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Abstract— We investigate adaptive protocols for the elimi-
nation or reduction of the use of medications or addictive
substances. We formalize this problem as online optimization,
minimizing the cumulative dose subject to constraints on
individual well-being. We adapt a model of addiction from
the psychology literature and show how it can be described
by a class of linear time-invariant systems. For such systems,
the optimal policy amounts to taking the smallest dose that
maintains well-being. We derive a simple protocol based on
integral control that requires no system identification, only
needing approximate knowledge of the instantaneous dose
response. This protocol is robust to model misspecification
and is able to maintain an individual’s well-being during the
tapering process. Numerical experiments demonstrate that the
adaptive protocol outperforms non-adaptive methods in terms
of both maintenance of well-being and rate of dose reduction.

I. INTRODUCTION

Tapering medications and assisting cessation of addictive
substances are related challenges in health care. Relapse
rates are high, and many return to drug use within weeks of
entering treatment. Though no general protocols are equally
valuable to all medications or all people, a personalized
approach to cessation may allow caregivers flexibility to meet
the diverse needs of a diverse care-seeking population. This
paper investigates adaptive tapering protocols that enable in-
dividuals to self-regulate their cessation rate. In particular, we
formalize tapering as an optimization problem of minimizing
the cumulative dose subject to constraints on well-being.

Such a formulation requires modeling an individual’s
dose-response dynamics, and we propose a mathematical
formulation of the opponent process model of addiction due
to Solomon [1]. As we discuss in Section II, an opponent
process consists of two competing systemic reactions to
treatment. The first system governs the “positive” effect
with a rapid onset and fast subsequent decay. The second
system governs “negative effects” with a long latency and
slow decay. In Section III, we show that modeling opponent
processes as LTI systems captures the qualitative behaviors
specified in the psychology literature and allows us to
analyze tapering as an optimal control problem.

In Section IV, we first derive a greedy policy that solves
the optimal control problem. The dosage should be decreased
by as much as possible while maintaining constraints on
well-being, but no look-ahead or planning is needed to com-
pute the dose. We provide a robust controller that maintains
this greedy behavior and is optimal under various models of
possible exogenous disturbances.
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In reality, the opponent process model is an approximation,
and the particular model of an individual is unknown. A pos-
sible approach informed by control theoretic practice might
involve learning a dynamics model of the individual, but
such learning procedures require wide varying of inputs and
would not be feasible for patients attempting drug cessation.
Instead of leaning on system identification, we investigate
the potential of “model-free” controllers for tapering in
Section V. We analyze the potential of integral control, where
the error signal is the deviation from a minimally acceptable
level of well-being. Using methods from the online learning
literature, we show that integral control robustly reduces the
dosage while minimally violating constraints on well-being.
Under further mild assumptions about the time between
doses, we show that the integral controller monotonically
reduces the dose to zero in finite time without violating the
specified constraints.

In the numerical experiments of Section VI, we demon-
strate that our adaptive protocol outperforms non-adaptive
methods in terms of both maintenance of well-being and
rate of dose reduction.

II. RELATED WORK

A. Tapering Protocols

Our work attempts to synthesize adaptive protocols that
can be applied to both “deprescribing” medications via grad-
ual tapering and to managing the symptoms of withdrawal
from addictive substances. In both of these applications,
most studies of tapering protocols have focused on non-
personalized procedures. Mujika and Padilla [2] study ta-
pering protocols for SSRI medications. They find that short
tapers (2-4 weeks) have minimal benefits over abrupt dis-
continuation while longer tapers (multiple months) are more
successful at minimizing withdrawal. More specifically they
suggest a slow, hyperbolic reduction in dosage. Horowitz et
al. [3], [4] propose a similar method (very slow, hyperbolic)
for tapering of antipsychotic medication. This work is based
on case studies and explicitly notes that there is no standard
guideline for tapering antipsychotic medications.

Several studies have also investigated protocols for manag-
ing withdrawal from addictive substances. In a meta-analysis
of opiod tapering protocols, Berna et al. [5] found that longer
tapers are typically better. The survey by Fenton et al. [6]
argues that most tapering protocols which focus primarily
on getting through the acute withdrawal phase may be too
rapid and have negative mental health consequences. In
an observational study, Agnoli et al. [7] find that tapering
of opiods is significantly associated with increased risk of
overdose and mental health crisis. Henry et al. [8] attempt
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to characterize patients’ subjective experiences with opiod
tapering in an effort to minimize negative tapering reactions.

