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Abstract—This paper considers the problem of monitoring and
adaptively estimating an environmental field, such as temperature
or salinity, using an autonomous underwater vehicle (AUV). The
AUV moves in the field and persistently measures environmental
scalars and its position in its local coordinate frame. The
environmental scalars are approximately linearly distributed over
the region of interest, and an adaptive estimator is designed
to estimate the gradient. By orthogonal decomposition of the
velocity of the AUV, a linear time-varying system is equivalently
constructed, and the sufficient conditions on the motion of
the AUV are established, under which the global exponential
stability of the estimation error system is rigorously proved.
Furthermore, an estimate of the exponential convergence rate is
given, and a reference trajectory that maximizes the estimate of
the convergence rate is obtained for the AUV to track. Numerical
examples verify the stability and efficiency of the system.

Index Terms—Adaptive Estimation, Environmental Monitor-
ing, Exponential Stability, Autonomous Underwater Vehicle.

1. INTRODUCTION

Studying environmental fields such as temperature, chem-
ical concentration, or radiation intensity has attracted the
attention of researchers due to its wide applications. For
example, in oceanography, for monitoring large oil spills
using autonomous underwater vehicles (AUVs) [1]. AUVs are
a tool about two-decade-old [2] with diverse oceanographic
capabilities, including for environmental monitoring. One of
their most significant drawbacks is battery time which is
influenced by inertial characteristics and propulsion efficiency
[3]. Efficient battery-saving algorithms are needed, especially
for demanding scenarios such as off-shore monitoring [4].
This paper addresses efficiency by improving the estimation
performance under the AUV’s energy constraints, deriving the
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exponential convergence of the estimation error, and finding
the motion characteristics that guarantee convergence.

Adaptive estimation for environmental monitoring has been
a thoroughly studied topic over the past decades [5], yet, it
is still fairly novel regarding its deployment in underwater
surveys as its open-loop counterpart is generally adopted [6].
Source localization using pseudo gradient-based (Chemotaxis)
method for a single agent is proposed in [7]. By maximiz
ing the determinant of Fisher information matrix, a proper
choice of the marine vehicle’s motion is given for source
localization in [8]. Multi-agent systems are sometimes essen-
tial for collecting measurements in larger or more complex
environments. The work in [9] provides an effective estimation
scheme for multi-agents systems, which only uses the on-
board sensors to solve the distributed estimation problem
of unknown field or sensor networks. Still, most of these
multi-agent systems also rely on adaptively estimating the
unknown field. In [10], AUVs use local interpolation rules
to estimate the scalar field in their regions. The distributed
Kriged Kalman filter of [11] uses average consensus estimators
and distributed Jacobi over-relaxation to estimate the scalar
field. In [12], the environmental field is modeled as a Gaus-
sian process (GP), which is learned by maximization of the
log marginal likelihood from the accumulated measurements
gathered by the multi-AUV system. However, the absence of
GPS signals and acoustic communication underwater poses
great challenges for the cooperative scheme of multiple AUVs.
Therefore, a limited number of mobile sensors are considered
in [13] to reduce memory and communication requirements
when environmental monitoring over large areas.

We design a systematic framework for the AUV to realize
the environmental monitoring of a region while considering
efficiency. An adaptive estimator is proposed to estimate the
uniform gradient using the scalar measurement and position
in the local coordinate frame. Compared with the online
parameter estimation problem in adaptive estimation [14], [15]
where the persistent excitation condition is often required on
the regressor function in the real space, the adaptive estimator
proposed in this paper is defined in the complex plane,
and thus the persistent excitation condition is not directly
established on the measuring position, but on one of the
features of the measuring trajectory, the angular velocity. By
decomposing the velocity of the AUV into a time-varying
orthogonal basis, a second-order linear time-varying system in
real space is equivalently constructed from the dynamics of the
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estimation error in the complex plane. Sufficient conditions are
established on the distance and angular velocity with respect
to the origin of the local frame. It is rigorously proved that a
persistently exciting angular velocity guarantees the global ex-
ponential stability of the estimation error system. Furthermore,
an explicit expression is given to estimate the convergence
rate of the estimation error. By analyzing its relationship with
the features of the measuring motion, estimation efficiency is
considered under the constrained energy of the mobility. It is
proved that the maximum convergence rate estimate can be
reached, given its excitation level, when the angular velocity
is constant. Accordingly, a reference trajectory is designed to
guarantee exponential stability of the estimation error system
and enable efficient environment monitoring by the AUV as
it tracks the reference trajectory.

The rest of the paper is organized as follows. In Section
2, the environmental monitoring problem is formulated. A
framework for the AUV to solve the previously stated problem
is given in Section 3. Section 4 demonstrates the stability and
efficiency of the system. Numerical examples follow in Section
5, and conclusions in Section 6.

Notations: ι is the unit imaginary number with ι2 = −1.
The principal argument angle and magnitude of c are denoted
as ∠c and |c|, respectively.

