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Abstract— This paper presents PIQP, a high-performance
toolkit for solving generic sparse quadratic programs (QP).
Combining an infeasible Interior Point Method (IPM) with
the Proximal Method of Multipliers (PMM), the algorithm can
handle ill-conditioned convex QP problems without the need
for linear independence of the constraints. The open-source
implementation is written in C++ with interfaces to C, Python,
Matlab, and R leveraging the Eigen3 library. The method uses
a pivoting-free factorization routine and allocation-free updates
of the problem data, making the solver suitable for embedded
applications. The solver is evaluated on the Maros-Mészáros
problem set and optimal control problems, demonstrating state-
of-the-art performance for both small and large-scale problems,
outperforming commercial and open-source solvers.

I. INTRODUCTION

Convex quadratic programs are fundamental in many areas
of applied mathematics and engineering. They are utilized
in various applications, including portfolio optimization [1],
optimal control [2], state estimation [3], and geometry
processing [4]. Furthermore, QPs are a crucial building
block of powerful optimization techniques, such as sequential
quadratic programming [5] for nonlinear programming and
branch-and-bound methods [6] for mixed integer quadratic
programming. Due to their widespread use, the demand
for efficient QP solvers that are both fast and reliable has
increased, driven by emerging applications in areas such as
optimal control, embedded systems, and signal processing.

In recent decades, significant research efforts have focused
on developing efficient QP solvers. Numerous algorithms
have been proposed, such as the classical active-set [7]–
[9] and interior-point methods [10]–[12], first-order [13]–
[16] and second-order Newton-type methods [17], [18], to
design QP solvers that achieve high computational efficiency
and scalability. As one of the most classical QP approaches,
active-set based solvers, such as qpOASES [9], are known
for their speed in solving small to medium-sized problems
and the ability to warm-start using an estimate of the
active constraint set. However, they have limited scalability,
struggle to exploit sparsity, and are not robust to early
termination. Compared to the active-set method, interior-
point based solvers, such as ECOS and QPSWIFT, can be
fast for large-scale problems and robust to early termination.
They can solve sparse large-scale problems efficiently using
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advanced linear algebra routines but are difficult to warm-
start.

In contrast to classical approaches, specifically, interior-
point methods, first-order solvers - including operator-
splitting-based solvers like OSQP [16] and PROXQP [19]
- can easily be warm-started, offer simplicity and tight
complexity bounds. However, their convergence rates are
slower than other methods. In contrast to this, the Newton-
type solvers, such as the dual-Newton solver qpDUNES [17],
can exploit sparsity and warm-start, but require restrictive as-
sumptions, such as the QP being strongly convex and satisfy-
ing the linear independence constraint qualification (LICQ).
These assumptions reduce their applicability and may cause
robustness issues. Although the primal-dual Newton-type
methods, such as FBRS [20], can relax the strong convexity
requirement to the second-order sufficient condition (SOSC).
However, they still require the LICQ.

Recently, hybrid methods that combine first-order and
active set/interior-point methods have been the focus of
increasing research attention. An example of such a method
is QPNNLS [21]. Using the proximal point algorithm, a
sequence of regularized QP problems is solved which con-
verges to the solution of the original problem. The reg-
ularized QP problems are strictly convex and are solved
using a non-negative least-square based active set method.
Since solving QP subproblems is computationally expensive,
QPNNLS relies heavily on warm-starting to reduce computa-
tional cost. Another related method is QPALM [22], which is
based on the Augmented Lagrangian Method. Additionally,
FBstab [23], a proximally stabilized Fischer-Burmeister
method-based solver, employs a primal-dual version of the
proximal point algorithm, in which the proximal subprob-
lems are solved by using a Newton-type method.

In this paper, we present a software contribution, a hybrid
approach based QP solver, called PIQP. The underlying
algorithm implemented in PIQP follows the framework
proposed in [24], which combines the interior-point method
and the proximal method of multipliers (PMM). In particular,
it uses one-iteration of Mohetra’s predictor-corrector method
to deal with the proximal subproblem combining the dual
gradient update.

Section II introduces some preliminaries, including the
problem formulation and the main idea of PMM. The
practical algorithm implemented in PIQP is presented in
Section III. Section IV elaborates the numerical implemen-
tation details of PIQP. We demonstrate the effectiveness of
our solver in Section V, in which it is compared against
five existing state-of-art approaches, including two com-
mercial solvers Gurobi and Mosek, three open-source

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 1088



solvers OSQP, SCS, and PROXQP. All solvers are evaluated
on the Maros-Mészáros benchmark problems [25].

Notations: we denote the set of real numbers by R, the set
of n-dimensional real-valued vectors by Rn, and the set of
n×m-dimensional real-valued matrices by Rn×m. Moreover,
we denote the subspace of symmetric matrices in Rn×n by
Sn and the cone of positive semi-definite matrices by Sn+.
We denote the identity matrix as In ∈ Rn×n and a vector
filled with ones as 1n ∈ Rn. The ◦ operator indicates the
element-wise multiplication of two vectors.

II. PRELIMINARIES

This section defines the problem formulation considered
in PIQP and briefly reviews the proximal method of mul-
tipliers, which will be used later to design the underlying
algorithm in PIQP.

