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Abstract— Optimal control is ubiquitous in many fields of
engineering. A common technique to find candidate solutions
is via Pontryagin’s maximum principle. An unfortunate aspect
of this method is that the dimension of system doubles. When
the system evolves on a Lie group and the system is invariant
under left (or right) translations, Lie-Poisson reduction can be
applied to eliminate half of the dimensions (and returning the
dimension of the problem to the back to the original number).

Hybrid control systems are an extension of (continuous)
control systems by allowing for sudden changes to the state.
Examples of such systems include the bouncing ball - the
velocity instantaneously jumps during a bounce, the thermostat
- controls switch to on or off, and a sailboat undergoing tacking.
The goal of this work is to extend the idea of Lie-Poisson
reduction to the optimal control of these systems. If n is the
dimension of the original system, 2n is the dimension of the
system produced by the maximum principle. In the case of
classical Lie-Poisson reduction, the dimension drops back down
to n. This, unfortunately, is impossible in hybrid systems as
there must be an auxiliary variable encoding whether or not
an event occurs. As such, the analogous hybrid Lie-Poisson
reduction results in a n + 1 dimensional system. The purpose
of this work is to develop and present this technique.

I. INTRODUCTION

Many systems naturally evolve on Lie groups, e.g. a ship
can be described by a point in SE2, a satellite by SO3,
the double pendulum on T2, etc. As the underlying state-
space is endowed with a group structure, the control law
can exploit these symmetries by being left-invariant. If G is
the Lie group and U is the control set, then a left-invariant
controlled vector field is a map f : G× U → TG such that

ġ = f(g, u) = g · f̃(u), f̃ : U → g, (1)

where g = Lie(G) is the corresponding Lie algebra.
A common question to attach to the control system (1) is

that of optimal control, i.e. find a control u : [t0, tf ] → U
that minimizes some cost,

J (u(·)) =
∫ tf

t0

L (g(s), u(s)) ds.

When the cost is also left-invariant, the resulting optimal
control problem is left-invariant and has been extensively
studied, e.g. [1], [2], [3], [4], [5].

A common paradigm for solving optimal control prob-
lems is via Pontraygin’s maximum principle. This technique
transforms the n = dim(G)-dimensional control system into
a split boundary value problem of dimension 2n. When
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Fig. 1. A schematic of Lie-Poisson reduction as applied to hybrid systems.
An event occurs at g1 ∈ Σ and the arc gets mapped to ∆(g1). The map
JR : T ∗G → g∗ allows for the dimension reduction, and the corresponding
reduced momentum jumps by δµ

the underlying control system is left-invariant, Lie-Poisson
reduction can be applied to reduce the dimension back to n.
The aim of this work is to extend this reduction technique
to hybrid control systems as shown in Fig. 1, i.e. replacing
the dynamics (1) by{

ġ = f(g, u), g ̸∈ Σ,

g+ = ∆(g), g ∈ Σ.

In order to apply (hybrid) Lie-Poisson reduction to this
problem, in addition to f being left-invariant, both Σ and ∆
need to satisfy analogous properties. As will be shown, the
presence of state jumps limits the strength of the reduction
and only permits the dimension to be reduced to n+ 1.

The structure of this paper is the following: Section II de-
fines the notion of a left-invariant hybrid control system on a
Lie group. Section III presents an overview of the maximum
principle applied to (purely continuous) left-invariant optimal
control problems and its relation with Lie-Poisson reduction.
Section IV extends the techniques of left-invariant optimal
control to hybrid control systems and contains the main
results of this work: Theorem 3 and Algorithm 1. Section
V applies the theory to SE2, the special Euclidean group of
the plane. This work concludes with section VI.

II. LEFT-INVARIANT HYBRID SYSTEMS

When the state-space for a continuous control system is
a Lie group, it is natural to examine problems that are left-
invariant so as to fully exploit the group structure present.
Proprieties such as controllability and optimization are well-
understood in this situation [6]. Left-invariant control sys-
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tems on a matrix group have dynamics of the following form

ġ = g · f̃(u),

where f̃ is the manifestation of the controls. To extend
this idea to hybrid systems a guard and reset need to be
introduced, along with the correct notion of “left-invariant.”