2. PROBLEM FORMULATION

A. Kinematic and Dynamic Model of the Single Agent

Define the local coordinate frame {n} as shown in Fig. 1,
whereas its origin is defined as the initial position of the AUV,
the xn-axis points towards Due North, and the yn-axis points
towards Positive East. Note that the directions of axes are the
same as the familiar North-East coordinate system. Denote
the position in the local frame {n} as p ∈ C. The surge-yaw
kinematic model of the AUV can be described as{

ṗ = νeιψ,

ψ̇ = w,
(1)

where ψ ∈ R is the yaw angle, ν ∈ R is the surge velocity and
w ∈ R is the yaw velocity. The dynamic model is described
as follows, which is based on the classic model of INFANTE
AUV [16] {

mν ν̇ + dν = F,

mwẇ + dw = Γ,
(2)

where mν = m − Xν̇ , dν = −Xνν
2w, mw = Iz − Nẇ,

dw = −Nwνw. The variables m, Iz , X{·}, and N{·} denote
the mass, moment of inertia, and the classical hydrodynamic
derivatives of the AUV. (F, Γ ) defines the control input vector
of force and torque to be designed.

B. Environmental Model and Sensor Model

The environment model is a scalar field defined in the local
frame {n}. The scalar field is a mapping function denoted as
f(p) : C→ R, which is given by

f(p) = 〈p, h〉+Σ, (3)

Fig. 1. Illustration of the scalar field monitored and estimated by an AUV.

where h ∈ C is the gradient, and Σ ∈ R is the offset at the
origin of {n}. For the environmental scalars, which are linearly
distributed over the region of interest as shown in Fig. 1, the
gradient h has the form as

h = ∇f(p) = ~eιφ, (4)

where ~ ∈ R+ and φ ∈ R are the magnitude and the argument
of the gradient h, respectively. h is constant and independent
of the position p. Denote ς ∈ R as the measurement at time
t, then the measuring model of the AUV is

ς = f(p(t)). (5)

Since the initial position in the local frame is known to
the AUV as p(0) = 0, denote ς0 = f(p(0)) as the scalar
measurement at time t = 0, then it follows from (3) and (5)
that Σ = ς0, which is thus known to the AUV.

C. Environmental Monitoring and Estimation Convergence
Rate

The environmental monitoring problem for an AUV is to
estimate h and Σ. Since Σ is available by recording the scalar
measurement at the time t = 0, the problem is thus reduced
to merely estimating the gradient h.

Problem 1 (Environmental monitoring Problem). For an AUV
with kinematic model (1), dynamic model (2), and measuring
model (5), design a gradient estimator ĥ and a control law
(F, Γ ), satisfying that there exist positive constants µ, λT ∈
R+ such that for any t0 ≥ 0, t ≥ t0,

|ε(t)| ≤ µ|ε(t0)|e−λT (t−t0), (6)

where ε = ĥ− h is the estimation error. That is, ε converges
to the origin globally exponentially fast.

The convergence rate, λT , is largely determined by the
properties of the AUV’s motion. Increased mobility can result
in improved observability and estimation performance, but it
also incurs high consumption costs and battery capacity re-
quirements that may limit available mobility resources. Conse-
quently, we aim to investigate the efficiency of environmental
monitoring by addressing the question: With a given amount
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Fig. 2. Proposed framework with platform, system, and service levels.

of resources, what motion strategy for the AUV will enable the
highest estimation convergence rate?

3. EFFICIENT ENVIRONMENTAL MONITORING

The AUV has different roles when solving the environmen-
tal monitoring problem. It is both a data collector and an
observer for estimating the scalar field, as well as a controlled
object for motion control. Additionally, the motion of the AUV
not only determines the performance of gradient estimation but
also is driven by the controller. To divide the roles of the AUV,
a multi-level systematic framework is proposed, as illustrated
in Fig. 2. This framework defines different tasks for the AUV
at different levels. Specifically, it consists of three layers, i.e.,
the platform level, the system level, and the service level.

At the service level, the gradient estimator is proposed. The
stability of the estimation error system is analyzed. Estimation
performance is determined by the trajectory p of the AUV,
along which the environmental scalar ς is collected.

At the system level, since the controller also drives p, we in-
troduce the reference trajectory denoted as pR to decouple the
desired measuring motion, enabling efficient estimation from
the actual motion. A virtual AUV with the same kinematic
model as (1) is introduced, for which a reference trajectory is
designed in the frame {n}. The design criteria for pR takes into
account the AUV’s feasibility to track and estimate efficiently.
The outer-loop controller of the actual AUV generates the
desired input (νR, wR) to track the reference trajectory.

At the platform level, the inner-loop controller is designed
for the dynamics of the AUV, and the desired input (νR, wR)
is tracked by designing the control law (F, Γ ). An AUV’s ref-
erence trajectory tracking control problem is well investigated,
e.g., [17], and the following proposition is given.

Proposition 3.1. Suppose that the reference trajectory pR
is sufficiently smooth. Then there exists trajectory tracking
control law (F, Γ ), such that

lim
t→∞

p(t) = pR(t),

lim
t→∞

ṗ(t) = vR(t),
(7)

where pR is generated by a system ṗR = vR, where vR is the
designed reference velocity.

Proof. The proof is similar to [17], and thus is omitted.