B. Models of Drug Response and Tolerance

In the present work, we will build upon a popular model
of addiction, proposed by Solomon [1], called the Opponent-
Process theory of acquired motivation. In this model, the
drug response is the result of an initial ‘positive’ effect with
short lag and fast decay (A process) followed by a counter
‘negative’ effect with high latency and slow decay (B pro-
cess). This formalizes the empirical qualitative observation
that the withdrawal symptoms of a drug are characterized
as opposite to its acute effects [9]. The shape of such a
response is plotted in Figure 1. Koob and Moal [10] and
Koob [11] extend the opponent process framework to account
for a chronic deviation of the regulatory system from baseline
under repeated administration of the drug, which is referred
to as allostasis and is illustrated in Figure 2. In this work, we
propose a simple mathematical formulation of the opponent
process that captures the salient aspects of this model.

Fig. 1. Shape of an Instantaneous Opponent Process response as described
by Solomon [1].
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Fig. 2. Allostasis development due to overlay of opponent processes over
time as described by Koob and Moal [10].

III. PROBLEM SETTING AND PRELIMINARIES

To mathematically formalize the opponent process model,
we will denote an individual’s well-being at any time as yt.
This formulation asserts that yt is a concrete numerical quan-
tity, but our methods can operate with imprecise quantifica-
tion of well-being. For example, for modeling opiate with-
drawal, yt could be a value on the Clinical Opiate Withdrawal
Scale [12] or the Subjective/Objective Opiate Withdrawal

Scales [13]. For modeling an individual’s response to anti-
depressants, yt could model the number of Discontinuation-
Emergent Signs and Symptoms (DESS) [14], a depression
assessment like PHQ-9 [15], or a combination of both.

Let ut denote the amount of a drug ingested at time t. We
assume that yt evolves according to an LTI system

yt+1 =

t∑
k=0

g(k)ut−k + ynatt+1 (1)

where g is the impulse response. We focus our attention
on linear models as they are sufficiently general to capture
much of the qualitative behavior observed in the psychology
literature, but we discuss potential extensions to nonlinear
models in the Appendix. ynat comprises the remaining
dynamics that cannot be attributed to the drug under study.
We will only lightly model this exogenous disturbance by
asserting lower bounds on its values or bounds on its rate of
change. The time t = 0 will be the moment an individual
adopts a tapering protocol. The effect of all inputs before
t = 0 and any measurement noise are implicitly represented
in the “natural progression” signal, ynat.

We formalize the goal of tapering as minimizing the
total consumption of a drug subject to keeping well-being
above some specified threshold. The total consumed drug is∑T−1

t=0 ut and the constraint on well-being is yt ≥ ymin for
all t from 1 to T .

A. Modeling Opponent Processes

We now turn to our formal model of an opponent process.
Solomon [1] asserts that an opponent process reaction to a
single dose is first an A-process where y > 0 and then a
following B-process where y < 0. The following definition
summarizes this property.

Definition 1 (Opponent Process): We say that g is an
opponent process if there exists a time τ0 such that g(τ) > 0
when τ < τ0 and g(τ) ≤ 0 if τ ≥ τ0.

In this work, we focus on a subclass of opponent processes
that both induce some notion of tolerance or addiction and
are sufficiently well-behaved to be “treatable.”

Definition 2: An opponent process g is a Linearly Pro-
gressing Opponent Process (LPOP) if there additionally
exists an α ∈ (0, 1) such that

g(t+ 1) ≤ α · g(t) for t < τ0 − 1

|g(t+ 1)| ≥ α · |g(t)| for t ≥ τ0 .
This definition quantifies opponent processes where the

A-process decays exponentially, and the B-process does not
decay as quickly as the A-process. For example, this would
model a drug where the positive effects decay at some rate
α, then become negative, trending towards some peak of
withdrawal, and finally decay back to 0, potentially at a
prolonged rate.