Before specializing to the group case, we first present
the general notion of a controlled hybrid system. A con-
trolled hybrid dynamical system has the form HC =
(M,Σ,U , f,∆) , where

1) M is a finite-dimensional manifold, called the state-
space,

2) Σ ⊂ M is a co-dimension 1 embedded submanifold,
called the guard,

3) U ⊂ Rm is a closed set of admissible controls,
4) f : M × U → TM is the controlled vector field, and
5) ∆ : Σ→M is a smooth map, called the reset.

In the case where the state-space is a Lie group, additional
structure may be placed on the control system. Let G be a
finite-dimensional Lie group with Lie algebra g = TeG. For
a given element, g ∈ G, let ℓg : G → G be left-translation
and rg : G→ G be right-translation

ℓg(h) = gh, rg(h) = hg,

which are diffeomorphisms. Denote its derivative by (ℓg)∗ :
TG → TG, and the pullback r∗g : T ∗G → T ∗G by JR
(see Fig. 1). In the case where the group is a matrix group,
(ℓg)∗ is simply matrix multiplication. At first glance, a hybrid
control system on a Lie group is left-invariant if it is invariant
under the map ℓg . A key piece of this invariance is that the
guard must also be left-invariant. However, this cannot be
true unless Σ = G, the whole group. Rather, the correct
notion is that of being tangent preserving.

Definition 1 (Tangent Preserving [7]): Let Σ ⊂ G be a
submanifold (not necessarily a subgroup). This space Σ is
(left) tangent preserving if for any σ ∈ Σ and g ∈ G such
that gσ ∈ Σ, we have (ℓg)∗TσΣ = TgσΣ.

Definition 2 (Left-Invariant Hybrid Control System):
A left-invariant hybrid control system (LIHCS) is a
refinement of a controlled hybrid dynamical system with
LHC = (G,Σ,U , f̃ ,∆) where

1) G is a finite-dimensional Lie group,
2) Σ ⊂ G is tangent-preserving,
3) f̃ : U → g,
4) ∆ : Σ→ G satisfies

∆(gα) = g∆(α), (2)

for α ∈ Σ, and g ∈ Gα(Σ) := {g ∈ G : gα ∈ Σ}.
To elucidate the properties of these two objects, we have

the following proposition.
Proposition 1: Let K ≤ G be a (closed) Lie co-dimension

1 subgroup. For arbitrary g0, h0 ∈ G, the right coset Σ :=
Kg0 is tangent preserving and the map

∆(α) = rh0
(α),

satisfies ∆(gα) = g∆(α) for all g ∈ Gα(Σ).

Proof: Let α ∈ Σ = Kg0 and g ∈ Gα(Σ). As shown
in [7], Gα(Σ) = K and ℓg : Σ → Σ is a diffeomorphism.
Differentiating this shows the tangent preserving property.

For the reset map, notice that

rh0
(gα) = gαh0 = grh0

(α).

Hence, Σ = Kg0 is tangent preserving and ∆ = rh0 satisfies
(2).
Cosets form a partition of the group via the equivalence
relation

x ∼ y ⇐⇒ xy−1 ∈ K.

Equivalence classes of this relation will be denoted by

[x] = {y ∈ G : y ∼ x} .

In particular, if π : G→ K\G is the natural projection,

[x] = {y ∈ G : π(y) = π(x)} .

Here, the notation K\G denotes the collection of right cosets
as opposed to the left cosets by G/K.

Throughout the remainder of this work, the guard and reset
maps of left-invariant hybrid control systems will have the
form specified in Proposition 1. However, there is a slightly
more distinguished case that will be important to the task of
reduction.

Definition 3 (Normal LIHCS): A left-invariant hybrid
control system is normal (NLIHCS) if Σ = Kg0 for some
(closed, co-dimension 1) normal subgroup K ⊴ G and
some element g0 ∈ G.

The dynamics of a left-invariant hybrid control system can
be described via

LHC :

{
ġ = (ℓg)∗ f̃(u), g ̸∈ Kg0,

g+ = rh0(g
−), g ∈ Kg0.

(3)

In order to guarantee that reset events are isolated (and thus
Zeno is prohibited), we wish to have ∆(Σ) ∩ Σ = ∅. This
happens as long as Kg0 ̸= Kg0h0 (recall that cosets partition
the group). This is enforced via the following assumption.