Based on the proposed framework and Proposition 3.1,
efficient estimation can be achieved as time goes to infinity,
by characterizing the reference trajectory pR with vR, then
designing the control law for the AUV to realize (7). In this
paper, we mainly focus on the service and system levels, where
an online gradient estimator is designed, and the reference
trajectory is characterized to realize efficient estimation.

4. MAIN RESULTS

We first propose an adaptive estimator in the complex plane
to solve the environmental monitoring problem. Subsequently,
efficiency is considered based on the stability analysis of the
estimation error system.

A. Gradient Estimator

At the service level, we first propose the online estimator
for the AUV to accomplish its environmental monitoring task.
Using the scalar measurement ς , the gradient estimator ĥ is
proposed as follows:

˙̂
h = −k0(〈p, ĥ〉 − ς + ς0)p, (8)

where the positive constant k0 ∈ R+ is the estimator gain.
Since h is constant, combining (3), (5) with (8) yields the
dynamics of the estimation error ε as

ε̇ =
˙̂
h− ḣ = −k0〈p, ĥ− h〉p = −k0〈p, ε〉p. (9)

Note that (9) has a similar form with n−dimensional
linear regression model in adaptive estimation [18], where
the regressor function is defined as p : R+ → Rn. In this
case, it is well known that the estimation error dynamics are
globally exponentially stable under the persistently exciting
(PE) condition on the matrix pp> ∈ Rn×n. However, p is
defined in the complex plane in (9), and it is difficult to find
the PE condition directly on p ∈ C. In addition, p is governed
by the kinematic model (1) and the dynamic model (2), which
is quite different from the regressor function in [18]. It is
necessary to analyze the physical meaning of p as a measuring
trajectory, to design a reference trajectory that satisfies the PE
condition.

To facilitate the analysis of mobility and limited resources,
we give the physical meaning of variables in the motion.
Denote the distance with respect to the origin of the frame {n}
as ρ(t) = |p(t)|, and the unit-length direction as %(t) = p(t)

ρ(t) .
Then the estimation error ε can be equivalently given by
ε = η%+ ζι%, where η = 〈ε, %〉 and ζ = 〈ε, ι%〉. By definition,
%̇ = vρ−ρ̇p

ρ2 , where the velocity of the AUV in the frame
{n} is denoted as v = ṗ ∈ C. Since ρ =

√
〈p, p〉, one has

ρ̇ = 2〈v,p〉
2
√
〈p,p〉

= 〈v,p〉
ρ . Substituting it into %̇ and combining the

orthogonal decomposition1 v = 〈v, %〉%+ ι〈v, ι%〉% yields

%̇ =
vρ− 〈v, p〉%

ρ2
=

(〈v, %〉+ ι〈v, ι%〉)%ρ− 〈v, ρ%〉%
ρ2

= ιω%,

1〈a, b〉 b + ι 〈a, ιb〉 b = (Re(a/b) + ιRe(−ιa/b))b = (Re(a/b) +
ιIm(a/b))b = (a/b)b = a.
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where ω(t) = 〈v(t),ι%(t)〉
ρ(t) denotes the angular velocity of the

AUV with respect to the origin of the frame {n}. Then the
dynamics of η and ξ can be expressed by (9) as

η̇ = −k0ρ
2〈%, ε〉〈%, %〉+ 〈ε, ιω%〉 = −k0ρ

2η + ωζ,

ζ̇ = 〈ε, ι2ω%〉 = −ωη.
(10)

Stack η, ζ into a vector X = [η ζ]> ∈ R2. (10) can be
reorganized in the Linear Time Varying (LTV) system, denoted
by (C,A), as

Ẋ(t) = A(t)X(t),

z(t) = C>X(t),
(11)

where z = η = 〈ε, pρ 〉 = 〈ĥ−h,p〉
ρ = 〈p,ĥ〉−ς+ς0

ρ is the output
of the system since it is measurable, and

A(t) =

[
−k0ρ

2(t) ω(t)
−ω(t) 0

]
, C = [1 0]>.

Before analyzing the stability of the LTV system (11), we
introduce the following lemma.

Lemma 4.1 ( [19], Lemma 4.8.1). Assume that there exist
positive constants T,wT ∈ R+ such that W (t) ∈ R2 satisfies
the inequality∫ t+T

t

|W (τ)|2dτ ≤ wT , ∀t ≥ 0. (12)

If there exist positive constants β1, β2 ∈ R+ such that the
observability gramian Ñ(t, t+T ) of the system (C, Ã) where
Ã ∈ R2×2, C ∈ R2 satisfies β1I ≤ Ñ(t, t + T ) ≤ β2I, then
there exist positive constants β′1, β

′
2 ∈ R+ where

β′1 =
β1

2(1 + β2wT )
, (13)

such that the observability gramian N(t, t + T ) of (C,A)
where A = Ã+WC> satisfies β′1I ≤ N(t, t+ T ) ≤ β′2I.

Denote the time derivative of ω as ω̇ = aω , then we have
the following stability results on the gradient estimation error.

