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Abstract— This paper studies decentralized stochastic em-
pirical risk minimization over a network of nodes, where each
node has access to a finite collection of risk functions. While this
formulation has been well-studied when each local function is
strongly convex or nonconvex, it is still not clear if acceleration
(in the stochastic settings) can be achieved for general convex
functions. In this paper, we show that GT-SAGA, an algorithm
that combines gradient tracking and incremental variance
reduction, converges to a global minimizer at a provably
faster rate than the existing decentralized methods for this
general convex formulation. In particular, GT-SAGA achieves a
topology-independent iteration and gradient complexity when
the local sample size is sufficiently large. Our proof techniques
hinge on a simple linear coupling of convex descent inequality
and variance bounds developed for nonconvex optimization,
which can be of independent interest. To the best of our
knowledge, these are the first such results in decentralized
general convex empirical risk minimization.

I. INTRODUCTION

With the unprecedented growth in the amount of data
being generated and collected, it is becoming increasingly
challenging to train modern machine learning models on a
single machine. This is because storing and processing very
large amounts of data is typically beyond the capability of
existing computational devices. A workaround that has been
quite popular is decentralized training where the original
dataset is stored and processed over multiple machines
(GPUs, workstations) and the machines communicate with
each other (or, more recently, through a parameter server) to
learn the corresponding model parameters.

Decentralized training of machine learning models can be
equivalently thought of as decentralized optimization where
the objective of the optimization problem is to minimize
the (expected or empirical) loss incurred by the model in
predicting labels versus the ground truth. Examples of such
machine learning problems include regression, prediction, or
classification, which can equivalently be written as quadratic,
(strongly) convex, or nonconvex optimization problems. A
strongly convex problems is where the convex loss landscape
is further bounded below by a quadratic and this geometry
(i.e., having a certain curvature near the unique global
minimum) typically leads to a cleaner analysis and faster
convergence properties.

Much of the existing work in decentralized optimization
has focused on quadratic, strongly convex, or nonconvex
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problems. This is potentially because adding a quadratic
regularizer to any convex problem makes it strongly convex
and strong convexity bounds are arguably simpler to integrate
in the subsequent analysis. There is no easy way however
to escape nonconvexity and thus the attention dedicated to
nonconvex problems is justified because of their applicability
to many emergent applications. In contrast, work on decen-
tralized convex optimization, even though it exists, has been
rather scarce. Clearly, the utility of convex problems still
remains significant as enforcing a specialized curvature near
the stationary points of the corresponding loss functions is
not always meaningful.

In this paper, we consider decentralized convex optimiza-
tion and using the well known ideas of gradient tracking
and variance reduction show that our proposed decentralized
method GT-SAGA is provably faster than the existing meth-
ods for general convex problems. In particular, we develop a
linear coupling of the convex descent inequality and variance
bounds for nonconvex optimization that enables establishing
the global convergence in terms of global function value in
decentralized convex problems. This linear coupling is of
independent interest and the methodology may be useful in
other extensions in the corresponding problem domains. The
main contributions of this work include the following.

(i) We show that the optimality gap in GT-SAGA iterates
scales sublinearly in m. This is in contrast to linear
scaling in the decentralizd batch gradient methods,
e.g., [1], [2], where m is the size of local data points
at each node;

(ii) We show that the addition of variance reduction leads to
a convergence rate of O(1/K), which matches the rate
of centralized stochastic variance reduced methods [3]
for convex problems. Note that this rate is faster
than O(1/

√
K) for decentralized stochastic gradient

methods without variance reduction, e.g., [4], [5];
(iii) We show that when m is sufficiently large, the rate

of GT-SAGA is network-topology independent.