B. Examples of Opponent Processes

Consider a linear system with impulse response

g(t) =
∑
λ

cλλ
t
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where all of the λ ∈ [0, 1) and the cλ are real valued scalars.
The terms where cλ are positive correspond to effects that in-
crease well-being. The terms where cλ are negative decrease
well-being. With this in mind, define Λ+ = {λ : cλ ≥ 0}
and Λ− = {λ : cλ < 0}. If

1) maxλ∈Λ+ λ ≤ minλ′∈Λ− λ′

2)
∑

λ cλ > 0
3) There exists some τ0 s.t. g(τ0) ≤ 0

then the system is an LPOP.
Intuitively, this holds because the part of the system

corresponding to positive effects decay more rapidly than all
of the terms corresponding to negative effects. In particular,
the second condition implies an initial positive response, and
third condition implies that after a single dose, the well-being
will eventually be negative.

The formal argument of why such systems are LPOPs
proceeds by bounding g(t+1) in terms of g(t). Let Λ++ :=
maxλ∈Λ+ λ and Λ−− := minλ′∈Λ− λ′. Then we have

g(t+ 1) =
∑
λ

cλλ
t+1

=
∑

λ+∈Λ+

cλ+
λt+1
+ +

∑
λ−∈Λ−

cλ−λ
t+1
−

≤ Λ++ ·
∑

λ+∈Λ+

cλ+λ
t
+ + Λ−− ·

∑
λ−∈Λ−

cλ−λ
t
−

≤ Λ−−

 ∑
λ+∈Λ+

cλ+
λt
+ +

∑
λ−∈Λ−

cλ−λ
t
−


= Λ−−g(t)

Setting α
.
= Λ−−, this implies that for t < τ0−1, g(t+1) ≤

αg(t) and for t ≥ τ0, |g(t+ 1)| ≥ α|g(t)|.

IV. OPTIMAL TAPERING PROTOCOL WITH SYSTEM
KNOWLEDGE

In this section, we derive the optimal tapering protocol
when the quantities described in the previous section are
known to the care provider. In particular, we will show that
when the system dynamics are known, the optimal control
problem is equivalent to setpoint matching with setpoint
ymin.

We begin with the formal definition of a maximally greedy
dose, the smallest dose that does not lead to an immediate
violation of the constraint on y. The main theorem of this
section states that a maximally greedy protocol results in the
lowest cumulative dose.

Definition 3 (Maximally Greedy Dose): We say that a
dose ut is maximally greedy at time t if it either leads to
yt+1 = ymin or is equal to 0.

Theorem 1: For any LPOP g, taking the maximally greedy
dose at every time maintains yt ≥ ymin for all t with minimal
cumulative dose.

Proof: Consider a dosing sequence u⋆
t that maintains

y⋆t ≥ ymin for all t with minimal cumulative dose. We will
prove the theorem by contradiction, assuming the sequence
u⋆
t is not maximally greedy. Then there must exist t0 and
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Fig. 3. Impulse responses and allostasis progression over 60 timesteps for
three opponent processes, each with different time constants and relative
effect magnitudes. The first two panels illustrate an opponent processes
with immediate benefits and slowly accumulating tolerance, characteristic
of therapeutic medications. The third panel captures an opponent process
with immediate transient effect and also a rapid onset of a low value of
well-being, more characteristic of subsances of abuse.

ϵ > 0 such that replacing u⋆
t0 with u⋆

t0 − ϵ would result
in a new y′t0+1 < y⋆t0+1 with y′t0+1 ≥ ymin. Consider the
modified dosing schedule

u′
t =


u⋆
t0 − ϵ t = t0

u⋆
t0+1 + αϵ t = t0 + 1

u⋆
t otherwise

and let y′t be the resulting sequence. Since u′
t = u⋆

t for all
t < t0, we have that y′t = y⋆t ≥ ymin up to t0. Plugging in
the effect of the dose modifications at t0 and t0 +1 into the
dynamics equation (1), we get:

y′t+1 = y⋆t+1 − g(t− t0)ϵ+ g(t− t0 − 1)αϵ

≥ y⋆t+1 (g LPOP)
≥ ymin

since this holds for all t > t0, we have that y′t satisfies the
constraints for all 1 ≤ t ≤ T . But we note that u′

t has a
smaller cumulative dose than u⋆

t because

T∑
t=1

u′
t =

T∑
t=1

u⋆
t − ϵ+ αϵ <

T∑
t=1

u⋆
t .

This is a contradiction, completing the proof.
This theorem shows that long-term planning is unneces-

sary to optimally taper a medication. It always suffices to
take the smallest dose necessary to maintain well being at the
current time. The question remains if such myopic strategies
remain possible when properties of the dynamics and dose
responses are unknown.