Theorem 4.1. Suppose that ρ is time invariant, and there exist
positive constants d, d̄ ∈ R+ such that

d ≤ ρ ≤ d̄, ∀t ≥ 0. (14)

Besides, the following conditions on ω hold:
C1) ω is sufficiently smooth, and there exist constants

āω, ω̄ ∈ R where āω ≥ 0, ω̄ > 0, such that |aω(t)| ≤ āω ,
|ω(t)| ≤ ω̄, ∀t ≥ 0;

C2) and ω is persistently exciting (PE), i.e., there exist
positive constants ν, β ∈ R+ such that

1

ν

∫ t+ν

t

|ω(τ)|2dτ ≥ β,∀t ≥ 0. (15)

Let k0 > 4āωd̄
2

d4
√
β

for the estimator (8). Then the estimation
error ε converges to the origin globally exponentially fast.

Proof. The stability of the system (9) is equivalent to that of
the LTV system (11), where A(t) is always a stable matrix for

any ω since k0 ∈ R+ and C1) holds. For simplicity, we drop t
for the constant ρ. Then there is A(t)+A>(t) = −2k0ρ

2CC>.
Defining a Lyapunov function as V (t) = X>X = ‖X‖2, then
its time derivative is V̇ (t) = −2k0ρ

2X(t)>CC>X(t). Note
that V (t+T )−V (t) =

∫ t+T
t

V̇ (τ)dτ , and one can derive by
(14) that for any t ≥ 0 and T ∈ R+,

V (t+ T )− V (t) ≤ −2aX>(t)N(t, t+ T )X(t), (16)

where a = k0d
2, and N(t, t+T ) is the observability gramian

of the system (C,A).
For (16), we next prove the existence of the positive constant

β′1 such that N(t, t+T ) ≥ β′1I . Motivated by Lemma 4.1, we
consider an auxiliary system as follows:

˙̃η = −k0ρ
2η̃ + ωζ̃,

˙̃
ζ = 0,

(17)

with the state matrix Ã(t) =

[
−k0ρ

2 ω
0 0

]
. By letting W =

[0 − ω]>, one has A = Ã+WC>. Since C1) holds, (12) is
satisfied for W with wT = ω̄2T . Then by (13) in Lemma 4.1,
β′1 for N(t, t + T ) of the system (C,A) can be obtained by
finding β1 and β2 for Ñ(t, t+ T ) of the system (C, Ã).

Considering (17), ζ̃2 is constant since ˙̃
ζ equals to zero. Then

finding β1 and β2 for Ñ(t, t+T ) is equivalent to establishing
the following inequality

β1(η̃2(t) + ζ̃2) ≤
∫ t+T

t

η̃2(τ)dτ ≤ β2(η̃2(t) + ζ̃2), (18)

where η̃(τ) = Φ(τ, t)η̃(t) +
∫ τ
t
Φ(τ, σ)ω(σ)dσζ̃, with

Φ(τ, t) = e−k0ρ
2(t−τ) being the state-transition function.

Denote x(τ) = Φ(τ, t)η̃(t) and y(τ) =
∫ τ
t
Φ(τ, σ)ω(σ)dσζ̃.

Then
∫ t+T
t

η̃2(τ)dτ ≥
∫ t+T ′
t

(x
2(τ)
2 − y2(τ))dτ +∫ t+T

t+T ′
(y

2(τ)
2 − x2(τ))dτ holds2 for T ′ ∈ R+ where

0 < T ′ < T . In this way, we can separately analyze x and y.
For x, we have e−k0d̄

2(τ−t) ≤ Φ(τ, t) ≤ e−a(τ−t)for
any τ ≥ t. Since d̄ ≥ d, it yields that

∫ t+T ′
t

x2(τ)
2 dτ −∫ t+T

t+T ′
x2(τ)dτ ≥ (1−e−2k0d̄

2T ′−2d̄2

d2 (e−2aT ′−e−2aT )) η̃
2(t)

4k0d̄2
≥

(1− (1 + 2d̄2

d2 )e−2aT ′) η̃
2(t)

4k0d̄2
. Choose

T ′ = ln(2(1 + 2d̄2/d2))/2a, (19)

then for β1 = 1
8k0d̄2

, there is∫ t+T ′

t

x2(τ)

2
dτ −

∫ t+T

t+T ′
x2(τ)dτ ≥ β1η̃

2(t). (20)

For y, we first prove the upper bound of
∫ t+T ′
t

y(τ)dτ .
Taking Laplace transform of y(τ) =

∫ τ
t
Φ(τ, σ)ω(σ)dσζ̃

yields y(τ) = ω(s)
s+k0ρ2

ζ̃, then y(τ) = y[0,t)(τ) + y[t,t+T ′](τ),
for any 0 ≤ τ ≤ t+ T ′. Thus∫ t+T ′

t

y2(τ)dτ ≤ 2

∫ t+T ′

t

y2
1(τ)dτ + 2

∫ t+T ′

t

y2
2(τ)dτ,

(21)

2(x+ y)2 + y2 − x2

2
= 1

2
(x+ 2y)2 ≥ 0.
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where y1 :=
ω[0,t)

s+a ζ̃ and y2 :=
ω[t,t+T ′]
s+a ζ̃. Following the

same procedure in the proof of Lemma 4.8.2 in [19], one
can derive that

∫ t+T ′
t

y2
1(τ)dτ ≤ ω̄2

2a3 ζ̃
2, and for the second

term on the right-hand side of (21), one can also yield

by that
∫ t+T ′
t

y2
2(τ)dτ ≤

∫ t+T ′
t

ω̄2dτ

‖s+a‖2∞
ζ̃2 ≤ 4ω̄2

a2 T
′ζ̃2, since

‖ 1
s+a‖

2
∞ ≤ 4

a2 as proved in Lemma A.2 in [19] and C1) holds
for ω. Put these into (21), then∫ t+T ′

t

y2(τ)dτ ≤ ω̄2

a2
(
1

a
+ 8T ′)ζ̃2. (22)

