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Abstract— Optimal control methods provide solutions to
safety-critical problems but easily become intractable. Control
Barrier Functions (CBFs) have emerged as a popular technique
that facilitates their solution by provably guaranteeing safety,
through their forward invariance property, at the expense
of some performance loss. This approach involves defining a
performance objective alongside CBF-based safety constraints
that must always be enforced with both performance and
solution feasibility significantly impacted by two key factors:
(i) the selection of the cost function and associated parameters,
and (ii) the calibration of parameters within the CBF-based
constraints, which capture the trade-off between performance
and conservativeness. To address these challenges, we propose a
Reinforcement Learning (RL)-based Receding Horizon Control
(RHC) approach leveraging Model Predictive Control (MPC)
with CBFs (MPC-CBF). In particular, we parameterize our
controller and use bilevel optimization, where RL is used to
learn the optimal parameters while MPC computes the optimal
control input. We validate our method by applying it to the
challenging automated merging control problem for Connected
and Automated Vehicles (CAVs) at conflicting roadways. Results
demonstrate improved performance and a significant reduction
in the number of infeasible cases compared to traditional
heuristic approaches used for tuning CBF-based controllers,
showcasing the effectiveness of the proposed method. In order
to guarantee reproducibility, our code is provided here: link1.

I. INTRODUCTION

In recent years, CBFs have been extensively applied in
safety-critical control using a solution approach based on a
sequence of Quadratic Programs (QPs) [1], referred to as
QP-CBF. This method is often subject to infeasibility issues
due to (i) the lack of any prediction ability due to the my-
opic nature of the QP-CBF method, and (ii) inter-sampling
control errors due to time discretization. Additionally, CBF
constraints require choosing a class K function that provides
a trade-off between safety and performance.
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To address this issue, [2] proposed an event-triggered
control method to tackle primarily the inter-sampling error
problem. The authors in [3], [4] proposed MPC-based control
using CBFs which can combat the myopic limitations of
QPs through a look-ahead prediction ability. However, these
works lack systematic means to tune the parameters. Usually,
this choice is done heuristically, which can result in sub-
optimal controller response and, in the worst case, safety vio-
lation. In order to tackle this issue, adaptive CBFs (AdaCBF)
are proposed in [5] to address the conservativeness of CBFs.
However, this method becomes challenging to implement
in practice because it requires defining “penalty terms”
in the CBF constraints and their corresponding dynamics.
Additionally, this method provides no guidance on tuning
the CBF constraints to balance the trade-off for optimizing
the system response while ensuring safety.

In the context of AdaCBFs, [6] proposed an end-to-
end neural network-based controller design using differential
QPs, where the parameters are tuned by means of behavioral
cloning [7]; this performs poorly on out-of-distribution data
due to a quadratic compounding of errors over time [8]. In
[9], [10] RL is used to learn optimal parameters of an MPC
controller by using Q-learning and actor-critic algorithms.
However, these methods require computing gradients by
solving KKT conditions and backpropagating through the
MPC (which can be nonlinear), respectively, which makes
them computationally expensive and generally intractable.

The QP-CBF method has been applied to safety-critical
control problems involving Connected and Automated Ve-
hicles (CAVs) at various conflict points of transportation
networks [11]. Aside from the issues addressed above, the
solutions to these problems have also been largely limited
to the longitudinal dynamics of vehicles, decoupling these
from their lateral dynamics. In this context, we make the
following contributions:
● We propose a parameterized MPC controller with CBFs

in order to address the infeasibility issues encountered
in the QP-CBF methods. Moreover, we use RL to
learn the optimal parameters in the MPC objective
function, as well as the parameters in the CBF-based
constraints, thus balancing the trade-off between safety
and performance.

● Our proposed approach does not require backpropagat-
ing through the MPC-CBF controller, which can be
computationally expensive and intractable. As a result,
our approach is always computationally efficient.

● We tackle the problem of CAV control in merging
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roadways by considering both longitudinal and lateral
motions. Besides validating our approach, the problem
setting allows us to highlight the generalizability of
the learnt controller. We achieve this by training the
controller parameters for a single CAV and using them
across a set of homogeneous CAVs during deployment.

