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Abstract— Gaussian process state space models are becoming
common tools for the analysis and design of nonlinear systems
with uncertain dynamics. When designing control policies for
these systems, safety is an important property to consider. In
this paper, we provide safety guarantees by computing finite-
horizon forward reachable sets for Gaussian process state space
models. We use data-driven reachability analysis to provide
exact probability measures for state trajectories of arbitrary
length, even when no data samples are available. We investigate
two numerical examples to demonstrate the power of this
approach, such as providing highly non-convex reachable sets
and detecting holes in the reachable set.

I. INTRODUCTION

Gaussian process state space models (GPSSMs) are in-
creasingly used to account for the inherent nonlinearities
and unknown dynamics of physical systems [1]–[6]. In
contrast to models like recurrent neural networks, GPSSMs
are inherently regularized by a prior model, mitigating the
tendency to overfit, and are therefore more effective in
situations where data is not abundant. GPSSMs also possess
useful probabilistic properties in quantifying uncertainty and
modeling errors as a distribution over functions, ensuring that
the model is not overconfident in regions of the state space
where data is scarce [7], [8].

When using GPSSMs for the design and control of dy-
namical systems, an important property to consider is safety,
ensuring that unsafe regions of the state space will be avoided
under a particular control policy. An effective way to analyze
the safety of a dynamical system in the face of uncertainty is
reachability analysis, a set-based method that characterizes
all possible evolutions of the state trajectory over a finite time
horizon [9]. Many algorithms in reachability analysis use
detailed system information to compute an overapproxima-
tion or an underapproximation of the reachable set. However,
this detailed system information is not available in many
important applications such as complex cyber-physical sys-
tems where only partial knowledge of the system dynamics
is available through simulations or experiments.

Consequently, these applications motivate data-driven
reachability analysis, methods that use data obtained from
simulations and experiments to estimate reachable sets.
In contrast to traditional reachability methods, data-driven
reachability analysis typically cannot provide as tight of an
approximation to the reachable set due to incomplete or
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nonexistent prior information about the system dynamics.
In contrast, data-driven reachability analysis with GPSSMs
allows probabilistic reachable sets to be computed with an
exact measure due to the prior information the GPSSM
contains about the system dynamics.

While a number of works have investigated data-driven
reachability analysis, these works do not use a GPSSM for
modeling general nonlinear system dynamics, instead focus-
ing on a more restrictive class of system dynamics such as
linear systems [10]–[12], polynomial systems [10], Lipschitz
nonlinear systems [10], [11], [13], control-affine systems
[14], [15], and mixed monotone systems [16]. Furthermore,
these works do not provide probabilistic reachable sets with
exact measures, instead providing overapproximations or
underapproximations to the reachable sets. A number of
works have provided probabilistic reachability guarantees
based only on data with no assumptions about the form of the
system dynamics, but these guarantees require a minimum
number of samples to provide the probabilistic reachable
set [17]–[22]. Furthermore, there is a confidence level in
the accuracy of the probability measure for the probabilistic
reachable set that is less than 100% due to there only being
a finite number of samples. These works also only provide
probabilistic reachable sets for an arbitrary instant in time,
not an entire trajectory.

In contrast to these works, this paper provides probabilistic
reachable sets having exact measures, with no overapproxi-
mations or underapproximations, for general nonlinear sys-
tems that can be modeled by GPSSMs. These probabilistic
reachable sets apply to entire trajectories instead of particular
instances in time. Since GPSSMs include a prior distribution
over the possible state transition functions, this work does
not require any samples to be taken in order to obtain
the probabilistic guarantees. Furthermore, this work always
has perfect confidence in the accuracy of the probabilistic
reachable sets being generated.