Related Work: Early work on decentralized optimization
can be found in e.g., [6]–[9] that builds upon undirected net-
works and doubly stochastic weight matrices. For arbitrary
directed networks, the corresponding decentralized methods
rely on row and/or column stochastic weights and can be
found in [10]–[13]. These methods are built on local gradient
corrections at the agents and thus incur a certain steady-state
error under constant stepsizes, which can be removed with
a decaying stepsize however at the expense of a sublinear
convergence. Linear convergence to the exact solution with
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a constant stepsize is subsequently achieved with the help of
gradient tracking [14]–[18]. Work on decentralized stochastic
optimization can be found, e.g., in [19]–[22]. Stochastic
optimization has been accelerated with the help of variance
reduction where relevant work in the centralized settings
cane be found in [3], [23]–[27]. Existing variance-reduced
decentralized stochastic methods can be found in [28]–[40].
Most of this work is restricted to either strongly convex or
nonconvex problems. In contrast, in this paper, we combine
gradient tracking with variance reduction and provide an
algorithm that guarantees improved performance for general
convex problems.

Notation: We use lowercase bold letters to denote vectors
and uppercase bold letters to denote matrices. The d × d
identity matrix is denoted by Id, while the d-dimensional
column vectors of all ones and zeros are represented by 1d

and 0d, respectively. We use X⊗Y to denote the Kronecker
product of two matrices X and Y. The Euclidean norm of a
vector or the spectral norm of a matrix is denoted by ∥·∥. We
work with a rich enough probability triple (Θ,F ,P), where
all random objects are defined properly. We make a blanket
assumption that each node i at every iteration k is able to ob-
tain i.i.d. minibatch samples from its local data. The induced
natural filtration is denoted by Fk, and increasing family of
sub σ-algebras that represents the historical information of
the algorithm with samples up to iteration k. Subsequently,
we will use conditional expectation with respect to this
filtration Fk.

We now describe the rest of the paper. Section II de-
scribes the problem formulation while Section III recaps
the GT-SAGA algorithm and provides the main results of
this paper. Section IV provides the convergence analysis with
detailed proofs of the corresponding descent inequalities and
linear coupling. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

We consider decentralized optimization problems over
a network of nodes. In particular, there are n nodes
communicating over a directed graph G := {V, E}, where
V := {1, · · · , n} is the set of node indices and E is the col-
lection of ordered pairs (i, r), i, r ∈ V , such that node r sends
information to node i. Each node i has access to a private col-
lection of m smooth convex functions {fi,j : Rp → R}mj=1,
that can be viewed as a cost associated with the j-th data
sample at the i-th node, while fi :=

∑
j fi,j is the local cost

function at node i. The goal of the networked nodes is to
solve the following optimization problem:

min
x∈Rp

F (x) :=
1

n

n∑
i=1

fi(x), fi(x) :=
1

m

m∑
j=1

fi,j(x).

In other words, the nodes must agree on a global minimizer
of F via local computation and communication at each node
that is restricted by the graph G.

III. GT-SAGA ALGORITHM AND MAIN RESULTS

GT-SAGA [40] builds upon local SAGA estimators [3] and
global gradient tracking [14], [15], and is formally presented

in Algorithm 1. We refer the readers to [38]–[40] for detailed
discussion on the development of GT-SAGA.

Algorithm 1 GT-SAGA at each node i

Require: x0
i = x0 ∈ Rp; α ∈ R+; {wir}nr=1; y0

i = 0p;
z0i,j = x0

i ,∀j ∈ {1, . . . ,m}; g−1
i = 0p.

1: for k = 0, 1, 2, . . . do

2: Pick τki uniformly at random from {1, . . . ,m};
3: Compute a local SAGA estimator gk

i :

gk
i = ∇fi,τk

i

(
xk
i

)
−∇fi,τk

i

(
zki,τk

i

)
+ 1

m

m∑
j=1

∇fi,j
(
zki,j
)
;

4: yk+1
i =

∑n
r=1wir

(
yk
r + gk

r − gk−1
r

)
;

5: xk+1
i =

∑n
r=1wir

(
xk
r − αyk+1

r

)
;

6: Pick ski uniformly at random from {1, · · · ,m};
7: Set zk+1

i,j = xk
i , j = ski ; zk+1

i,j = zki,j , j ̸= ski ;

8: end for

Before we provide the main results of this paper, we formally
present our assumptions.