II. PRELIMINARIES

Consider a control affine system

ẋ = f(x) + g(x)u, (1)

where f ∶ Rn → Rn and g ∶ Rn → Rn×q are locally Lipschitz,
x ∈ X ⊂ Rn denotes the state vector and u ∈ U ⊂ Rq the input
vector with U the control input constraint set defined as:

U ∶= {u ∈ Rq ∶ umin ≤ u ≤ umax} . (2)

with umin,umax ∈ Rq and the inequalities are interpreted
component-wise . It is assumed that the solution of (1) is
forward complete.

A. Control Barrier Functions

Definition 1 (Class K function): A continuous function
α ∶ [0, a) → [0,∞], a > 0 is said to belong to class K if
it is strictly increasing and α(0) = 0.

Definition 2: A set C is forward invariant for system (1)
if for every x(0) ∈ C, we have x(t) ∈ C, for all t ≥ 0.

Definition 3 (Control barrier function [12]): Given a
continuously differentiable function b ∶ Rn → R and the
set C ∶= {x ∈ Rn ∶ b(x) ≥ 0}, b(x) is a candidate control
barrier function (CBF) for the system (1) if there exists a
class K function α such that

sup
u∈U
[Lfb(x) +Lgb(x)u + α(b(x))] ≥ 0, (3)

for all x ∈ C, where Lf , Lg denote the Lie derivatives along
f and g, respectively.

Definition 4 (Relative degree): The relative degree of a
(sufficiently many times) differentiable function b ∶ Rn → R
with respect to system (1) is the number of times it needs
to be differentiated along its dynamics until the control u
explicitly appears in the corresponding derivative.

For a constraint b(x) ≥ 0 with relative degree m, b : Rn →
R, and ζ0(x) ∶= b(x), we define a sequence of functions
ζi ∶ Rn → R, i ∈ {1, . . . ,m} :

ζi(x) ∶= ζ̇i−1(x) + αi (ζi−1(x)) , i ∈ {1, . . . ,m}, (4)

where αi(⋅), i ∈ {1, . . . ,m} denotes a (m − i)th order
differentiable class K function. We further define a sequence
of sets Ci, i ∈ {1, ...,m} associated with (4) which take the
following form,

Ci ∶= {x ∈ Rn ∶ ζi−1(x) ≥ 0}, i ∈ {1, ...,m}. (5)

Definition 5 (High Order CBF (HOCBF) [13]): Let
C1, ...,Cm be defined by (5) and ζ1(x), ..., ζm(x) be
defined by (4). A function b ∶ Rn → R is a High Order
Control Barrier Function (HOCBF) of relative degree m for
system (1) if there exists (m− i)th order differentiable class

K functions αi, i ∈ {1, ...,m − 1} and a class K function
αm such that

sup
u∈U
[Lm

f b(x)+LgL
m−1
f b(x)u+S(b(x))+αm(ζm−1(x))] ≥ 0

(6)
for all x ∈ ⋂m

i=1Ci. In (6), Lm
f and Lg denotes derivative

along f and g m times and one time respectively, and S(⋅)
denotes the remaining Lie derivative along f with degree
less than or equal to m−1 (ommited for simplicty, see [13]).

The following theorem on HOCBFs implies the forward
invariance property of the CBFs and the original safety set.
The proof is omitted (see [13] for the proof).

Theorem 1 ([12]): Given a constraint b(x(t)) with the
associated sets Ci’s as defined in (5), any Lipschitz contin-
uous controller u(t), that satisfies (6) ∀t ≥ t0 renders the
sets Ci (including the set corresponding to the actual safety
constraint C1) forward invariant for control system (1).

Definition 6 (Control Lyapunov function (CLF)[14]):
A continuously differentiable function V ∶ Rn → R is
a globally and exponentially stabilizing CLF for (1)
if there exists constants ci ∈ R>0, i = 1,2, such that
c1∣∣x∣∣2 ≤ V (x) ≤ c2∣∣x∣∣2, and the following inequality holds

inf
u∈U
[LfV (x) +LgV (x)u + η(x)] ≤ e, (7)

where e makes this a soft constraint.