The remainder of this paper is organized as follows.
Section II introduces probabilistic reachability analysis and
sets forth the problem statement for the paper. In Section III,
we introduce GPSSMs and some of their properties. Section
IV sets forth the main result of the paper by introducing
probabilistic reachable sets with exact measures for GPSSMs
that can be used in safety analysis. Section V demonstrates
the power of this reachability analysis for a few highly
nonlinear examples, and Section VI concludes the paper.
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II. PRELIMINARIES

A. Probabilistic Reachability Analysis

Before setting forth the problem statement, we first intro-
duce the general area of probabilistic reachability. Consider
a discrete-time dynamical system with a state transition
function Φ(kf , k0, x0, d) that maps an initial state xk0 =
x0 ∈ Rn at time step k0 to a unique final state at time step kf
under a disturbance d : [k0, kf ] → Rn. For example, when
the system’s state dynamics xk+1 = g(k, xk, dk) are known
and have unique solutions on the interval [k0, kf ], then
Φ(kf , k0, x0, d) is just xkf , where x is the solution of the
state dynamics with initial condition xk0 = x0. In addition to
representing exogenous disturbances, the disturbance signal
d may account for functional uncertainty in the system’s state
dynamics and deviations from a nominal control law.

In forward reachability analysis, we are interested in
computing the set where all possible evolutions of the state
trajectory lie during the time period k0 to kf given a set
X0 ⊆ Rn in which the initial state lies, a set D in which
the disturbance lies, and a time range [k0, kf ]. The forward
reachable set is defined as the set of all states to which the
system can transition in the time range [k0, kf ] with initial
states in X0 and disturbances in D, given by

Rk0:kf =

kf⋃
k=k0

{Φ(k, k0, x0, d)|x0 ∈ X0, d ∈ D} . (1)

In many cases, the disturbance d cannot be limited to a
finite set D and is better described as a random variable
following a probability distribution d ∼ Qd. In addition,
some information about the system’s state dynamics xk+1 =
g(k, xk, dk) may be known, but the functional uncertainty
in these dynamics may be modeled with a probability distri-
bution g ∼ Qg , as in the case with GPSSMs. Modeling the
disturbance and the unknown portion of the state dynamics as
random variables that follow probability distributions Qd and
Qg , respectively, results in Φ(kf , k0, x0, d) being a random
variable over the forward reachable set, whose probability
measure we denote as ϕ.

If we take samples of the random variables d ∼ Qd and
g ∼ Qg , then the vector Φ(kf , k0, x0, d) lies in X ⊆ Rn
with probability ϕ(X), and the support of Φ(kf , k0, x0, d)
is the reachable set. We can then view ϕ(X) as a measure
of probabilistic accuracy. If a set X ⊆ Rn has a greater
measure ϕ(X) than a set Y ⊆ Rn, then X is a more accurate
approximation of the reachable set than Y since it “misses”
less of the probability mass than Y does. In probabilistic
forward reachability, the goal is to find a tight reachable set
such that ϕ(Rk0:kf ) is close to 1. More formally, this can be
described as follows.

B. Problem Statement

Problem 1: Given the state transition function
Φ(kf , k0, x0, d), time range [k0, kf ], initial set X0,
disturbance distribution Qd, state dynamics function
distribution Qg , and a probability level p, compute a set
Rk0:kf such that ϕ(Rk0:kf ) = p.

Note that we would like to compute a set Rk0:kf in which the
state trajectory xk0:kf lies with an exact probability measure
of p, not an over-approximation or an under-approximation.
In solving this problem, therefore, there will be no drawbacks
in terms of approximation or conservativeness.

III. GAUSSIAN PROCESS STATE SPACE MODELS

We consider a discrete time system model with a
continuous-valued state, where uncertainty in the model is
captured by n independent Gaussian processes (GPs), given
by

xk+1 = g(xk, uk) + wk, (2)

where xk ∈ Rn represents the system state at time step
k, uk ∈ Rm is the control input vector, wk ∼ N (0, Q)
with Q , Diag(σ2

1 , · · · , σ2
n) is independent and identically

distributed (i.i.d.) GP noise,

g(xk, uk) =

g1(xk, uk)
...

gn(xk, uk)

 , (3)

and

gi(xk, uk) ∼ GP(mi(x̂k), ki(x̂k, x̂
′
k)), x̂k ,

[
xk
uk

]
, (4)

is a GP specified by its mean function mi(x̂k): Rn+m → R
and covariance function ki(x̂k, x̂

′
k): Rn+m × Rn+m → R,

given by

mi(x̂k) = E[gi(x̂k)], (5)
ki(x̂k, x̂

′
k) = E[(gi(x̂k)−mi(x̂k))(gi(x̂

′
k)−mi(x̂

′
k))]. (6)

A GP is a distribution over functions, assigning a joint
Gaussian distribution to any finite subset of the state and
control input space [23]. The covariance function of a GP
is also called the kernel function of the process, which
determines the class of functions over which the distribution
is defined.