Next we prove the lower bound of
∫ t+T
t+T ′

y2(τ)ρτ . Let ŷ(τ)

as ŷ(τ) = ω
k0ρ2

(1 − s
s+k0ρ2

)ζ̃ = ω
k0ρ2

ζ̃ − ω̇
k0ρ2(s+k0ρ2) ζ̃.

Following the same procedure to derive (22), we have∫ t+T
t+T ′

ω̇2

k20d̄
4(s+k0ρ2)2

dτ ≤ ā2ω
(a2)2 ( 1

a+8(T−T ′)), since C1) holds
for aω . By (15), one obtains by (15) that∫ t+T

t+T ′
y2(τ)dτ ≥

∫ t+T
t+T ′

ω2dτ

2k2
0ρ

4
ζ̃2 −

∫ t+T

t+T ′

ω̇2ζ̃2

k2
0ρ

4(s+ k0ρ2)2
dτ,

≥ nβν

2k2
0 d̄

4 ζ̃
2 − ā2

ω

a4
(
1

a
+ 8(T − T ′))ζ̃2,

where n is the integer satisfying T−T ′
ν − 1 ≤ n ≤ T−T ′

ν .
Thus

∫ t+T
t+T ′

y2(τ)
2 dτ −

∫ t+T ′
t

y2(τ)dτ ≥ (b− 4ā2ω
a4 )(T−T ′)ζ̃2−

8ω̄2

a2 T
′ζ̃2− (bν+ 1

a3 (
ā2ω
2a2 + ω̄2))ζ̃2, where b = β

4k20d̄
4 . Denote

α1 = b− 4ā2ω
a4 , α2 = bν+ 1

a3 (
ā2ω
2a2 +ω̄2), and since k0 >

4āωd̄
2

d4
√
β

,
one has α1, α2 > 0. Let T be

T =
β1

α1
+ (1 +

8ω̄2

a2α1
)T ′ +

α2

α1
, (23)

and it yields that∫ t+T

t+T ′

y2(τ)

2
dτ −

∫ t+T ′

t

y2(τ)dτ ≥ β1ζ̃
2. (24)

For the upper bound β2 on N(t, t+T ), following the same
procedure of deriving (22) obtains that∫ t+T

t

η̃2(τ)dτ ≤ 1− e−2aT

a
η̃2(t) +

2ω̄2

a2
(
1

a
+ 8T )ζ̃2. (25)

Combining (20), (24), and (25), yields (18), where β1 = 1
8k0d̄2

and β2 = max{ 1−e−2aT

a , 2ω̄2

a2 ( 1
a+8T )}. Equivalently, we have

β1I ≤ Ñ(t, t + T ) ≤ β2I for the system (C, Ã), and by
Lemma 4.1, N(t, t+T ) of the system (C,A) satisfies N(t, t+
T ) ≥ β′1I , where β′1 is given by (13).

With the derived β′1, it follows from (16) that for any t ≥ 0
and T ∈ R+,

V (t+ T )− V (t) ≤ − aβ1

(1 + β2ω̄2T )
X>(t)X(t),

and 0 < aβ1

1+β2ω̄2T = d2

8d̄2(1+β2ω̄2T )
< 1

8 < 1. Denote

λ =
d2

8d̄2(1 + β2ω̄2T )
, (26)

and following the proof of Theorem 8.5 in [20] there exists
λT ∈ R+ satisfying

λT =
1

2T
ln

1

1− λ
, (27)

such that V (X(t)) ≤ 1
1−λe−2λT (t−t0)V (t0, X(t0)) for any

t ≥ t0. Thus the estimation error ε converges to the origin
globally exponentially fast

Note that λT given by (27) is an estimate of the convergence
rate. Besides, characteristics of the measuring motion are the
distance ρ and the rotating angular velocity ω, on which the
sufficient conditions (14), C1) and C2) guarantee the expo-
nential convergence of the estimation error ε. The trajectory
of the AUV satisfying (14), C1) and C2) can be circular and
quasi-circular (e.g., elliptical, wavy), etc. A natural question
arises: what kind of trajectory p satisfying (14), C1), and C2),
is efficient for the AUV to estimate the gradient h?

B. Efficient Estimation with Outer-Loop Controller

At the system level, considering the implementation con-
straints of the AUV, it is desired that good services includ-
ing efficiency can be provided. That is, the best estimation
performance, in terms of the maximum convergence rate of
the estimation error, can be achieved under the constraint of
the AUV motion energy. By Proposition 3.1, it is necessary
to design a reference trajectory that is sufficiently smooth to
guarantee the existence of the outer-loop controller. Moreover,
the reference trajectory should enable the maximum of λT
under the energy constraint. By (27), λT relates to the motion
features: the distance ρ and the angular velocity ω. Since ρ
and ω can be independently controlled to satisfy (14) and
C1)-C2) respectively, the constrained resources can be merely
imposed on one of them. Out of this observation, we consider
the constraint on ω, since (15) in C2) puts forward a lower
bound requirement, which means that at least a certain amount
of energy needs to be provided.