4069



Let us first assume that we know the impulse response g.
Our first protocol considers the case when we have a lower
bound on the values of ynatt .

Proposition 1: For any LPOP g, assume we know a lower
bound ynat,lbt such that ynat,lbt ≤ ynatt for all t. Then for any
instance of ynatt that is greater than the prescribed lower
bound, the dosing sequence

ut = max

{
0,

ymin − ynat,lbt+1 −
∑t

k=1 g(k)ut−k

g(0)

}
(2)

maintains yt ≥ ymin for all t with minimal cumulative dose.
Proof: To prove this proposition, we first derive the

maximally greedy dose at time t. This dose will require
access to ynatt+1 – we will replace this term with its lower
bound and show the resulting protocol is optimal.

The maximally greedy dose at time t (given past doses) is

uMG
t = max

{
0,

ymin − ynatt+1 −
∑t

k=1 g(k)ut−k

g(0)

}
(3)

To see why, observe that the dose is either 0 or satisfies

yMG
t+1 = uMG

t g(0) +

t∑
k=1

g(k)ut−k + ynatt+1

= ymin − ynatt+1 −
t∑

k=1

g(k)ut−k +

t∑
k=1

g(k)ut−k + ynatt+1

= ymin

For any ynatt+1 ≥ ynat,lbt+1 , the dose given by (2) is larger than
the maximally greedy dose (i.e. ut ≥ uMG

t ) and therefore
maintains yt+1 ≥ yMG

t+1 ≥ ymin. This holds independently
for all t (irrespective of past doses) and hence (2) maintains
yt ≥ ymin for all t for any sequence ynatt such that ynatt ≥
ynat,lbt for all t.

Finally, since the sequence of inputs given in (3) is
maximally greedy with respect to the lower bound sequence
ynat,lby , Theorem 1 implies that any dosing schedule with a
strictly lower cumulative dose would have to violate one of
the constraints. This means that ut given by (2) results in the
minimal cumulative dose that maintains feasibility across all
admissible ynatt sequences (i.e. lower bounded by ynat,lbt ).

There are two natural choices to lower bound ynatt . First,
we may assume that ynatt+1 ≥ ynatt for all t. In this case, the
best lower bound candidate is ynat,lbt+1 = ynatt which we can
compute via

ynatt = yt −
t−1∑
k=0

g(k)ut−k−1 . (4)

Second, we could bound the variation of ynatt , assuming there
Lnat ≥ 0 such that ynatt+1 ≥ ynatt −Lnat for all t, In this case,
the best lower bound is ynat,lbt+1 = ynatt − Lnat, where we
again compute ynatt via Eq. 4.

Note that the proof of Theorem 1 is valid even if the
constraints on y or the impulse response g are time-varying.
Hence, even under more general settings, setpoint matching

is the optimal approach to tapering. The doses for the time-
varying setting are the same as in Proposition 1 but with
y
(t)
min and/or gt plugged into the formula. In de-medication,

time-varying constraints are relevant when the patient can
withstand more severe withdrawal effects at particular times
of their lives or when they can no longer tolerate an initially
agreed-upon baseline.

V. TAPERING BY INTEGRAL CONTROL

Computing the maximally greedy dose in the previous
section required knowledge of the model of the underlying
dynamics, g. In practice, we would like to avoid estimating g
and instead derive an update rule requiring minimal system
knowledge. Since we know that the optimal control law is
setpoint matching and that integral action can match setpoints
asymptotically, we analyze the performance of a simple
integral controller on the tapering problem in this section. We
demonstrate that integral control with appropriately chosen
gains can reduce a dose while rarely violating the constraint
on yt. One need only know an approximate value of the
immediate effect of a single dose, which is equal to the value
g(0). Moreover, if g(t) ≤ 0 for all t ≥ 1, then integral control
results in a dose sequence monotonically decreases to zero
in finite time while ensuring yt ≥ ymin for all t.

To proceed, let (x)+ := max(x, 0) and (x)− := min(x, 0)
Consider the integral control law

ut = max

{
0, ut−1−K+(yt−ymin)+−K−(yt−ymin)−

}
.

(5)
This protocol is integral control if K+ = K−. However, it
also allows for a different gain when yt is above and below
the desired set point ymin. Using two gains allows for more
conservative (i.e., higher) doses. The control action is clipped
at 0 as it is impossible to take a negative dose.