III. PROBLEM FORMULATION

We consider the control of a safety-critical system. We
assume that the system has the affine dynamics in (1) with
control bounds as in (2). The system has a certain high-level
performance specification associated with it, as reflected in
the cost function l(x,u). In addition to the cost, we have
a set of safety constraints bj(x) ≥ 0, j ∈ ΛS (where bj is
continuously differentiable, ΛS is a constraint set). We define
the stage cost associated to the system in (1) as:

L(x,u) = l(x,u) + ∑
j∈ΛS

I∞(bj(x)), (8)

where we use the indicator function

I∞(x) =
⎧⎪⎪⎨⎪⎪⎩

∞, if x < 0 for some i,
0, otherwise.

to ensure the satisfaction of each bj(x) ≥ 0. Finally, we
consider a parameterized state feedback controller u(x∣θ);
our goal is to learn the parameters θ that achieve:
● Minimize the expected sum of discounted costs:

θ∗0,...,k,... = argmin
θ0,...,k,...

Eτu[
∞
∑
k=0

γkL(xk,uk(xk ∣θk))],

(9)
where, τu are trajectories sampled based on the dynam-
ics in (1) given an initial state distribution at k = 0.
Here, γ is the discount factor which yields a well-posed
problem, i.e., the state and state-action value functions,
are well posed and finite over some sets.

● Guarantee the satisfaction of the constraints
bj(xk), ∀k, j ∈ ΛS , and control bounds in (2).

402



Given the objective in (9), we will first present the
formulation of the parameterized state feedback controller,
which in our case is obtained using MPC-CBF, followed by
the determination of the parameters in (9) learnt using RL.

IV. PARAMETERIZED MPC-CBF CONTROL DESIGN

In this section, we present the formulation of the param-
eterized controller u(x∣θ) (cf. Section III). Note that we
exclude the temporal dependency to streamline the notation.

MPC objective: We adopt a Receding Horizon Control
(RHC) approach using MPC due to its look-ahead prediction
ability. The stage cost in (8) has two parts: a cost term
and a penalty term associated with safety constraints. We
encode the safety constraints as hard constraints in the
MPC formulation. The cost l(x,u) in (8) can be directly
incorporated into the objective function. Note that the cost
l(x,u) is usually selected arbitrarily to reflect some high-
level system specification/objective. Consequently, it can
be highly nonlinear and/or not differentiable, making it
computationally intractable. Hence, we select a continuous
quadratic function of states x and control input u as the stage
cost in our MPC objective and parameterize it to optimize
(9). We express the parameterized MPC stage cost as follows:

J(x,u∣θo) = [xT uT ]A(θo) [
x
u
] +B(θo)T [

x
u
] , (10)

where θo is the vector of the learnable parameters of the
objective. Without loss of generality, θo may consist of
weights for state and control components in (10)).

MPC Constraints: We deal with the second term in
(8) by enforcing hard HOCBF constraints in the MPC. As
mentioned in Section II, HOCBFs, because of their forward
invariance property, provide a sufficient condition for the
satisfaction of the original constraints. In addition, as seen
in (6), the transformed HOCBF constraints include class K
functions which can be parameterized to quantify the trade-
off between safety and performance. In particular, if the
slope of the function is too small, then the controller may
be overly conservative resulting in suboptimal performance.
Conversely, a steep class K function in (6) will allow for
optimization of the system performance to a greater extent as
the set of feasible inputs is larger and trajectories are allowed
to approach the boundary of the safety set at a higher rate.
However, such a HOCBF constraint (6) becomes active only
near the unsafe set boundary, requiring a large control input
effort which may cause infeasibility due to the control bound
in (2) (see also [6]). To balance this trade-off, we make the
HOCBFs adaptive by parameterizing the class K function in
the HOCBF constraints. Thus, the HOCBF in (6) becomes:

Lm
f bj(x) +LgL

m−1
f bj(x)u + S (bj(x) ∣ θc)

+ αm (ζm−1 (x) ∣ θc) ≥ 0, ∀j ∈ ΛS , (11)

where θc are the learnable parameters of the HOCBF con-
straint. For example, a linear parametric class K function is
of the form: θ(1)c bj(x), where θ(1)c ∈ R>0 is the parameter to
be learnt. It is important to note that parameterizing HOCBF
constraints does not affect the forward invariance property