Assumption 1. Each fi is L-smooth and convex. More-
over, −∞ < F ∗ := infx F (x) is achieved by some x∗ ∈ Rp.

Assumption 2. The n× n weight matrix W = {wir} asso-
ciated with the network is primitive and doubly-stochastic,
i.e., W1n = 1n, 1⊤

nW = 1⊤
n , and λ := λ2(W) ∈ [0, 1),

where λ2(W) is the second largest singular value of W.

The following theorem presents the global convergence
rate of GT-SAGA under general convexity with the help of
the following variables:

xk :=
1

n

n∑
i=1

xk
i , x̂K

i :=
1

K

K−1∑
k=0

xk
i ,

and let ∇fk ∈ Rnp concatenate all local exact gradi-
ents ∇fi(x

k
i )’s.

Theorem 1. Let Assumptions 1 and 2 hold. If the positive
step-size α in GT-SAGA is such that

α ≤ min

{
1

8
,
(1− λ2)3/4

18λ1/2m1/2
,
(1− λ2)2

12λ
,

n1/3

16m2/3

}
1

L
,

then we have
K−1∑
k=0

E
[
F (xk)− F ∗

]
≲

∥x0 − x∗∥2

α
+

∥∇f(x0)∥2

nL
.

Since f is convex, we have by Jensen’s inequality:

E

[
F

(
1

n

n∑
i=1

x̂K
i

)
− F ∗

]
≲

∥x0 − x∗∥2

αK
+

∥∇f(x0)∥2

nLK
.
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If α attains its upper bound, then

E

[
F

(
1

n

n∑
i=1

x̂K
i

)
− F ∗

]

≲max

{
m1/2

(1− λ)3/4
,

1

(1− λ)2
,
m2/3

n1/3

}
L∥x0 − x∗∥2

K

+
∥∇f(x0)∥2

nLK
.

If the local sample size m is large enough, the rate becomes
topology-independent, i.e.,

E
[
F

(
1

n

∑n
i=1x̂

K
i

)
− F ∗

]

≲
Lm2/3∥x0 − x∗∥2

n1/3K
+

∥∇f(x0)∥2

nLK
.

We have the following observations from Theorem 1.

• The dependence of local sample size m on the conver-
gence rates shown in Theorem 1 is sublinear, i.e., m2/3.
This observation is critical in that the dependence of m
in existing decentralized batch gradient methods [1] is
linear, i.e., m. As a result, GT-SAGA is provably faster
than the batch gradient methods when the local sample
size is large.

• The convergence rate of GT-SAGA is O(1/K), which
is strictly faster than the rate O(1/

√
K) of decentral-

ized stochastic gradient methods for convex problems
without variance reduction, e.g., [4].

• When the local sample size m is sufficiently large,
the rate of GT-SAGA is topology-independent. This is
the first such result for decentralized stochastic convex
problems with variance reduction.

In the next section, we analyze GT-SAGA for smooth
convex functions and derive its convergence properties.

IV. CONVERGENCE ANALYSIS

In this section, we present the proof of Theorem 1. Our
proof techniques rely on a simple linear coupling of the
convex descent inequality and variance bounds developed in
our earlier work for nonconvex optimization [40], which can
be of independent interest and useful for other decentralized
algorithms based on similar principles. Before we proceed,
we define network-wide averages of certain variable from
Algorithm 1 that will be useful in the subsequent analysis:

gk=

n∑
i=1

gk
i

n
, ∇f(xk)=

n∑
i=1

∇fi(x
k
i )

n
, J=

11⊤ ⊗ Ip
n

.

Moreover, we let xk and gk stack all of the local vari-
ables xk

i ’s and gk
i ’s, respectively.

A. Descent Inequality with Convexity

In this subsection, we provide a descent lemma for decen-
tralized convex problems. Although the following lemma is
developed for GT-SAGA, we emphasize that the same proof

holds true for any decentralized stochastic gradient tracking
based methods with unbiased gradient estimators.