The main theorem of this section bounds the long-term
constraint violation [16], [17] of the integral controller. We
aim to study how the average value of yt compares to the
constraint ymin over time. The bound we derive ensures the
overall sequence of states satisfies the constraint more strictly
as time increases. This ensures that the running average of
the observations up until a time T is greater than ymin minus
a penalty decaying at rate 1

T .
Theorem 2: For any underlying ynat, (5) ensures that for

any T ∑T
t=1 yt
T

≥ ymin − y0 − ymin

T
,

provided K+ ≤ g(0)−1 and K− ≥ g(0)−1.
The proof of this theorem is broadly inspired from analy-

ses of the finite time behavior of average constraint violation
in regret minimization by Mannor and Tsitsiklis [17] and
Mahdavi et al. [16]. To prove the theorem, we need the
following technical lemma that lower bounds the instance-
wise deviation of the yt obtained from the dosing scheme
(5) from ymin if the gains K+/K− upper/lower bound
g(0)−1 respectively. The proof of the lemma is given in the
Appendix.
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Lemma 1: Adopt the convention that u−1 = 0. For any
gains satisfying K+ ≤ g(0)−1 and K− ≥ g(0)−1, setting ut

according to (5) for t ≥ 0 yields yt+1 satisfying

yt+1 ≥ ymin + (ynatt+1 − ynatt )−
t∑

k=1

g(k)(ut−k−1 − ut−k) .

With this lemma, we can now prove Theorem 2.
Proof: [of Theorem 2] Using Lemma 1, we have that

T∑
t=0

yt+1 ≥ (T + 1)ymin

+

T∑
t=0

(
(ynatt+1 − ynatt )−

t∑
k=1

g(k)(ut−k−1 − ut−k)
)

= (T + 1)ymin − ynat0 + ynatT+1 +

T∑
t=0

utg(T − t)

= (T + 1)ymin + yT+1 − y0

where the first equality follows by telescoping and the second
by noting that ynat0 = y0. By cancelling yT+1 on both sides,
we get

T−1∑
t=0

yt+1 ≥ Tymin − (y0 − ymin)

which can be immediately rearranged into the stated bound:∑T
t=1 yt
T

=

∑T−1
t=0 yt+1

T
≥ ymin − y0 − ymin

T

Note that if it is undesirable to fluctuate around ymin,
we can run a padded integral controller adding δ to ymin.
Theorem 2 then implies∑T

t=1 yt
T

≥ ymin + δ − y0 − ymin − δ

T
.

Also note that, just as in the previous section, we can extend
the integral controller (5) to time-varying constraints by
plugging in y

(t)
min. In this case, the guarantee from Theorem 2

would instead bound deviation from the average ymin, i.e.
from T−1

∑T
t=1 y

(t)
min.

We close this section by deriving stronger guarantees for a
special class of LPOPs. Consider an opponent process with
τ0 = 1. Requiring τ0 = 1 can be interpreted as an assumption
on the discretization of the dose updating scheme (e.g., every
day vs. every week). For example, we can turn a system
g with τ0 > 1 into a system g′ with τ ′0 = 1 by taking
g′(t) = τ−1

0 ·
∑(t+1)·τ0−1

t′=t·τ0 g(t′).
Proposition 2: For any g with τ0 = 1, any initial u0 which

ensures y1 ≥ ymin, and any natural progression sequence
satisfying ynatt+1 ≥ ynatt − g(t)u0 + δ/t for some (arbitrarily
small) δ > 0, the doses prescribed by (5): (i) are non-
increasing, (ii) maintain yt ≥ ymin for all t, and (iii) there
exists some time T0 such that ut = 0 for all t ≥ T0.

Proof: To prove (i) and (ii) jointly, we will proceed by
induction on t. The base case holds by the assumption that
we have access to an initial u0 for which y1 ≥ ymin. Assume

for the inductive hypothesis that 0 ≤ ut−1 ≤ . . . ≤ u0 and
yt ≥ ymin. First, observe that since yt − ymin ≥ 0, we have

ut ≤ max{0, ut−1} = ut−1

showing the inductive step for (i). Second, by Lemma 1,

yt+1 ≥ ymin + (ynatt+1 − ynatt )−
t∑

k=1

g(k)(ut−k−1 − ut−k)

≥ ymin + (ynatt+1 − ynatt ) + g(t)u0

≥ ymin + δ/t

where the second-to-last inequality follows since g(k) ≤ 0
and ut−k−1 − ut−k ≥ 0 for all 1 ≤ k ≤ t − 1. The last
inequality follows by our assumption ynatt+1 ≥ ynatt −g(t)u0+
δ/t. This shows the inductive step for (ii). Therefore, by
induction, (i) and (ii) are true.