An example is given to show the limited energy of mobility
by posing a constraint on ω as below. A measuring motion has
the dynamics as ṗ = ιω0p, with ω0 : R+ → R being designed,
and let |p(0)| > 0. In this case, ρ̇ = 〈ṗ, %〉 = ω0〈ιp, %〉 = 0,
such that ρ = ρ(0) holds for all t ≥ 0 and thus (14) holds
by letting d = d̄ = |p(0)|. ω = 〈ιω0p,ιp〉

ρ2 = ω0 holds for all
t ≥ 0. Then p is a variable with the fixed magnitude and the
rotating angular velocity ω0. By Theorem 4.1, ω0 is designed
to satisfy C1) and C2) to essentially guarantee the exponential
convergence of the estimation error. On the other hand, to
maintain such a motion of the AUV, it follows from (1) that
νeιψ = ṗ = ιω0p, such that ν = ω0ρ(0), ν̇ = ω̇0ρ(0) and w =
ψ̇ = ω = ω0. Substituting them into (2) and letting F̄ (t) :=∫ t+T
t
|F (τ)|dτ , Γ̄ (t) :=

∫ t+T
t
|Γ (τ)|dτ , the corresponding

force and torque satisfy that
F̄ (t) ≥X1

∫ t+T

t

|ω0(τ)|3dτ −X2

∫ t+T

t

|ω̇0(τ)|dτ,

Γ̄ (t) ≥N1

∫ t+T

t

|ω0(τ)|2dτ −N2

∫ t+T

t

|ω̇0(τ)|dτ,
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where X1 = |Xν |ρ2(0), X2 = |mν |ρ(0), N1 = |Nw|ρ(0)
and N2 = |mw| are constants. It implies that for a given
āω = sup(|ω̇0|), the lower bound on energy for the control
input over the period T is decided by the lower bound β in
the inequality (15) for ω0. When β is larger, a larger amount
of energy is required by the mobility of the AUV, which is
indicated by F̄ (t) and Γ̄ (t).

Therefore, more than basically satisfying (15) in C2), we
consider the energy constraint as the following equation of ω:

1

ν

∫ t+ν

t

|ω(τ)|2dτ = β,∀t ≥ 0. (28)

for some ν ∈ R+, where β ∈ R+ is the so-called excitation
level. (28) is the boundary of the feasible region of ω defined
by (15). Note that β is given as a predefined positive value
indicating a fixed amount of the energy afforded to the
AUV to achieve successful estimation. Thus the efficiency
of estimation can be derived by maximizing λT under the
constraint (28), then we have the following result.

Theorem 4.2. For the proposed estimator (8), suppose that
there exists a control law (F, Γ ) such that p satisfies the
following conditions ∀t ≥ 0:

1) p is sufficiently smooth;
2) (14) holds for a constant ρ;
3) C1) in Theorem 4.1 holds for ω;
4) and (28) holds for ω with a given β ∈ R+.

Given a fixed k0 >
4āωd̄

2

d4
√
β

. Then λT in (27) is maximized if
and only if ω is constant.

Proof. Since the sufficient conditions in Theorem 4.1 are also
assumed to hold, the estimation error converges to the origin
exponentially fast, and (27) holds. Moreover, the maximum of
λT is found by minimizing T given by (23) while maximizing
λ given by (26) simultaneously. Since d and d̄ in (14) are given
and β, k0 is fixed, a, b, β1 and T ′ by (19) are also fixed. The
rest of the parameters in (23) and (26) are all related to ω,
i.e., the maximum āω and ω̄ where |aω(t)| ≤ āω , |ω(t)| ≤ ω̄,
∀t ≥ 0. To see the relationship between λT and āω as well as
ω̄, recall that 0 < λ < 1, then it follows from (27) that{

∂λT /∂T = ln(1− λ)/(2T 2) < 0,

∂λT /∂λ = 1/(2T (1− λ)) > 0,
(29)

which implies that λT is negative and positive correlated with
respect to T and λ, respectively. It then yields by (23) that

∂T

∂āω
=

∂T

∂α1

∂α1

∂āω
+
∂T

∂α2

∂α2

∂āω
= − γ

α2
1a

2

∂α1

∂āω
+

1

α1

∂α2

∂āω
,

∂T

∂ω̄
=

16T ′ω̄

a2α1
+
∂T

∂α2

∂α2

∂ω̄
=

16T ′ω̄

a2α1
+

1

α1

∂α2

∂ω̄
,

where γ = (β1 + α2)a2 + 8ω̄2T ′ > 0. By the expressions
of α1 and α2, we have ∂α1

∂āω
= − 8āω

a4 ≤ 0, ∂α2

∂āω
= āω

a5 ≥ 0,
and ∂α2

∂ω̄ = 2ω̄
a3 > 0. Substitute the inequalities into the above

equations, one has ∂T
∂āω
≥ 0 and ∂T

∂ω̄ > 0.