We assume that N measurements of the state are taken,
either through recorded trajectory data or simply by sampling
the state transition function at various points in the state and
control input space. This training data set, composed of N
data pairs, is given by D , {{x̄j , ūj}, x̄+j }Nj=1, where

x̄+j = g(x̄j , ūj) + wj , wj ∼ N (0, Q). (7)

The training data can be used to determine the values of the
hyperparameters for the mean function and the covariance
function by optimizing the marginal likelihood. Given input
training data {x̄j , ūj}Nj=1 and output training data {x̄+j }Nj=1,
g(xk, uk) conditioned on xk, uk, and D follows a Gaussian
distribution, given by

g(xk, uk)|{xk, uk,D} ∼ N (µ(x̂k),Σ(x̂k)), (8)

µ(x̂k) ,

 m1(x̂k) + k̄1(x̂k)T (K1 + σ2
1IN )−1(y1 − ȳ1)

...
mn(x̂k) + k̄n(x̂k)T (Kn + σ2

nIN )−1(yn − ȳn)

 ,
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Σ(x̂k) ,

ξ1(x̂k) · · · 0
...

. . .
...

0 · · · ξn(x̂k)

 ,
ξi(x̂k) , ki(x̂k, x̂k)− k̄i(x̂k)T (Ki + σ2

i IN )−1k̄i(x̂k),

Ki ,

ki(ˆ̄x1, ˆ̄x1) · · · ki(ˆ̄x1, ˆ̄xN )
...

. . .
...

ki(ˆ̄xN , ˆ̄x1) · · · ki(ˆ̄xN , ˆ̄xN )

 , ˆ̄xj ,

[
x̄j
ūj

]
,

k̄i(x̂k) ,

ki(ˆ̄x1, x̂k)
...

ki(ˆ̄xN , x̂k)

 , yi ,
x̄

+
1 (i)
...

x̄+N (i)

 , ȳi ,
mi(ˆ̄x1)

...
mi(ˆ̄xN )

 ,
where x̄+j (i) denotes the ith dimension of x̄+j .

The conditional Gaussian distribution that g(xk, uk) fol-
lows will be used in the next section to develop exact
probability measures of the forward reachable set for the
system in (2).

IV. DATA-DRIVEN REACHABILITY ANALYSIS

A. χ2 Distribution

Before introducing probabilistic reachable sets for the
system in (2), we first derive a preliminary result, showing in
Lemma 1 how a quadratic function of xk+1−µ(x̂k) follows
a χ2 distribution when conditioned on x̂k and D.

Lemma 1: Let χ2(n) represent the χ2 distribution with n
degrees of freedom, and let

h(x̂k,xk+1)=(xk+1−µ(x̂k))T (Σ(x̂k)+Q)−1(xk+1−µ(x̂k)).
(9)

Then
h(x̂k, xk+1)|{x̂k,D} ∼ χ2(n). (10)

Proof: According to (2), (8), and the fact that wk ∼
N (0, Q),

xk+1|{xk, uk,D} ∼ N (µ(x̂k),Σ(x̂k) +Q).

The result then follows directly from the properties of the
χ2 distribution.

B. Probabilistic Forward Reachable Set

We now formally introduce the notion of a probabilistic
forward reachable set for trajectories of arbitrary length, and
Theorem 1 derives this set for GPSSMs, ensuring that state
trajectories lie within this set with probability p.