Finally, by the calculation above, we know that ut is
decreasing and, further, that it can be expressed as

ut = max

{
0, u0 −K+δ ·

t∑
k=1

1

t

}
which, since

∑t
k=1 1/t ≥ ln t, implies ut = 0 for all t ≥

exp

{
u0

K+δ

}
, proving (iii).

VI. NUMERICAL SIMULATIONS

In this section, we present simulations demonstrating
the behavior of the proposed protocols and standard (non-
adaptive) tapering approaches. Due to a lack of available
simulators/open source data, we rely on synthetic impulse
response functions that we model based on broad properties
of immediate response and allostatic adaptation.

a) Task definition: We consider the problem of tapering
in the three opponent processes from Figure 3, starting from
the allostatic state reached after taking dose u = 1 for
Tinit = 60 timesteps. For each of these opponent processes,
we are interested in the ability of a protocol to perform well
on average for a population with different constraints. More
concretely, for each setting, we consider ‘treating’ a popula-
tion of N units over a horizon Ttaper with ymin distributed
uniformly between the allostatic equilibrium and a lower
baseline. Concretely, we take yAmin ∼ Unif(−2, 0), yBmin ∼
Unif(−1, 1), yCmin ∼ Unif(−4,−2) and TA

taper = TB
taper =

60, TC
taper = 14. For all setups, we also inject random

Unif(−0.25, 0.25) noise to the observations to accommodate
random disturbances from the underlying dynamics.

For a given individual and a given tapering protocol, we
measure the average dose taken and the average constraint
violation over the tapering horizon Ttaper. We then average
these two metrics over the N units to obtain the average
performance of a protocol over a population.

b) Tapering protocol specification.: As baselines, we
consider the linear (ut = u0−αt) and the exponential (ut =
αtu0) dose decay protocols and vary the decay rate α to get
the trade-off curve between our two performance metrics for
each opponent process when evaluated over units with varied
constraints.
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We compare against the integral controller of Section V
for which we can directly input the patient constraint ymin.
The main obstacle is that we do not know the exact value
of g(0). However, since this is the immediate response, we
can assume access to a course range. For our evaluation, we
take the lower and upper bounds to be 50% and 150% of
the true response. This directly corresponds to conservative
settings for K+ and K− equal to 2g(0)−1/3 and 2g(0)−1.
In the Appendix, we provide an ablation over the coarseness
of our range specification, observing that our method can
handle wide ranges. As discussed in Section V, our method
can be instantiated with a padded yδmin = ymin+δ to provide
stronger constraint violation guarantees. Since this is the one
hyperparameter that might affect practice, we also vary it in
our experiments.

Finally, we compare to the optimal tapering protocol given
by (3), for which we use the full model g and the true
underlying natural progression to compute the maximally
greedy dose. That is, we compare against the best possible
control scheme had we known the true signal ynatt+1 in
advance. We also tested the cold turkey protocol (ut ≡ 0),
but its performance was too poor to be included.
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Fig. 4. Average constraint violation (x-axis) against average dose (y-axis).
Each point is averaged over N = 100 units.

c) Results.: In Figure 4, we see that the integral con-
trol law dominates the baselines considered, as the curves
obtained by sweeping over the various parameters do not
intersect. In the Appendix, we provide further experiments
covering the robustness of the method to even more extreme
misspecification of g(0), as well as behavior in terms of a
potential additional metric of interest: the percentage of units
that successfully taper within the specified time frame.

Finally, there is a non-negligible performance gap between
the integral and the optimal tapering protocols discussed in
this paper, which indicates an avenue for future research.

VII. CONCLUSION & DISCUSSION

There remain several control-theoretic considerations in ta-
pering protocol design. For example, the desirable guarantee
of monotonic dose decrease was induced by a discretization
such that the full positive effect occurs within one timestep.
How can we find the appropriate time window without ex-
cessive exploration? Can we develop methods for estimating
the switching point of the process and discretizing such that
the induced discrete system has τ0 = 1?