Assumption 1: We will henceforth assume that g0h0g
−1
0 ̸∈

K. When K is normal, this is equivalent to h0 ̸∈ K. This
guarantees that Kg0 ̸= Kg0h0.

Remark 1: In the case where G is a matrix group and the
controls are affine, the controlled dynamics become

ġ = g
(
e0 + u1e

1 + . . .+ uke
k
)
,

where {ej}kj=0 is a collection of elements in g. In this case,
an affine left-invarint hybrid control system has dynamics{

ġ = g
(
e0 + u1e

1 + . . . uke
k
)
, gg−1

0 ̸∈ K,

g+ = g−h0, gg−1
0 ∈ K.

Fundamental control questions such as controllability, acces-
sibility, observability, etc., of the control system (3) are not
explored here and are the subject of future work.
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A. Example: Special Euclidean Group
As a simple demonstration of a normal left-invariant

hybrid control system, let G = SE2 be the special Euclidean
group on the plane. This group can be described by

SE2 =


 cos θ sin θ x
− sin θ cos θ y

0 0 1

 .

The collection of translations form a normal subgroup and a
right coset has the form

Σ = Kg0 =


 cos θ∗ sin θ∗ x
− sin θ∗ cos θ∗ y

0 0 1

∣∣∣∣∣∣ x, y ∈ R

 ,

where θ∗ ∈ S1 is some critical angle. Assuming fully
actuated control, we choose the following left-invariant con-
tinuous dynamics

ẋ = u cos θ + v sin θ,

ẏ = v cos θ − u sin θ,

θ̇ = ω.

(4)

A reset occurs when θ = θ∗ and jumps according to

x 7→ x+ x̃ cos θ + ỹ sin θ,

y 7→ y + ỹ cos θ − x̃ sin θ,

θ 7→ θ + θ̃,

(5)

where x̃, ỹ, and θ̃ are prescribed by the chosen reset h0 ∈
SE2. Assumption 1 states that θ̃ ̸= 0,±2π,±4π, . . .

III. LEFT-INVARIANT OPTIMAL CONTROL
A commonly used necessary condition in optimal control

is Pontryagin’s maximum principle. This method lifts the
control problem to the co-tangent bundle of the state-space
and the flow of a distinguished Hamiltonian produces the
optimal trajectories. In the case of a left-invariant control
system with left-invariant cost, the constructed Hamiltonian
is also left-invariant. This allows for Lie-Poisson reduction
to reduce the dimension of the problem from 2n down to n.
This section presents an overview of the maximum principle,
Lie-Poisson reduction and the application of the latter to the
former in the context of purely continuous control systems.

A. Pontraygin Maximum Principle
We begin by demonstrating necessary conditions for the

purely continuous optimal control problem of the form

J (x0) = min
u(·)

∫ tf

t0

L(x(t), u(t)) dt+ φ(x(tf )), (6)

subject to the dynamics

ẋ = f(x, u), x(t0) = x0. (7)

Pontraygin’s maximum principle [8] states that regular
optimal trajectories are intimately related to the flow from
the Hamiltonian

H : T ∗M → R
H(x, p) = min

u
[⟨p, f(x, u)⟩+ L(x, u)] .

That is, if x(t) is an optimal trajectory then there exists p(t)
such that the pair satisfy Hamilton’s equations

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
. (8)

Moreover, this problem is a mixed boundary value problem
with conditions

x(t0) = x0, p(tf ) = dφx(tf ).

B. Lie-Poisson Reduction

Let H : T ∗G→ R be a left-invariant Hamiltonian, i.e.

H (g, p) = H
(
e, (ℓg)

∗
p
)
,

for all g ∈ G. Its restriction to the identity will be denoted
by

h : g∗ → R, h(µ) = H(e, µ).

Theorem 1 (Lie-Poisson Reduction [9]): Let H : T ∗G→
R be a left-invariant Hamiltonian with restriction h. If
(g(t), p(t)) is a solution to Hamilton’s equations:

ġ =
∂H

∂p
, ṗ = −∂H

∂g
, (9)

then µ := (ℓg)
∗p satisfies the following

µ̇ = ad∗dhµ, ġ = (ℓg)∗ dh. (10)

C. Reduced Maximum Principle

To obtain a left-invariant Hamiltonian, the control dynam-
ics and Lagrangian must be left-invariant, i.e. (via a slight
abuse of notation)

f(g, u) = (ℓg)∗ f̃(u), L(g, u) = L(e, u).