Fig. 3. λT is monotonically negative correlated to ω̄ and āω .

On the other hand, one obtains from (26) that
∂λ

∂āω
=

(
∂λ

∂β2

∂β2

∂T
+
∂λ

∂T

)
∂T

∂āω
,

∂λ

∂ω̄
=

∂λ

∂β2

∂β2

∂ω̄
+
∂λ

∂T

∂T

∂ω̄
− d2β2ω̄T

4d̄2(1+β2ω̄2T )2
,

where ∂λ
∂β2

= − d2ω̄2T
8d̄2(1+β2ω̄2T )2

< 0, ∂λ∂T = − d2β2ω̄
2

8d̄2(1+β2ω̄2T )2
<

0. When 1−e−2aT

a ≥ 2ω̄2

a2 ( 1
a+8T ), one has ∂β2

∂T = 2e−2aT > 0,
and thus ∂β2

∂ω̄ = ∂β2

∂T
∂T
∂ω̄ > 0. When 1−e−2aT

a < 2ω̄2

a2 ( 1
a + 8T ),

one has ∂β2

∂T = 16ω̄2

a2 > 0 and ∂β2

∂ω̄ = 4ω̄
a2 ( 1

a+8T )+ ∂β2

∂T
∂T
∂ω̄ > 0.

To sum up, ∂β2

∂T > 0 and ∂β2

∂ω̄ > 0 always hold. Substituting
these results into the above equations yields ∂λ

∂āω
< 0 and

∂λ
∂ω̄ < 0. Combing the above results with (29) obtains that

∂λT
∂āω

=
∂λT
∂T

∂T

∂āω
+
∂λT
∂λ

∂λ

∂āω
< 0,

∂λT
∂ω̄

=
∂λT
∂T

∂T

∂ω̄
+
∂λT
∂λ

∂λ

∂ω̄
< 0,

(30)

such that the maximum of λT is reached when āω and ω̄ are at
their minimum simultaneously under the constraint that (28)
holds with a given β. The correlation is depicted in Fig. 3,
where the grey and green arrows represent the positive and
negative correlations between the two ends, respectively.

Next we show that for an ω satisfying (28), the minimum
of ω̄ = sup(|ω|) equals to

√
β. For any ∆ ∈ (0,

√
β) where

|ω(τ)| ≤ ∆ holds for any time τ , 1
ν

∫ t+ν
t

ω2(τ)dτ ≤ ∆2 < β
which contradicts with (28). Then ω̄ ≥

√
β must hold.

Secondly, we prove that ω̄ =
√
β holds if and only if ω is

constant. Sufficiency: For a constant ω satisfying (28), we
have |ω(τ)| =

√
β for any τ ∈ [t, t + ν], and ω̄ =

√
β

holds. Necessity: since |ω(τ)| ≤
√
β holds ∀τ ∈ [t, t + ν],

we prove that |ω(τ)| =
√
β must hold ∀τ ∈ [t, t + ν]

using the contradiction argument. Suppose that there exists
a t2 in the interval [t, t + ν], |ω(t2)| = ∆ <

√
β. For the

sufficiently smooth ω, there must exist a σ-neighborhood of
t2, such that |ω(τ) − ∆| <

√
β−∆
2 and thus ω(τ) <

√
β+∆
2

strictly holds ∀τ ∈ [t2 − σ, t2 + σ]. Let ta = max{t2 − σ, t},
tb = min{t2 + σ, t + ν}, and due to |ω(τ)| ≤

√
β

one has
∫ t+ν
t

ω2(τ)dτ =
∫ ta
t
ω2(τ)dτ +

∫ t+ν
tb

ω2(τ)dτ +∫ tb
ta
ω2(τ)dτ < (ta−t)β+(tb−ta)∆2+β

2 +(t+ν−tb)β < νβ,
which contradicts with (28).

Note that āω = sup(|ω̇|) equals to 0 only when ω is
constant. Since āω ≥ |aω(t)| ≥ 0 holds for any t ≥ 0, it means
that the minimum of āω and ω̄ are simultaneously reached
when ω is constant, such that by (30) the maximum of λT is
reached, which completes the proof.
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Based on the above results, we can design the reference
trajectory pR, which allows efficient estimation. Basically, pR
is required to be sufficiently smooth to guarantee the control
law (F, Γ ). Moreover, denote the reference distance as ρR =
|pR|, the unit-length reference direction as %R = pR

ρR
, and the

reference angular velocity as ωR = 〈ṗR,ι%R〉
ρR

. Then it implies
by Theorem 4.2 that conditions 1)-4) should be satisfied by ρR
and ωR, and especially, ωR should be constant for enabling
efficient estimation.

