1∇h(x)

∥∇h(x)∥2P−1

∥∥∥ ≤

Lf∥x− y∥+|Lfh(x) + ah(x)|L1∥x− y∥≤
Lf∥x− y∥+|Lfh(x)|L1∥x− y∥ ≤(
Lf + L1|Lfh(x)|

)
γ(

1

a
|Lfh(x)|)︸ ︷︷ ︸

σ1(a,x)

where in the second inequality we used Assumption 2, in the
third inequality we used Lemma V.3, in the fourth inequality
we used that |Lfh(x) + ah(x)|≤ |Lfh(x)|, and in the fifth
inequality we used Lemma V.1. Finally, from the above we
get:

fcbf,a(x) =

f(x)− Lfh(x) + ah(x)

∥∇h(x)∥2P−1

P−1∇h(x) ∈

f(y)− P−1η + σ1(a, x)B ⊆
f(y)− P−1NS(y) + σ1(a, x)B ⊆

f
(
(x+ γ(

1

a
|Lfh(x)|)B) ∩ S

)
−

P−1NS

(
(x+ γ(

1

a
|Lfh(x)|)B) ∩ S

)
+ σ1(a, x)B ⊆

f
(
(x+ σ(a, x)B) ∩ S

)
−

P−1NS

(
(x+ σ(a, x)B) ∩ S

)
+ σ(a, x)B =

F
(
(x+ σ(a, x)B) ∩ S

)
+ σ(a, x)B
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