Additionally, numerous practical, clinical, and ethical
considerations must be considered for the downstream de-
ployment of the proposed methods. For example, neither
the optimal policy nor our default integral control policy
decrease the dose monotonically. For some individuals, this
could result in recommending increasing dosages, which is
undesirable in most clinical settings. A translation to practice
may necessarily add the constraint that a dose never exceeds
some level. And this may mean that desired levels of well-
being are not achievable for some patients.

To our knowledge, this work is the first formalization
of tapering as an optimal control problem. This formalism
leads to a concrete approach that departs from existing
literature on tapering and prescribes adaptivity. Excitingly,
the proposed protocols may be able to address some of the
limitations of current approaches while still providing simple,
explainable rules. We hope that the straightforward protocols
are amenable to undergoing human subject validation in
future studies.
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APPENDIX

a) Proof of Lemma 1: We first derive an alternate
expression of the (possibly negative) dose u⋆

t that leads to
ymin. Concretely, using the same derivation in Propositon 1
of the maximally greedy protocol (3), we have that

u⋆
t =

ymin − ynatt+1 −
∑t

k=1 g(k)ut−k

g(0)

We aim to express this in terms of the current set-point
error yt − ymin and ut−1, so we add and subtract ynatt and∑t−1

k=1 ut−k−1 (which generate yt − g(0)ut−1) to obtain:

u⋆
t = g(0)−1

(
ymin − ynatt + (ynatt − ynatt+1)

−
t−1∑
k=1

g(k)ut−k−1 −
t∑

k=1

g(k)(ut−k − ut−k−1)
)

where we take u−1 = 0. Since ynatt +
∑t−1

k=1 g(k)ut−k−1 =
yt − g(0)ut−1, we can rewrite the above as

u⋆
t = ut−1 − g(0)−1(yt − ymin)− g(0)−1(ynatt+1 − ynatt )

+ g(0)−1

(
t∑

k=1

g(k)(ut−k−1 − ut−k)

)
Since K+ ≤ g(0)−1 and K− ≥ g(0)−1, we have that

−g(0)−1(yt−ymin) ≤ −K+(yt−ymin)+−K−(yt−ymin)−

And therefore, if ut is given by (5), then

u⋆
t ≤ ut − g(0)−1(ynatt+1 − ynatt )

+ g(0)−1

(
t∑

k=1

g(k)(ut−k−1 − ut−k)

)
Multiplying both sides by g(0) and then adding∑t

k=1 g(k)ut−k + ynatt+1, we have

ynatt+1 + g(0)u⋆
t +

t∑
k=1

g(k)ut−k

≤ynatt+1 +

t∑
k=0

g(k)ut−k − (ynatt+1 − ynatt )

+

t∑
k=1

g(k)(ut−k−1 − ut−k)

Since by construction the LHS is equal to exactly ymin and
by the dynamics equation ynatt+1 +

∑t
k=0 g(k)ut−k = yt,

rearranging the above yields:

ymin + (ynatt+1 − ynatt )−
t∑

k=1

g(k)(ut−k−1 − ut−k) ≤ yt

which is precisely the stated inequality.
b) Generalization to non-linear opponent processes:

Our definition of (1) implies a linear contribution of the dose
to the observed well-being metric. One may wonder if we
can accommodate the case where the opponent process varies
with u, i.e. yt evolves according to the following generalized
version of (1):

yt+1 =

t∑
k=0

g(k, ut−k) + ynatt+1 (6)

In this subsection, we show we can, under a corresponding
generalization of well-behavedness from Definition 2. The
rate of change of each g(t, ·) with respect to the dose u will
play an important role, so we introduce the following two
shorthand notations:

∂−
u (t)

.
= inf

u
∂ug(t, u) ∂+

u (t)
.
= sup

u
∂ug(t, u)

Definition 4 (Generalized Opponent Process): We say
that g is a generalized opponent process if there exists a
time τ0 such that:

1) infu g(τ, u) ≥ 0 and ∂−
u (t) ≥ 0 when τ < τ0,

2) supu g(τ, u) ≤ 0 and ∂+
u (t) ≤ 0 when τ ≥ τ0.

Definition 5 (Generalized LPOP): A generalized oppo-
nent process g is a generalized linearly progressing opponent
process (G-LPOP) if there exists an α ∈ (0, 1) such that:

1) ∂+
u (t+ 1) ≤ α · ∂−

u (t) when t < τ0 − 1,
2) ∂−

u (t+ 1) ≥ α · ∂+
u (t) when t ≥ τ0.