Next we testify the extension case of time-varying ρ which
satisfies (14), to see the efficiency of estimation influenced by
moving trajectory of the AUV. Select a time t0 ∈ R+ where
pR(t0) satisfies ρR(t0) = |pR(t0)| > 0. Design the reference
trajectory pR as generated by the following dynamic:

ṗR = ικpR + r%R, (31)

where κ, r : R+ → R are the functions to be designed. It
follows from (31) that

ωR =
〈ṗR, ι%R〉

ρR
=
〈ικpR + r%R, ι%R〉

ρR
= κ. (32)

Then we design κ(t) = $, ∀t ≥ t0, where $ ∈ R+ is a
positive constant, and thus ωR is constant. On the other hand,
by (31) we have

ρ̇R = 〈ṗR, %R〉 = 〈ικ%R + rpR, %R〉 = r. (33)

Then we can design r as a sufficiently smooth function which
enables d ≤ ρR ≤ d̄ for some d, d̄ ∈ R+. For example, for
the circular reference trajectory centered at the origin, one
can design r = 0, such that d ≤ ρR ≤ d̄ hold with d = d̄ =
|pR(t0)|. For the elliptical reference trajectory centered at the
origin, where q1, q2 ∈ R+ denote semi-major and semi-minor
axes respectively, choose pR(t0) as on the ellipse and take
the derivatives of both sides of ρR = q1q2√

q21 sin2(θR)+q22 cos2(θR)
,

where θR = ∠pR. Then design r(t) = r1(t) for t ≥ t0, where

r1 =
ρ3
R(q2 − q1)

q2
1q

2
2

cos(θR) sin(θR)κ, (34)

such that d ≤ ρR ≤ d̄ hold with d̄ = q1, d = q2. Sufficient
smoothness of ρR can thus also be guaranteed.

5. NUMERICAL EXAMPLES

In this simulation, we provide two numerical examples
to illustrate the effectiveness and efficiency of the proposed
algorithm. Consider the reference trajectories generated by
(31). Let the initial measurement at the origin of the frame
{n} be ς0 = 0.6. The parameters of the gradient in (4) are
φ = 3.3π/4, ~ = 6.5. In this section, t = t − t0 denotes
the time shift starting from t0. For both cases, let the initial
estimate ĥ(t0) be randomly selected but common, and the
estimator gain k = 1.2.

Case I). Fixed ρR. Let r(t) = 0 and thus ρ̇R = 0 hold
for all t ≥ t0. Let the initial position pR(t0) = 1 hold
for all the cases, which is shown by the yellow triangle.
Then ρR(t) = 1 holds for all t ≥ t0, and d, d̄ are both

Fig. 4. Reference trajectories with fixed ρR along which the measurements
are collected from the scalar field.

Fig. 5. Evolution of estimation error under different reference trajectories at
the common excitation level.

1. We consider 4 different periodic functions for κ. Let
κ = 0.5,

√
2

2 sin(0.5t),
√

2
2 sin(2t), 1

2 sin(2t)+
√

2
4 respectively,

such that (28) holds with the common period ν = π and
the common excitation level β = 0.25. The corresponding
reference trajectories are depicted in Fig. 4. The corresponding
evolution of the magnitude of the estimation error |ε| is shown
in Fig. 5. It can be observed that, although λT in (27) is just an
estimate of the convergence rate of ε, the actual convergence
rate is the largest when κ and thus ωR is constant, which is
shown by the blue line. It can be further inferred that a larger
āω may result in a slower convergence. This problem needs
further investigation.

Case II). Time-varying ρR. Apart from the case of constant
ρR where only ωR influences the convergence rate of the
estimation error, we further analyze the effectiveness and effi-
ciency of the estimator for the case where ρR is time-varying.
In the simulation, we let κ be 0.5, 0.5, 0.5

√
2 sin(0.5)t, 0.5,

which are at the common expectation level. Let r be 0, r1, r1, 0
where r1 is given by (34) with q1 = 1 and q2 = 0.7. The first
and last reference trajectories are circular, and the other two
are elliptical. Let ρR(t0) = 1 for both the elliptical reference
trajectories, such that d = 0.7 and d̄ = 1 hold. Let pR(t0) be
1 and 0.7ι for the circular reference trajectories, such that ρR
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Fig. 6. Reference trajectories with fixed/time-varying ρR and ωR.

Fig. 7. Evolution of estimation error under reference trajectories with
fixed/time-varying ρR and ωR.

are always 1 and 0.7, respectively. The reference trajectories
are shown in Fig. 6 with pR(t0) shown by the yellow triangles.
The evolution of the estimation error |ε| is shown in Fig. 7.

It is shown that with the same d and d̄, a constant ωR allows
a faster convergence rate. See the comparison between the red
and yellow curves in Fig. 6 and Fig. 7. However, the measuring
distance also influences the efficiency. When ωR are all
constant, the time-varying ρR allows the fastest convergence
rate, compared with that fixed at its lower and upper bound,
respectively. See the comparison among the figures’ blue, red,
and purple curves. The influence of measuring distance ρR on
the efficiency of estimation needs further investigation, and the
reference distance needs to be characterized.

6. CONCLUSION

The problem of a single AUV monitoring a scalar field in
a local coordinate system is considered. Global exponential
stability of the estimation error system is rigorously proved,
under the sufficient conditions on the distance and angular
velocity. An estimate of the exponential convergence rate is
given. Efficiency is achieved by maximizing the estimated
convergence rate under the constraint of a given excitation
level of the angular velocity. The effect of measuring distance
on estimation efficiency will be studied in the future. Besides,

a proper measure of energy consumption regarding the angular
velocity and the distance needs further investigation.
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