Definition 1: A (p, T )-reachable set of probability level
p and trajectory length T is a set XT (p) ⊆ RnT such that

Pr (x1:T ∈ XT (p)|x0 ∈ X0) = p. (11)

In other words, a (p, T )-reachable set is one in which the
trajectory x1:T lies with probability p, given that the initial
state lies in X0 ⊆ Rn.

Note that in Definition 1, XT (p) differs from a reachable
tube since it is not necessarily decomposable into a Cartesian
product of T subsets of Rn. This is illustrated in Figure 1
for the system in (2). Also note that the initial set X0 is not
restricted in any way and can be a highly nonconvex disjoint

Fig. 1. The probabilistic reachable set XT (p) ∈ RnT for the system in (2)
is defined by a bound on the cumulative deviation from the mean trajectory
µ(x̂k). In other words, XT (p) is defined as a set of ellipsoids centered on
the mean trajectory whose sum of areas is bounded by the inverse CDF of
the χ2 distribution. Two possibilities, each of which have the same sum of
areas, are shown here for an n = 2 dimensional system.

set, enabling the result in Theorem 1 to be applied to a wide
variety of systems.

Theorem 1: The (p, T )-reachable set for the system in (2)
is given by

XT (p) =

{
x1:T

∣∣∣∣∣
T−1∑
k=0

h(x̂k, xk+1)≤F−1χ2 (p, nT ), x0 ∈X0

}
,

(12)
where h(x̂k, xk+1) is given in (9) and F−1χ2 (p, nT ) is the
value of the inverse cumulative distribution function (CDF)
for the χ2 distribution evaluated at probability p with nT
degrees of freedom.

Proof: According to Lemma 1,

Pr (h(x̂k, xk+1) ≤ η|x̂k,D) = Fχ2(η, n), (13)

where Fχ2(η, n) is the value of the CDF for the χ2 distri-
bution evaluated at η with n degrees of freedom. Applying
the law of total probability with (13) yields

Pr(h(x̂k, xk+1)≤ η|D)

=

∫
x̂k∈Rn+m

Pr (h(x̂k, xk+1)≤ η|x̂k,D) f(x̂k|D)dx̂k

=Fχ2(η, n)

∫
x̂k∈Rn+m

f(x̂k|D)dx̂k =Fχ2(η, n),

(14)

where f(x̂k|D) represents the probability density function
(PDF) of x̂k given D. Note that the CDF in (13) conditioned
on x̂k and the CDF in (14) not conditioned on x̂k are
equal ∀η, implying that h(x̂k, xk+1)|D follows the same
distribution as h(x̂k, xk+1)|x̂k,D. Together with Lemma 1,
this implies that

h(x̂k, xk+1)|D ∼ χ2(n).

According to the properties of the χ2 distribution, this in
turn implies that

T−1∑
k=0

h(x̂k, xk+1)|D ∼ χ2(nT ).
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The result then follows directly from the properties of the
χ2 distribution and the fact that x0 ∈ X0:

Pr

(
T−1∑
k=0

h(x̂k, xk+1) ≤ F−1χ2 (p, nT )

∣∣∣∣∣D
)

= p.

Note that in [17]–[22], a minimum number of samples
are needed in order to obtain probabilistic reachable sets
like the one given in Theorem 1. However, Theorem 1 does
not require any samples for its results to still hold because
GPSSMs provide some prior knowledge about the system
dynamics, namely a prior distribution over the possible
state transition functions. This also allows us to have 100%
confidence in the probabilistic statement made about the
reachable set, whereas an infinite number of samples would
be required to have perfect confidence in cases where no
prior knowledge about the system dynamics is available.

As seen from the quadratic form of h(x̂k, xk+1), Theorem
1 states that the state trajectory deviates from the mean
trajectory µ(x̂k) with a certain probability for a particular
time horizon. More specifically, Theorem 1 states that the
cumulative deviation from the mean trajectory over a par-
ticular time horizon is bounded by the inverse CDF of the
χ2 distribution, as illustrated in Figure 1. This inverse CDF
is itself a function of the time horizon T and is strictly
increasing in T [24]. Consequently, for a given probability
level, the cumulative deviation from the mean trajectory
increases as the time horizon T increases. This can also be
intuited since the state trajectory will have some deviation
from the mean trajectory at each time step.