Lemma 1 (Convex Descent). If 0 < α ≤ 1
8L , then we

have, ∀k ≥ 0,

E
[
∥xk+1 − x∗∥2|Fk

]
≤ ∥xk − x∗∥2 − α

(
F (xk)− F ∗)

+ α2E[∥gk −∇f(xk)∥2|Fk]

+ 2αL
n ∥xk − Jxk∥2.

Proof: From the xk
i -update in Algorithm 1, we get

xk+1 = xk − αgk, ∀k ≥ 0,

by summing both sides over i = 1, . . . , n and noting
that

∑
r y

k
r =

∑
r g

k
r . We now consider the following re-

cursion: ∀k ≥ 0,

∥xk+1 − x∗∥2

= ∥xk − αgk − x∗∥2

= ∥xk − x∗∥2 − 2α⟨gk,xk − x∗⟩+ α2∥gk∥2.

Taking the conditional expectation over the filtration Fk, we
have: ∀k ≥ 0,

E[∥xk+1 − x∗∥2|Fk]

= ∥xk − x∗∥2 − 2α⟨E[gk|Fk],xk − x∗⟩+ α2E[∥gk∥2|Fk]

= ∥xk − x∗∥2 − 2α⟨∇f(xk),xk − x∗⟩+ α2E[∥gk∥2|Fk].
(1)

For the last term on the RHS of (1), we have: ∀k ≥ 0,

E[∥gk∥2|Fk]

= E[∥gk −∇f(xk) +∇f(xk)∥2|Fk]

= E[∥gk −∇f(xk)∥2|Fk] + ∥∇f(xk)∥2

= E[∥gk −∇f(xk)∥2|Fk]

+ ∥∇f(xk)−∇F (xk) +∇F (xk)∥2

≤ E[∥gk −∇f(xk)∥2|Fk] + 2L2

n ∥xk − Jxk∥2

+ 2∥∇F (xk)∥2, (2)

where the second equality uses the fact that the conditional
expectation of the inner product in the cross term is zero
and the last inequality uses the triangle inequality and the
definition of L-smoothness. Subsequently, using (2) in (1)
gives: ∀k ≥ 0,

E[∥xk+1 − x∗∥2|Fk]

≤ ∥xk − x∗∥2 − 2α⟨∇f(xk),xk − x∗⟩
+ 2α2∥∇F (xk)∥2 + α2E[∥gk −∇f(xk)∥2|Fk]

+
2α2L2

n
∥xk − Jxk∥2. (3)

To proceed, we focus on the second term on the right hand
side of the above equation. To this aim, define

Ak := ⟨∇f(xk),xk − x∗⟩ = 1

n

n∑
i=1

⟨∇fi(x
k
i ),x

k − x∗⟩.

4341



We next handle Ak with the help of the smoothness and
convexity of each fi. We first note that

Ak =
1

n

n∑
i=1

(
⟨∇fi(x

k
i ),x

k
i − x∗⟩︸ ︷︷ ︸

Bk
i

+ ⟨∇fi(x
k
i ),x

k − xk
i ⟩︸ ︷︷ ︸

Ck
i

)
,

(4)

and then consider its two terms Bk
i and Ck

i separately.
Towards Bk

i , we recall that since each fi is convex, it lies
above all of its tangents and thus satisfies a linear lower
bound:

fi(y) ≥ fi(x) + ⟨∇fi(x),y − x⟩,

for all x,y, i, that is,

⟨∇fi(x),x− y⟩ ≥ fi(x)− fi(y),

for all x,y, i. Setting x = xk
i and y = x∗ in the inequality

above leads to

Bk
i := ⟨∇fi(x

k
i ),x

k
i − x∗⟩ ≥ fi(x

k
i )− fi(x

∗), (5)

for all x,y, i. Towards Ck
i , we recall that since each fi is L-

smooth, fi satisfies a quadratic upper bound, i.e.,

fi(y) ≤ fi(x) + ⟨∇fi(x),y − x⟩+ L
2 ∥y − x∥2,

for all x,y, i, that is

⟨∇fi(x),y − x⟩ ≥ fi(y)− fi(x)− L
2 ∥y − x∥2,

for all x,y, i. Setting x = xk
i and y = xk in the equation

for Ci
k leads to

Ck
i := ⟨∇fi(x

k
i ),x

k − xk
i ⟩

≥ fi(x
k)− fi(x

k
i )− L

2 ∥x
k − xk

i ∥2, (6)