In this case the proof of Theorem 1 changes a bit, relying
on Mean Value Theorem. We give the statement and proof
in Theorem 3 below.

Theorem 3: For any G-LPOP g, taking the maximally
greedy dose at every time maintains yt ≥ ymin for all t
with minimal cumulative dose.

Proof: Consider a dosing sequence u⋆
t that maintains

y⋆t ≥ ymin for all t with minimal cumulative dose. Assume
it is not maximally greedy (otherwise we would be done).
This means that there exists t0 and ϵ > 0 such that u⋆

t0 − ϵ
would produce a new y′t0+1 ≥ ymin. Consider the modified
dosing schedule

u′
t =


u⋆
t0 − ϵ, t = t0

u⋆
t0+1 + αϵ, t = t0 + 1

u⋆
t otherwise

and let y′t be the resulting observations. Since u′
t = u⋆

t

for t < t0, we have that y′t = y⋆t ≥ ymin up to t0. Plugging
in the effect of the dose modifications at t0 and t0 + 1 into
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the generalized dynamics equation (6), by the Mean Value
Theorem, we get:

y′t+1 = y⋆t+1 − g(t− t0, u
⋆
t0) + g(t− t0, u

⋆
t0 − ϵ)

− g(t− t0 − 1, u⋆
t0+1) + g(t− t0 − 1, u⋆

t0+1 + αϵ)

= y⋆t+1 − ϵ · ∂ug(t− t0, u
⋆
t0 − δ0ϵ)

+ αϵ · ∂ug(t− t0 − 1, u⋆
t0+1 + δ1ϵ)

for some δ0 ∈ (0, 1), δ1 ∈ (0, α). Since g is a G-LPOP, this
final expression is greater than or equal to y⋆t+1 and hence
is also greater than or equal to ymin. Since this holds for
all t > t0, we have that y′t satisfies the constraints for all t.
To finalize, note that y′t is achieved with smaller cumulative
dose since

T∑
t=1

u′
t =

T∑
t=1

u⋆
t − ϵ+ αϵ <

T∑
t=1

u⋆
t ,

This is a contradiction, completing the proof.
Instantiating this in the form of protocol (2) can be done

by solving for the dose which exactly matches the setpoint:
Proposition 3: For any G-LPOP g, assume we know a

lower bound ynat,lbt such that ynat,lbt ≤ ynatt for all t. Then,
for any instance of ynatt that is greater than the prescribed
lower bound, the dosing sequence which takes ut be the
solution to

g(0, u) = max

{
0, ymin − ynat,lbt+1 −

t∑
k=1

g(k, ut−k)

}
(7)

maintains yt ≥ ymin for all t with minimal cumulative dose.
Remark 1: Since g(0, u) is increasing in u, an ϵ-accurate

solution to (7) can be computed in O(log 1
ϵ ) steps.

The above effectively shows that optimal tapering is
equivalent to setpoint matching under non-linear g as well.
While it is not as clean to derive precise guarantees for the
integral controller as in the main text, the result of Theo-
rem 3, combined with the robustness to g(0) errors observed
experimentally, strongly motivates the same approach in this
more general setting.

c) Additional Experiment (Ablation over g(0) range
coarseness): Figure 5 demonstrates that the integral con-
troller can support a wide misspecification on the range of
g(0). In fact, the experiments suggest an overly conservative
upper bound on g(0) may improve performance under an
optimal choice of δ.

d) Additional Experiment (Number of subjects fully
tapered): In Figure 6 we plot the percentage of units
the proposed protocol fully tapered within Ttaper steps for
varying values of δ. We see that our method fully tapers a
portion of the units within some pre-specified timeline with
minimal constraint violation. This is in contrast with fixed
methods which induce a 0% vs. 100% tapering success step
function given a timeframe Ttaper. In all settings used, non-
adaptive methods would have to incur significant constraint
violations to fully taper within the pre-specified timeframe.
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Fig. 5. Average constraint violation (x-axis) against average dose (y-
axis) for different ranges of lower and upper bounds on g(0). A label of
(p1, p2) in the legend corresponds to setting K− to (p1g(0))−1 and K+

to (p2g(0))−1.
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Fig. 6. Average constraint violation (x-axis) against the percentage of units
fully tapered (y-axis).
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