In the case where the running cost, L, is independent of the
group variable, we will denote it via

L : U → R,
L(u) = L(e, u).

It is straightforward to see that the optimal Hamiltonian is
left-invariant and the resulting (restricted) Hamiltonian is

h : g∗ → R

h(µ) = min
u

[
⟨µ, f̃(u)⟩+ L(u)

]
.

The maximum principle requires solving the mixed bound-
ary value problem

g(0) = g0, p(T ) = dφg(T ),

subject to the dynamics (9). This problem can be translated
to (10) via µ(T ) =

(
ℓg(T )

)∗
p(T ). An advantage of this

approach is that it is well-suited for forward-backward tech-
niques [10]; the initial value and terminal value problems are
now decoupled and can be solved independently.
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IV. LEFT-INVARIANT HYBRID OPTIMAL
CONTROL

A. Hybrid Maximum Principle

For the cost function (6), consider the optimization prob-
lem where the dynamics are now governed by the hybrid
dynamics

HC :

{
ẋ = f(x, u), x ̸∈ Σ,

x+ = ∆(x−), x ∈ Σ.

Suppose that x(t) is an optimal (hybrid) arc. As a coddling
assumption, suppose that x only undergoes resets a finite
number of times (and hence, the impact times are all uni-
formly separated). Between resets, the classical maximum
principle still applies, i.e. the trajectory obeys the dynamics
(8). At the reset time, the co-states jump according to the
“Hamiltonian jump condition” [11]:

p+ ◦∆∗ − p− ∈ Ann(TΣ),

H+ −H− = 0,
(11)

where Ann is the annihilator:

Ann(TΣ) = {(x, p) ∈ T ∗M : x ∈ Σ, ⟨p, TS⟩ = 0} .

Remark 2: The assumption that the number of resets is
finite is crucial to the above conditions and there exist quite
simple control systems that do not obey this assumption [12].

Remark 3: One hopes that there exists a unique solution
for p+ in (11). In the case of mechanical impact systems
(where H is a mechanical Hamiltonian and ∆ is the identity
map), there always exists a unique (non-trivial) solution.
Unfortunately, there is no reason a priori to assume that this
is the case for an arbitrary control system - especially if ∆∗
does not have full rank. This is not always the case as in
many situations (e.g. legged locomotion), the reset map is
a projection. Invertability of ∆∗ is not strictly required, but
the subsequent analysis becomes substantially more involved
[13].

B. Impact Lie-Poisson Reduction

One fundamental difficulty in performing Lie-Poisson
reduction to hybrid systems is that the µ- and g-dynamics
cannot be fully decoupled as in the continuous case. The
reason for this is that resets cause a jump in µ but are
triggered by the state g. This makes the full reduction
from 2n down to n dimensions impossible. Fortunately, it
is possible to reduce from 2n down to n + 1 where the
additional dimension records whether or not a reset occurs.

Theorem 2 (Impact Lie-Poisson Reduction [7]):
Consider a left-invariant impact system with data: G a
Lie group, Σ = Kg0 a right coset with K ⊴ G a normal,
co-dimension 1 closed Lie subgroup. Denote the natural
projection map by π : G→ Σ and the Lie algebra of K by
K.

Let H : T ∗G → R be a mechanical left-invariant
Hamiltonian and let h be its restriction to the identity.
Suppose (g(t), p(t)) follows the hybrid flow φH

t and let
µ(t) =

(
ℓg(t)

)∗
p(t). Let σ : K\G → G be a local section,

q ∈ K\G, and δµ ∈ Ann(K) be the unique non-trivial
solution to h(µ) = h(µ+ δµ). Then (q(t), µ(t)) follows the
dynamics{

µ̇ = ad∗dhµ,

q̇ = dπσ(q)

(
ℓσ(q)

)
∗ dh(µ),

q ̸∈ [g0], (12)

{
µ 7→ µ+ δµ,

q 7→ q,
q ∈ [g0]. (13)

Remark 4: The requirement that Σ needs to be generated
from a co-dimension 1 normal subgroup is quite restrictive.
However, that condition is necessary for the reconstruction
(q-dynamics) in (12) to be well-defined. The condition that
H be a mechanical Hamiltonian ensures that a unique (non-
trivial) solution δµ for the co-state jumps exists. In more
general contexts, the uniqueness/existence of solutions to
h(µ) = h(µ+ δµ) is not guaranteed.