Corollary 1 states an implication of this fact, showing how
the size of the probabilistic reachable set for any subset of the
trajectory increases in T , since a larger time horizon means
larger cumulative deviation from the mean trajectory.

Corollary 1: Let X kT (p) ⊆ Rnk represent the projection
of XT (p) onto x1:k, where k ≤ T . Then

X kT (p) ⊆ X kT ′(p) ∀T ≤ T ′. (15)
Proof: The projection X kT (p) is given by

X kT (p),

x1:k
∣∣∣∣∣∣
k−1∑
j=0

h(x̂j , xj+1)≤F−1χ2 (p, nT ), x0 ∈X0

 .

F−1χ2 (p, nT ) is strictly increasing in T [24], thus (15) follows.

Note that X kT (p) is a projection onto a subset of the trajectory,
not a projection onto dimensions of the state space since the
subscript in x1:k is a time index, not a dimensional index.

Corollary 2 also states a property that arises from the
fact that the cumulative deviation from the mean trajectory
increases with increases in the time horizon. Corollary 2
states that the probability of any subset of the trajectory lying
within the probabilistic reachable set will be greater than or
equal to the probability of the full trajectory lying within the
probabilistic reachable set.

Corollary 2: The projection X kT (p) has the following
property:

Pr
(
x1:k ∈ X kT (p)

∣∣x0 ∈ X0

)
≥ p. (16)

Proof: According to Corollary 1,

X kT (p) ⊇ X kk (p) = Xk(p) ∀k ≤ T,

implying that

Pr
(
x1:k∈X kT (p)

∣∣x0∈X0

)
≥Pr(x1:k∈Xk(p)|x0∈X0). (17)

From Definition 1 and Theorem 1, we know that

Pr (x1:k ∈ Xk(p)|x0 ∈ X0) = p. (18)

Combining (17) with (18) yields the desired result.
The results provided in Corollaries 1 and 2 are therefore
useful in analyzing subsets of the overall trajectory.

C. Representing Probabilistic Forward Reachable Sets

Algorithm 1 shows how to use the result obtained in The-
orem 1 to graphically depict probabilistic forward reachable
sets for GPSSMs. These sets are graphically depicted by
plotting M sample trajectories that satisfy the inequality in
(12). For each sample trajectory, Algorithm 1 first draws a

Algorithm 1 Data-Driven (p, T )-Reachable Set Representa-
tion

1: Initialize M , the number of sample trajectories
2: Initialize X0, the initial set
3: for i = 1 : M
4: Draw a sample xi0 from the initial set X0

5: for k = 1 : T
6: Compute uik−1 from the control policy

7: x̂ik−1 =

[
xik−1

uik−1

]
8: Draw a sample xik from the ellipsoid EkT (p) ,{

xik

∣∣∣∣∣h(x̂ik−1, x
i
k) ≤ F−1

χ2 (p, nT )−
k−2∑
j=0

h(x̂ij , x
i
j+1)

}
9: end for

10: end for
11: Approximate the (p, T )-reachable set with the sample trajecto-

ries {x1
1:k, · · · , xM1:k}

sample of the state at random from the initial set (line 4).
Then the algorithm iterates through each time step in the
trajectory, using the state feedback control policy to compute
the control input (line 6). After that, a sample of the state
at the next time step is drawn at random from EkT (p), an
ellipsoid defined by (12) to ensure that the sample does
not lie outside the boundary of XT (p). After M sample
trajectories have been generated, they can be plotted to
graphically depict an approximation of XT (p).