Fig. 1. RL training pipeline for parameterized MPC-CBF. The RL agent
learns the parameters [θc,k θo,k θe,k]T where θo is the vector of the
learnable parameters of the objective, θc are learnable parameters of the
CLF constraint and θe is the vector of weights of the penalty terms
associated with the relaxation parameters of the CLF constraints. These
parameters are then used in the MPC-CBF problem in (13) which is
optimized to compute the optimal control input.

of the HOCBFs. In order to include penalty terms related to
reference/set-point tracking, we define Lyapunov functions
and include the corresponding CLF constraints in the MPC,
as in prior works (e.g., [5]). Additionally, we parameterize
the CLF constraints to also make them adaptive based on
the stage cost in (8) to optimize (9). A parameterized CLF
constraint is expressed as follows:

LfV (x) +LgV (x)u + η(x∣θc) ≤ e, (12)

where θc are learnable parameters of the CLF constraint,
and e is a relaxation parameter for the CLF constraint which
is included to make the constraint soft as it is not a safety
(critical) constraint.

Parameterized MPC-CBF approach: Finally, the
parametrized MPC-CBF problem can be written as follows:

min
x0∶N ∣k

u0∶N−1∣k

N−1
∑
h=0
(J(xh∣k,uh∣k ∣θo,k) + θT

e,ke
2
h∣k)

+ VN(xN ∣k ∣θo,k),
(13)

subject to xh+1∣k = f(xh∣k,uh∣k), h = 0, . . . ,N − 1,
(2), (11), (12), h = 0, . . . ,N − 1,
xh∣k ∈ X , xN ∈ Xf .

where θe is the vector of weights of the penalty terms asso-
ciated with the relaxation parameters of the CLF constraints.
The CBF (or HOCBF) constraints correspond to the safety
constraints bj(x), ∀j ∈ ΛS .

RL algorithm: We denote the learnable parameters of the
MPC-CBF as θk = [θc,k θo,k θe,k]T , where θk ∈ R∣θ∣>0. To
learn the optimal parameters corresponding to (9), we set the
state space S = X ×U as defined in Section II and the action
space A = R∣θ∣>0. We define the reward R(sk) = −L(sk),
with L(sk) in (8). Finally, we use RL to learn the optimal
parameters θk(sk) which change at every time step k as a
function of the state sk. Specifically, we parameterize the
optimal controller parameter policy using a neural network
with parameters w and train it in order to maximize the
expected discounted reward R(sk) (i.e., solve (9)). This step
can be implemented using any actor-critic RL algorithms
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[15], [16]. The optimal parameters θk are then sampled from
the learnt policy, i.e., θk ∼ πw(sk). The overall pipeline of
RL with MPC-CBF is shown in Fig. 1. Note that modern
Deep RL actor-critic algorithms parameterize both the actor
πw and the critic Qν (ν is a vector of the parameters
of the critic network, which can be implemented using a
neural network). The critic is updated regressing the Bellman
equation as in [17] and the actor is then updated by means
of policy gradient which exploits the reparameterization trick
[15], [16].

V. MULTI-AGENT CONTROL OF CAVS

In this section, we review the setting for CAVs whose
motions are coordinated at conflict areas of a traffic network.
We define a Control Zone (CZ) to be an area within which
CAVs can communicate with each other or with a coordinator
(e.g., a Road-Side Unit (RSU)) which is responsible for
facilitating the exchange of information (but not control
individual vehicles) inside this CZ. As an example, Fig.
2 shows a conflict area due to vehicles merging from two
single-lane roads and a single Merging Point (MP) that the
vehicles must cross from either road.

CZ

𝑂1

𝑂2

L

L

MP

Index States Lane

0 𝑥0, 𝑦0, 𝜓0, 𝑣0 1

1 𝑥1, 𝑦1, 𝜓1, 𝑣1 2

2 𝑥2, 𝑦2, 𝜓2, 𝑣2 2

3 𝑥3, 𝑦3, 𝜓3, 𝑣3 1

4 𝑥4, 𝑦4, 𝜓4, 𝑣4 2

FIFO Queue

3
1

0

2

4

Fig. 2. The merging control problem for CAVs

Let F (t) be the set of indices of all CAVs located in
the CZ at time t. A CAV enters the CZ at one of several
origins (e.g., O1 and O2 in Fig. 2) and leaves at one of
possibly several exit points (e.g., MP in Fig. 2). The index
0 is used to denote a CAV that has just left the CZ. Let S(t)
be the cardinality of F (t). Thus, if a CAV arrives at time t,
it is assigned the index S(t) + 1. All CAV indices in F (t)
decrease by one when a CAV passes over the MP and the
vehicle whose index is −1 is dropped.