for all x,y, i. Now, we use (5) and (6) in (4) to ob-
tain: ∀k ≥ 0,

Ak = 1
n

∑n
i=1

(
Bk

i + Ck
i

)
≥ 1

n

∑n
i=1

(
fi(x

k)− fi(x
∗)− L

2 ∥x
k − xk

i ∥2
)

= F (xk)− F ∗ − L
2n∥x

k − Jxk∥2. (7)

Finally, we use (7) in (3) to obtain: ∀k ≥ 0,

E[∥xk − x∗∥2|Fk]

≤ ∥xk − x∗∥2 − 2α
(
F (xk)− F ∗ − L

2n∥x
k − Jxk∥2

)
+ 2α2∥∇F (xk)∥2

+ α2E[∥gk −∇f(xk)∥2|Fk] + 2α2L2

n ∥xk − Jxk∥2

= ∥xk − x∗∥2 − α
(
F (xk)− F ∗)+ 2α2∥∇F (xk)∥2

+ α2E[∥gk −∇f(xk)∥2|Fk]

+ (1 + 2αL) αL
n ∥xk − Jxk∥2

≤ ∥xk − x∗∥2 − 2α(1− 2αL)
(
F (xk)− F ∗)

+ α2E[∥gk −∇f(xk)∥2|Fk]

+ (1 + 2αL) αL
n ∥xk − Jxk∥2,

where we use ∥∇F (x)∥2 ≤ 2L(F (x) − F ∗) in the last
inequality. The proof follows by 0 < α ≤ 1

8L .

The above lemma is akin to the standard descent inequality
for gradient descent algorithms that is further specialized
to decentralized problems. In particular: the first two terms
in Lemma 1’s statement establish descent, i.e., the average
iterate xk gets closer and closer to x∗ because α(F (xk) −
F ∗) is strictly positive; the third term is the error due to
estimated gradients and incorporate variance reduction; while
the last term is the consensus error, i.e., how far are the
local iterates (concatenated in xk) from the average iterate
at time k since J is the averaging matrix. The next step is
to linearly couple the third and fourth terms and then refine
Lemma 1. We describe this in the next subsection. Before
we proceed, we provide a useful result.

Lemma 2. The following holds true for all k ≥ 0.

∥∇f(xk)∥2 = ∥∇f(xk)−∇F (xk) +∇F (xk)∥2

≤ 2∥∇f(xk)−∇F (xk)∥2 + 2∥∇F (xk)∥2

≤ 2L2

n ∥xk − Jxk∥2 + 4L(F (xk)− F ∗). (8)

B. Refined Descent Inequality with Convexity and Variance
Reduction

We first construct two auxiliary Fk-adapted sequences:
∀i ∈ V , ∀k ≥ 0,

Qk
i := 1

m

∑m
j=1∥x

k − zki,j∥2, Qk := 1
n

∑n
i=1Q

k
i ,

and recall that the bound on the variance of the gradient
estimator gi is given by the following lemma [40].

Lemma 3 ([40]). The following holds: ∀k ≥ 0,

1
n

∑n
i=1E

[
∥gk

i −∇fi(x
k
i )∥2|Fk

]
≤ 2L2

n ∥xk − Jxk∥2

+ 2L2Qk. (9)

As explained earlier, we now use Lemma 3 to further refine
Lemma 1.

Lemma 4 (Convex Descent with Variance Reduction).
If 0 < α ≤ 1

8L , then ∀k ≥ 0,

E
[
∥xk+1 − x∗∥2|Fk

]
≤ ∥xk − x∗∥2 − α

(
F (xk)− F ∗)

+ 2L2α2

n Qk + 4Lα
n ∥xk − Jxk∥2.