C. Reduced Hybrid Maximum Principle

Let (G,Σ,U , f,∆) be a left-invariant hybrid control sys-
tem with cost

J =

∫ tf

t0

L(u) dt+ φ (g(xf )) , (14)

where L : U → R is the running cost. The Hamiltonian
arising from the maximum principle is left-invariant and has
the form

h(µ) = min
u

[
L(u) + ⟨µ, f̃(u)⟩

]
. (15)

The resulting reduction results in the following dynamics.
Theorem 3: For a NLIHCS (G,Kg0,U , f̃ , rh0

) with in-
variant cost (14), regular optimal trajectories follow the
continuous dynamics (12) and the modified jump conditions{

µ 7→ Ad∗h0
µ+ δµ,

q 7→ q · π (h0) ,
q ∈ [g0], (16)

where δµ ∈ Ann(K) such that h(µ+) = h(µ−).
Proof: The continuous dynamics, (12), follow from re-

ducing Hamilton’s flow from the maximum principle (8). The
reset condition, (16), follows from reducing the Hamiltonian
jump condition (11) by Theorem 2 and noticing that

∆∗ = (rh0
)∗ =⇒ (∆∗)

−1
=

(
rh−1

0

)
∗
.

This results in the map

p 7→
(
rh0

−1

)∗
p+

(
rh0

−1

)∗
δµ.

Left-translating back to the identity yields

µ 7→ (ℓh0)
∗
(
rh−1

0

)∗
µ+ (ℓh0)

∗
(
rh−1

0

)∗
δµ

= Ad∗h0
µ+ δµ,

where Ann(K) is closed under the co-Adjoint action as K
is a normal subgroup.

Remark 5: The jump condition (16) tacitly makes the
assumption that there exists a unique δµ such that

h (µ) = h
(
Ad∗h0

µ+ δµ
)
.
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Unlike in the mechanical case, as discussed in Remark 3,
this is no longer guaranteed to be true. We will henceforth
assume existence/uniqueness and relegate this question to
future work.

Algorithm 1 Forward-Backward Solver for Hybrid Lie-
Poisson Optimal Control

g(T )← g0f
∆g ←∞
while ∆g > tol do

µf ←
(
ℓg(T )

)
∗ dφg(T )

qf ← π(g(T ))

Solve
[

µ(t)
q(t)

]
backwards : dynamics (12) and (16)

Solve g(t) forwards :

{
ġ = (ℓg)∗ dh, g ̸∈ Σ

g+ = ∆(g−), g ∈ Σ

gn+1
f ← g(T )

∆g ← dist(gnf , g
n+1
f )

end while

V. THE SPECIAL EUCLIDEAN GROUP

Consider the under-actuated control problem on SE2. The
NLIHCS is a modified version of (4) and (5) with continuous
dynamics 

ẋ = u cos θ,

ẏ = −u sin θ,
θ̇ = ω,

θ ̸= π

2
, (17)

and reset 
x 7→ x,

y 7→ y − 1,

θ 7→ θ + π,

θ =
π

2
. (18)

This reset map is equivalent to right-translation by the matrix

h0 =

−1 0 1
0 −1 0
0 0 1

 .

Let the cost be

J =

∫ tf

t0

1

2

(
u2 + ω2

)
dt+ φ (x(tf ), y(tf ), θ(tf )) .

To reduce this system, we clarify that

f : U = R2 → se2

f(v, ω) =

 0 ω u
−ω 0 0
0 0 0

 ,

and we denote the pairing se∗2 × se2 → R via〈µx

µy

µθ

 ,

 0 ω u
−ω 0 v
0 0 0

〉
= µxu+ µyv + µθω.