The vehicle dynamics for each CAV i ∈ F (t) along its
lane in a given CZ are assumed to be of the form
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẋi
ẏi
ψ̇i

v̇i

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
ẋi(t)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vi cosψi

vi sinψi

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

f(xi(t))

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 vi/(lf + lr)
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

g(xi(t))

[ ui
ϕi
]

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
ui(t)

, (14)

where xi(t), yi(t), ψi(t), vi(t) represent the current longi-
tudinal position, lateral position, heading angle, and speed,

respectively. ui(t) and ϕi(t) are the acceleration and steer-
ing angle (controls) of vehicle i at time t, respectively,
g (xi(t)) = [gu (xi(t)) , gϕ (xi(t))]. There are three objec-
tives for each CAV, which are minimization of the travel time,
energy consumption and center lane deviation respectively,
further details can be found in [18].

Constraint 1 (Safety constraint): Let ip denote the index
of the CAV which physically immediately precedes i in the
CZ (if one is present). We require that the distance between
vehicles i and ip remains safe by defining a speed dependent
ellipsoidal safe region b1 (xi,xip) as follows:

b1 (xi,xip) ∶=
(xi(t) − xip(t))

2

(aivi(t))2
+
(yi(t) − yip(t))

2

(bivi(t))2
−1 ≥ 0,

(15)
where ai, bi are weights adjusting the length of the major
and minor axes of the ellipse.

Constraint 2 (Safe merging): Each CAV i has to maintain
safe distancing relative to the CAV that merges immediately
ahead of it, denoted by ic. This is ensured by enforcing a
constraint on CAV i denoted by b2 (xi,xic) at the merging
point m at time tmi when it crosses the MP and it is defined
as follows:

b2 = ri(t)µi(t)−ric(t)µic(t)−Φ (xi(t), yi(t)) vi(t)−δ ≥ 0,
(16)

where, ri =
√
x2i + y2i , µi = tan−1 ( yi

xi
); similarly, ric =√

x2ic + y
2
ic
, µic = tan−1 ( yic

xic
). Here Φ ∶ R2 → R may

be any continuously differentiable function as long as it
is strictly increasing and satisfies the boundary conditions
Φ(xi(t0i ), yi(t0i )) = 0 and Φ(xi(tmi ), yi(tmi )) = φ (see [19]
for details). Here φ denotes the reaction time and δ is a given
minimum safe distance.

The determination of CAV ic depends on the policy
adopted for sequencing CAVs through the CZ, which are
detailed in [18].

Constraint 3 (Vehicle limitations): Constraints on the
speed and control for each i ∈ F (t) are detailed in [18].

Constraint 4 (Road boundaries): To ensure the vehicle
stays within the road boundaries we impose two constraints
defined as brc and blc for the right and left boundary of the
road respectively, as follows:

b3 = (xi(t) − xi,lc(t))2 + (yi(t) − yi,lc(t))2 − r2lc ≥ 0, (17)

b4 = (xi(t) − xi,rc(t))2 + (yi(t) − yi,rc(t))2 − r2rc ≤ 0, (18)

where xi,lc(t) and xi,rc(t) are the longitudinal coordinates
and yi,lc(t) and yi,rc(t) are the lateral coordinates of the
left and right boundary respectively for vehicle i at time t
and rrc ∈ R>0, rlc ∈ R>0 are constants. The derivation of the
(HO)CBF constrains can be found in [18]. The optimization
problem details can be found in [18].