V. EXAMPLES

In the following two examples, we demonstrate how
Theorem 1 accurately quantifies (p, T )-reachable sets, even
with systems that are highly nonlinear and result in quite
nonconvex forward reachable sets. We also validate the
results from Corollaries 1 and 2, showing how the cumulative
deviation from the mean trajectory increases as the time
horizon increases.
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A. Chaotic Nonlinear Map

We first examine the Tinkerbell map, a nonlinear map that
exhibits chaotic behavior [25]. The Tinkerbell map is used
as the mean function in the GPSSM, given by

m1(x̂k) = xk(1)2 − xk(2)2 + axk(1) + bxk(2), (19)
m2(x̂k) = 2xk(1)xk(2) + cxk(1) + rxk(2), (20)

where xk(i) denotes the ith dimension of xk and the system
parameters are chosen to be a = 0.9, b = −0.6013,
c = 2, and r = 0.5. We choose a squared exponential
kernel function and train the hyperparameters of the kernel
function by optimizing the marginal likelihood with training
data recorded from a trajectory of the Tinkerbell map. After
training, the observation noise covariance is given by Q =
Diag(1.2211, 2.6842) × 10−5. The initial set X0 is defined
such that x0(1) ∈ [−0.85,−0.6] and x0(2) ∈ [−0.75,−0.5].

Figure 2a depicts the (p, T )-reachable set as defined in
(12) for the Tinkerbell map with probability p = 99% and
time horizon T = 100 time steps. This approximate repre-
sentation of the (p, T )-reachable set was generated according
to Algorithm 1 with M = 1000 sample trajectories. As can
be seen from the figure, the probabilistic reachable set is
highly nonconvex, is not simply connected, and contains
numerous holes. This demonstrates the power of Theorem
1 in characterizing probabilistic reachable sets for general
nonlinear systems.

(a) (b)

Fig. 2. For the Tinkerbell map with a time horizon of T = 100 time steps,
(a) 99% probabilistic reachable set and (b) 1000 simulated trajectories,
where blue trajectories lie inside and red trajectories lie outside the 99%
probabilistic reachable set.

To verify the accuracy of our approach, Figure 2b plots
1000 trajectories for the Tinkerbell map over a time horizon
of T = 100 time steps simulated from the GPSSM dynamics
of the system in (2). Trajectories that lie within the (p, T )-
reachable set of probability level p = 99% are plotted in
blue, and those that do not lie within this set are plotted in
red. As can be seen in the figure, 98.2% of the simulated
trajectories lie within the 99% probabilistic reachable set,
demonstrating the accuracy of the probabilistic reachable set
derived in Theorem 1. Note that many red trajectories contain
points that lie near the mean trajectory in the middle of the
blue regions, but they do not lie within the 99% probabilistic
reachable set due to another point in the trajectory deviating
far away from the mean trajectory.

Figure 3 validates the results from Corollaries 1 and
2, showing that for a 99% probabilistic reachable set, the

cumulative deviation from the mean trajectory increases as
the time horizon increases.

0 20 40 60 80 100

T

0

50

100

150

200

250

Cumulative Deviation from

the Mean Trajectory (p = 99%)

Fig. 3. For the 99% probabilistic reachable set of the Tinkerbell map,
cumulative deviation from the mean trajectory as a function of the time
horizon T .

B. Traffic Model
We next examine a traffic model used as a reachability

benchmark in [26]. This traffic model investigates the density
of traffic on a highway using a discretization of the cell
transmission model that divides the highway into n equal
segments. The spatially discretized model has n states, where
xk(i) represents the number of vehicles on segment i at time
step k. Traffic enters through segment 1 and flows through
each successive segment before leaving through segment n,
where some traffic leaves the highway through exit ramps
located at the end of each segment. The traffic model
dynamics are used as the mean function in the GPSSM, given
by

m1(x̂k)=xk(1)−min

(
c,vxk(1),

q

β
(z−xk(2))

)
+uk, (21)

mi(x̂k)=xk(i)+min(βc,βvxk(i−1),q(z−xk(i)))

−min

(
c,vxk(i),

q

β
(z−xk(i+1))

)
, i=2,··· ,n−1,

(22)

mn(x̂k)=xk(n)+min(βc,βvxk(n−1),q(z−xk(n)))