The (translated) Hamiltonian for this system is

h(µx, µy, µθ) = min
u,ω

[
µxu+ µθω +

1

2

(
u2 + ω2

)]
= −1

2

(
µ2
x + µ2

θ

)
,

with controls u = −µx and ω = −µθ. The Lie-Poisson
equations on se∗2 are

µ̇x = −µy
∂h

∂µθ
, µ̇y = µx

∂h

∂µθ
, µ̇θ = µy

∂h

∂µx
− µx

∂h

∂µy

which results in the continuous dynamics

µ̇x = −µyµθ, µ̇y = µxµθ,

µ̇θ = −µxµy, θ̇ = −µθ.
(19)

The last equation is the reduced q-dynamics on K\G ∼= S1.
To compute the jump in the co-states, we notice that

Ad∗h0

µx

µy

µθ

 =

 −µx

−µy

µy − µθ

 .

The modified jump condition has the formµx

µy

µθ

 7→
 −µx

−µy

µy − µθ

+

0
0
ε

 .

Enforcing energy conservation actually yields two solutions:

µ+
x = −µx, µ+

y = −µy,

µ+
θ = ±µ−

θ , θ+ = θ− + π.
(20)

This system can be reduced further as there exists a Casimir

C = µ2
x + µ2

y,

which is invariant under both (19) and (20). Incorporating
this conserved quantity allows the optimal control problem
to be encoded in the following 3-dimensional hybrid system

θ ̸= π

2
:


α̇ = µθ,

µ̇θ = −C2 sinα cosα,

θ̇ = −µθ

(21)

θ =
π

2
:


α+ = α− + π,

µ+
θ = ±µ−

θ ,

θ+ = θ− + π.

(22)

The new variable, α, comes from the Casimir via

µx = C cosα, µy = C sinα.

Solving the optimal control problem via Algorithm 1 in-
volves solving (17) and (18) forwards, and (21) and (22)
backwards.

Notice that α + θ ≡ D is a hybrid constant of motion
(modulo 2π). The resulting (θ, µθ)-dynamics are (impact)
Hamiltonian with

H(θ, µθ) = −
1

2
µ2
θ +

C2

4
cos (2D − 2θ) .
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Fig. 2. A trajectory with initial conditions (x0, y0, θ0) = (0, 0, 0). The
auxiliary parameters are C = D = 1 and µθ(0) = −1. The black arc
is the initial trajectory which maps to the red dotted trajectories after the
first reset. The two red dotted arcs indicate following both lifted reset maps
(24). Notice that the next reset (red dotted to blue dashed) is independent
on which reset map was chosen.

Fig. 3. A plot of the running cost against time corresponding to the
trajectories in Fig. 2. This cost is multi-valued as there are two choices for
(24). Notice that at resets, both options result in the same total cost.

Applying these conserved quantities to the full system yields
the continuous dynamics

ẋ = −C cos(D − θ) cos θ,

ẏ = C cos(D − θ) sin θ,

θ̇ = −µθ,

µ̇θ = −C2 sin(D − θ) cos(D − θ),

(23)

along with the reset equation (when θ = π/2)

x 7→ x, θ 7→ θ + π,

y 7→ y − 1, µθ 7→ ±µθ.
(24)

A sample trajectory of the dynamics (23) and (24), along
with the running cost, are shown in Fig. 2 and 3.

VI. CONCLUSION

This work presented the analogous version of Lie-Poisson
reduction to left-invariant optimal control problems where
the underlying dynamics are hybrid. Unlike the classical
Lie-Poisson reduction where the resulting dynamics are n-
dimensional, the hybrid version can only reduce the dimen-
sion to n + 1. Algorithm 1 was presented as an approach
to determine the optimal trajectories of such systems. There
are two main avenues for future work along this subject.

The performance of Algorithm 1 needs to be studied.
This algorithm is an iterative approach to determine the
optimal hybrid trajectory. Although the optimal trajectory
is a fixed-point of this iterative scheme, the stability and
convergence properties are unknown. To be of use in prac-
tical applications, criteria need to be determined to ensure
that the iterations converge exponentially to the true solution.
Alternatively, if the iterations are unstable, there should be
a way to modify the iterations to stabilize the scheme.

The other immediate focus in the future is the prohibitive
restriction on the guard that it be a coset of a normal
subgroup. For a given (arbitrary) Lie group, just possessing
a co-dimension 1, closed, normal subgroup is by no means
guaranteed; SO3 and SE3 do not have such a subgroup. If
this subgroup does not exist, then the proposed reduction
does not work. As the normality of K is required to reduce
the dimension to n+1, it would be interesting to determine
whether or not relaxing this requirement would lead to a
reduced system of dimension n+ k for some 1 < k < n.
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