VI. SIMULATION RESULTS

The details of the implementation can be found in [18].
MPC-CBF and model parameters: We have considered

the merging problem shown in Fig. 2 where CAVs arrive at

404



TABLE I
CAVS METRIC COMPARISON UNDER THE PROPOSED FRAMEWORK AND THE BASELINE. THE MEAN AND STANDARD DEVIATION WERE CALCULATED

FROM 10 SIMULATIONS WITH DIFFERENT RANDOM INITIAL STATES AND ARRIVAL TIMES

Item MPC-CBF w/o RL MPC-CBF w/ RL
Conservative Moderately conservative Moderately aggressive Aggressive -

Ave. travel time 11.98 ±0.1 11.87 ±0.11 11.82 ±0.1 11.78 ±0.1 10.94 ± 0.11
Ave. 1

2
u2 12.19 ±1.23 11.68 ±1.29 12.55±1.62 12.83 ±1.75 8.70 ± 1.16

Ave. fuel consumption 10.52 ±0.33 10.84 ±0.29 11.35 ±0.3 11.14 ±0.31 7.20 ±0.27
Total infeasibility 259 185 199 209 71

Fig. 3. Illustration of the scenario used to generate rollouts during RL
training.

the predefined CZ according to Poisson arrival processes with
a given arrival rate. The parameters used in the implementa-
tion cam be found in [18]. In our simulations, we included
the computation of a more realistic energy consumption
model [20].

RL algorithm and hyperparameters: Each CAV/agent
at most interacts with two other CAVs (ip and ic) given in
(15), (16). Therefore, we train an agent i in the presence
of two other agents (ip and ic) and sample their control
input from two behavior policies πB

ic
and πB

ip
respectively

to ensure sufficient exploration and generalization across all
CAVs. Fig. 3 illustrates the scenario used to generate the
rollouts during training, further details can be found in [18].

Furthermore, this allows us to define a reward function
that depends on CAV i only as follows:

Ri = −Li = −(β1∣∣ui∣∣22 + β2∣∣ϕi∣∣2+
β3∣∣vi − vdes∣∣22 + β4∣∣ψi − ψdes∣∣22 + β5fv + I∞), (19)

where βq ∈ [0,1], ∀q and I∞, denotes the infeasiblity penalty
which is set to be much higher than other terms in the
reward function. The actor network output is fed into the
optimization problem formulated in (13) which then outputs
the control inputs for the agents. We train our agent using a
soft actor-critic [16].

Numerical Results: We present simulation results for 50
random initialized vehicles with two sets of parameters θk:
the first is our proposed method with a time-varying class K
function and objective weights, while the second is a fixed
class K function (linear function) and fixed objective weights
heuristically (commonly used in literature) as the baseline. To
ensure we pick both conservative and aggressive parameter
values in the baseline, the whole parameter range is divided
into four sets (i.e., conservative to aggressive).

The performance of both methods in terms of average
travel time, ℓ2-norm of the acceleration, average fuel con-
sumption and total number of infeasible cases (i.e., the
number of times there is no solution for the minimization

problem formulated in (13)) are compared and illustrated
in Table I. According to the results, the proposed method
not only improves the desired metrics defined in the reward
function (19), but also reduces the infeasible instances by
almost 65%. It is worth noting that an “infeasible” case
does not necessarily imply a constraint violation, since CBF
constraints are only sufficient, but not necessary, conditions.

A similar scenario as depicted in Fig. 2 is used in two
experiments, one in which we assign fixed values to the set
of parameters, θk, and another using our proposed method
whose results are shown in Figs. 4 and 5, respectively. As it
can be seen from Fig. 4a, the CAV 4 trajectory encounters
an infeasiblity (i.e., the obtained control input violated its
bounds as shown in Fig. 4b). This infeasiblity happens due to
the conservativeness of the fixed class K function which then
violates the HOCBF constraints defined in (18) as shown in
Fig. 4c. Similarly, CAV 3 encounters an infeasiblity and fails
to satisfy CBF constraint of safe merging defined in (16) as
shown in Fig. 4c. However, with our proposed method, this
issue is eliminated as shown in Fig. 5a.

VII. CONCLUSION

We have proposed a control method based on RHC using
MPC with CBFs which can provably guarantee safety in
safety-critical control systems. In order to tackle the issues
of performance as well as feasibility, we use RL to learn the
parameters of our MPC-CBF controller by optimizing system
performance encapsulated in properly defined rewards/costs.
We have validated our approach on a multi-agent CAV
merging control problem at conflicting roadways. As the
proposed approach involves a single-agent, we use RL to
train the controller for one CAV and use it across other agents
assuming they are homogeneous to evaluate the generalize-
ability of the proposed approach. Experimental results show
that our proposed approach performs better compared to the
baseline controller with heuristically selected parameters and
also generalizes to unseen scenarios.
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