Proof: Applying Lemma 3 in Lemma 1, we have the
following: ∀k ≥ 0,

E
[
∥xk+1 − x∗∥2|Fk

]
≤ ∥xk − x∗∥2 − α

(
F (xk)− F ∗)

+ α2E
[
∥gk −∇f(xk)∥2|Fk

]
+ 2αL

n ∥xk − Jxk∥2

= ∥xk − x∗∥2 − α
(
F (xk)− F ∗)

+ α2

n2E
[
∥gk −∇f(xk)∥2|Fk

]
+ 2αL

n ∥xk − Jxk∥2

≤ ∥xk − x∗∥2 − α
(
F (xk)− F ∗)+ 2L2α2

n Qk

+
(

2L2α2

n2 + 2Lα
n

)
∥xk − Jxk∥2,
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where the last line uses Lemma 3. The proof follows by
using the fact that 0 < α ≤ 1

8L .
The following corollary is immediate from Lemma 4 and
will become the key result in order to prove Theorem 1.

Corollary 1. If 0 < α ≤ 1
8L , then∑K−1

k=0 E
[
F (xk)− F ∗]

≤ 1
α∥x

0 − x∗∥2 + 2L2α
n

∑K−1
k=0 E[Qk]

+ 4L
∑K−1

k=0 E
[
1
n∥x

k − Jxk∥2
]
. (10)

Proof: Taking the telescoping sum of both sides in
Lemma 4 over k = 0, . . . ,K − 1, gives: if 0 < α ≤ 1

8L ,
then ∀k ≥ 0,

E
[
∥xK − x∗∥2

]
≤ ∥x0 − x∗∥2

− α
∑K−1

k=0 E
[
F (xk)− F ∗]

+ 2L2α2

n

∑K−1
k=0 E[Qk]

+ 4Lα
∑K−1

k=0 E
[
1
n∥x

k − Jxk∥2
]
.

The proof follows by rearranging the above terms and by
dropping the negative norm from the upper bound.

Here, we briefly explain Corollary 1. First, note that the
left side of (10) is the target metric, i.e., the optimality
gap

∑K−1
k=0 E[F (xk)−F ∗], of Theorem 1. In order to arrive at

the result of Theorem 1, it remains to bound
∑K−1

k=0 E[∥xk−
Jxk∥2] and

∑K−1
k=0 E[Qk] in terms of the optimality gap.

Although these bounds are not explicitly derived in [41],
some of the results in [41] can be easily refined for convex
problems as we describe in the next subsection.

C. Auxiliary Results

We recall the following lemma from [40] that was estab-
lished without convexity.

Lemma 5 ([40]). If 0 < α ≤ min
{

(1−λ2)2

48λ ,
√
n√
8m

}
1
L , then

we have: ∀K ≥ 1,∑K
k=0E

[
1
n∥x

k − Jxk∥2
]
≤ 16λ4α2

(1−λ2)3
∥∇f(x0)∥2

n

+
(
97m2 + 8λ2

1−λ2

)
32λ2α4L2

(1−λ2)3

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
, (11)

and, ∀K ≥ 1,∑K
k=0E

[
Qk
]
≤ 114λ4α2

(1−λ2)3
∥∇f(x0)∥2

n

+33m2α2∑K−1
k=0 E

[
∥∇f(xk)∥2

]
. (12)

We first refine the consensus error bound.

Lemma 6 (Variance-Reduced Consensus Bound). If the
step-size α is such that

0 < α ≤ min
{

(1−λ2)3/4

18λ1/2m1/2 ,
1−λ2

12λ , 1
8 ,

√
n√
8m

}
1
L ,

then we have

4L
∑K

k=0E
[
1
n∥x

k − Jxk∥2
]
≤ 128λ4α2L

(1−λ2)3
∥∇f(x0)∥2

n

+ 1
4

∑K−1
k=0 E

[
F (xk)− F ∗].

Proof: We recall from (8) that, ∀k ≥ 0,

∥∇f(xk)∥2 ≤ 2L2

n ∥xk − Jxk∥2 + 4L(F (xk)− F ∗).