−min(c,vxk(n)),
(23)

where c is the capacity, v is the free-flow speed, q is the
congestion-wave speed, and z is the jam occupancy of the
segment. The parameter β is defined such that a fraction
1−β of vehicles on a segment exit the highway at the end of
that segment. The input uk represents the number of vehicles
arriving on segment 1 from upstream. In this example,
we examine a 10-mile portion of the highway discretized
into n = 10 1-mile segments with c = 40 vehicles/time
step, v = 0.5 segments/time step, q = 1/6 segments/time
step, z = 320 vehicles, and β = 0.75. We model uk
as random input sampled uniformly between 40 and 60
vehicles at each time step. We choose a squared exponential
kernel function and train the hyperparameters of the kernel
function by optimizing the marginal likelihood with training
data recorded from a trajectory of the traffic model. After
training, the observation noise covariance is given by Q =
Diag(0.6907, 1.0889, 0.0854, 0.4202, 0.5491, 1.7253, 0.1427,
0.2729, 0.9272, 0.7745). The initial set X0 is defined
such that x0(i) ∈ [100, 150] ∀i ∈ {1, 3, 5, 7, 9} and
x0(i) ∈ [200, 250] ∀i ∈ {2, 4, 6, 8, 10}.
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Figure 4a depicts the (p, T )-reachable set as defined in
(12) for segments 9 and 10 of the highway with probability
p = 99% and a time horizon of 10 minutes (T = 20
time steps, with each time step being 0.5 minutes). This
approximate representation of the (p, T )-reachable set was
generated according to Algorithm 1 with M = 1000 sample
trajectories. As can be seen from the figure, the probabilistic
reachable set is not convex and is useful in characterizing
probabilistic reachable sets for large-scale nonlinear systems
in the real world.

(a) (b)

Fig. 4. For the traffic on segments 9 and 10 of the highway with a time
horizon of 10 minutes (T = 20 time steps), (a) 99% probabilistic reachable
set and (b) 1000 simulated trajectories, where blue trajectories lie inside and
red trajectories lie outside the 99% probabilistic reachable set.

To verify the accuracy of our approach, Figure 4b plots
1000 trajectories for segments 9 and 10 of the highway over
a time horizon of 10 minutes simulated from the GPSSM
dynamics of the system in (2). Trajectories that lie within the
(p, T )-reachable set of probability level p = 99% are plotted
in blue, and those that do not lie within this set are plotted
in red. As can be seen in the figure, 100% of the simulated
trajectories lie within the 99% probabilistic reachable set,
demonstrating the accuracy of the probabilistic reachable set
derived in Theorem 1.

VI. CONCLUSION

This paper investigates data-driven probabilistic reachable
sets for GPSSMs. We provide exact probability measures for
state trajectories of arbitrary length, even when no data sam-
ples are available, and we also investigate a few properties of
subsets of the overall trajectory. We demonstrate the accuracy
of these probability measures and their power in charac-
terizing highly nonlinear reachable sets with the examples
of a chaotic nonlinear map and a real-world traffic model.
Future work includes providing exact probability measures
for state trajectories when the state is not directly observable
as well as when both the GPs and the process noise are
not independent. Future work also includes investigating the
relationship between the amount of training data and the size
of the probabilistic reachable set.

REFERENCES

[1] R. Frigola, Y. Chen, and C. E. Rasmussen, “Variational Gaussian Pro-
cess State-Space Models,” Advances in Neural Information Processing
Systems, vol. 27, 2014.

[2] R. Frigola, F. Lindsten, T. B. Schön, and C. E. Rasmussen, “Bayesian
Inference and Learning in Gaussian Process State-Space Models with
Particle MCMC,” Advances in Neural Information Processing Systems,
vol. 26, 2013.

[3] R. Turner, M. Deisenroth, and C. Rasmussen, “State-Space Infer-
ence and Learning with Gaussian Processes,” in Proceedings of the
Thirteenth International Conference on Artificial Intelligence and
Statistics. JMLR Workshop and Conference Proceedings, 2010, pp.
868–875.

[4] S. Eleftheriadis, T. Nicholson, M. Deisenroth, and J. Hensman, “Identi-
fication of Gaussian Process State Space Models,” Advances in Neural
Information Processing Systems, vol. 30, 2017.

[5] A. Svensson, A. Solin, S. Särkkä, and T. Schön, “Computationally
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