Using this inequality in (11) gives:∑K
k=0E

[
1
n∥x

k − Jxk∥2
]

≤ 16λ4α2

(1−λ2)3
∥∇f(x0)∥2

n

+
(
97m2 + 8λ2

1−λ2

)
64λ2α4L4

(1−λ2)3

∑K−1
k=0 E

[
1
n∥x

k − Jxk∥2
]

+
(
97m2 + 8λ2

1−λ2

)
128λ2α4L3

(1−λ2)3

∑K−1
k=0 E

[
F (xk)− F ∗].

We note that if 0 < α ≤ min
{

(1−λ2)3/4

18λ1/2m1/2 ,
1−λ2

12λ

}
1
L , then(

97m2 + 8λ2

1−λ2

)
64λ2α4L4

(1−λ2)3 ≤ 1
64 , and therefore∑K

k=0E
[
1
n∥x

k − Jxk∥2
]
≤ 16λ4α2

(1−λ2)3
∥∇f(x0)∥2

n

+ 1
2E
[
1
n∥x

k − Jxk∥2
]
+ 1

32LE
[
F (xk)− F ∗],

that is∑K
k=0E

[
1
n∥x

k − Jxk∥2
]
≤ 32λ4α2

(1−λ2)3
∥∇f(x0)∥2

n

+ 1
16L

∑K−1
k=0 E

[
F (xk)− F ∗], (13)

and the proof follows.
Next, we refine the error bound of Qk.

Lemma 7 (Bound on the Qk Sum). If the step-size α is
such that 0 < α ≤ min

{
(1−λ2)3/4

18λ1/2m1/2 ,
1−λ2

12λ , 1
8 ,

n1/3

8m2/3

}
1
L ,

then we have
4L2α
n

∑K
k=0E

[
Qk
]
≤ 200λ4α2L

(1−λ2)3
∥∇f(x0)∥2

n

+ 1
4

∑K−1
k=0

(
F (xk)− F ∗) .

Proof: Using (8) in (12) gives:∑K
k=0E

[
Qk
]
≤ 114λ4α2

(1−λ2)3
∥∇f(x0)∥2

n

+ 66m2L2α2∑K−1
k=0 E

[
1
n∥x

k − Jxk∥2
]

+ 132m2α2L
∑K−1

k=0

(
F (xk)− F ∗)

≤
(
20m2L2α2 + 1

)
114λ4α2

(1−λ2)3
∥∇f(x0)∥2

n

+ 136m2α2L
∑K−1

k=0

(
F (xk)− F ∗) ,

where the last line is due to (13). Hence, if 0 < α ≤
min

{
(1−λ2)3/4

18λ1/2m1/2 ,
1−λ2

12λ , 1
8 ,

n1/3

16m2/3

}
1
L , then we have

4L2α
n

∑K
k=0E

[
Qk
]

≤ 4Lα
n

(
20m2L2α2 + 1

)
114λ4α2L
(1−λ2)3

∥∇f(x0)∥2

n

+ 600m2α3L3

n

∑K−1
k=0

(
F (xk)− F ∗)

≤ 200λ4α2L
(1−λ2)3

∥∇f(x0)∥2

n + 1
4

∑K−1
k=0

(
F (xk)− F ∗) ,

and the proof follows.

D. Proof of Theorem 1

Finally, it is straightforward to obtain Theorem 1 by
applying Lemma 6 and Lemma 7 to (10) in Corollary 1
after some standard algebraic manipulations.
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V. CONCLUSIONS

In this paper, we prove that GT-SAGA achieves the best
known rate for decentralized general convex optimization.
Our convergence analysis uses a novel linear coupling of
descent inequality and the variance bounds. We show a
sublinear scaling O(m2/3) of the optimality gap in terms of
the number of samples m at each node in contrast to a linear
scaling in the existing work. Moreover, GT-SAGA converges
at O(1/K), in contrast to O(1/

√
K) for stochastic gradient

methods without variance reduction in convex problems, and
its convergence is network-topology independent in the big-
data (large m) regime.
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