A. Problem Formulation

PIQP considers quadratic programs in the form

min
x

1

2
x⊤Px+ c⊤x (1a)

s.t. Ax = b, (1b)
Gx ≤ h, (1c)

with primal decision variables x ∈ Rn, matrices P ∈ Sn+,
A ∈ Rp×n, G ∈ Rm×n, and vectors c ∈ Rn, b ∈ Rp,
and h ∈ Rm. To design a practical numerical solver, it is
convenient to rewrite (1) as the equivalent standard form
problem

min
x,s

1

2
x⊤Px+ c⊤x (2a)

s.t. Ax = b, (2b)
Gx− h+ s = 0, (2c)
s ≥ 0, (2d)

where slack variables s ∈ Rm are introduced to lift the affine
inequality (1c) into the equality (2c). Although introducing
slack variables s may compromise strong convexity when
P ≻ 0, it has distinct computational benefits. For example,
it makes it particularly easy to project onto the feasible
set in the context of operator splitting-based approaches,
this reformulation results in an easily computable projection
operator; another example is the well-known interior-point
method to be discussed in the next section. In the following,
we mainly work with formulation (2).

B. Proximal method of multipliers

The augmented Lagrangian of problem (1) is defined as

LALM
δ (x, s;λ, ν) :=

1

2
x⊤Px+ c⊤x

+ λ⊤(Ax− b) +
1

2δ
∥Ax− b∥22

+ ν⊤(Gx− h+ s) +
1

2δ
∥Gx− h+ s∥22, (3)

where variables λ and ν are the Lagrangian multipliers of
equality constraints (2b) and (2c), respectively, and δ > 0 is
a penalty parameter. We then introduce the iterations of the

proximal method of multipliers originally proposed in [26]
as follows:

(x+, s+) ∈ argmin
ξ,s≥0

LALM
δ (ξ, s;λ, ν) +

ρ

2
∥ξ − x∥22 , (4a)

λ+ = λ+
1

δ

(
Ax+ − b

)
, (4b)

ν+ = ν +
1

δ

(
Gx+ − h+ s+

)
, (4c)

where superscript + denotes the iteration update. Note
that compared to the standard form for the original prob-
lem (1), (4) does not add a penalty term for the slack variable
as it does not contribute to the cost of the primal problem (2).

III. PRACTICAL ALGORITHM

The method implemented in PIQP, following the frame-
work proposed in [24], deals with (4a) by applying one
iteration of the interior-point method, and uses the Mehrotra
predictor-corrector method [27] to update the primal-dual
iterates. To detail the algorithm, we define the log-barrier
function

Φµ(s) = −µ

m∑
i=1

ln[s]i, (5)

where [s]i denotes the i-th element of s, and µ > 0 is usually
referred to as the barrier parameter. Replacing the constraint
s ≥ 0 in problem (4a) with the penalty term σ ·Φµ(s) in the
objective function yields

min
x,s

LALM
δk

(x, s;λk, νk) + σk · Φµk
(s) +

ρk
2

∥x− ξk∥22
at iteration k, where (ξk, λk, νk) defines the primal-dual
iterates, and σk ∈ (0, 1] is the centering parameter in the
predictor-corrector method discussed below. The first-order
optimality conditions of the resulting unconstrained problem
can then be represented as

Px+ c+ ρk(x− ξk) +A⊤y +G⊤z = 0, (6a)
Ax− δk(y − λk)− b = 0, (6b)

Gx− δk(z − νk)− h+ s = 0, (6c)
s ◦ z − σkµk1m = 0, (6d)

with auxiliary variables y ∈ Rp and z ∈ Rm. Introducing
auxiliary variables yields a sparser linear system of equations
allowing highly efficient numerical routines.

Applying Newton’s method to solve (6) results in the
following linear equations

P + ρkIn A⊤ G⊤ 0

A −δkIp 0 0

G 0 −δkIm Im

0 0 Sk Zk


︸ ︷︷ ︸

J(sk,zk)


∆xk

∆yk

∆zk

∆sk


︸ ︷︷ ︸

∆ωk

=


rxk

ryk
rzk

rsk


︸ ︷︷ ︸

rk

(7)

with initialization (xk, yk, zk, sk) and

rxk = −(Pxk + c+ ρk(xk − ξk) +A⊤yk +G⊤zk),

ryk = −(Axk + δk(λk − yk)− b),

rzk = −(Gxk + δk(νk − zk)− h+ sk),

rsk = −sk ◦ zk + σkµk1m
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at iteration k.

Remark 1 In the implementation, we can eliminate ∆sk.
To this end, we compute the Nesterov-Todd scaling Wk =
Z−1
k Sk [28] such that (7) can be rewritten asP + ρkIn A⊤ G⊤

A −δkIp 0

G 0 −(Wk + δkIm)


︸ ︷︷ ︸

J̃(sk,zk)

∆xk

∆yk

∆zk

 =

r
x
k

ryk
r̄zk


︸ ︷︷ ︸

r̃k

with r̄zk = rzk − Z−1
k rsk. Here, Zk ∈ Rm×m is a diagonal

matrix with zk on its diagonal. Note that the slack direction
∆sk can be reconstructed with ∆sk = Z−1

k (rsk − Sk∆zk).
This also ensures that J̃(sk, zk) is symmetric.

Next, we present the three main steps of the Mehrotra
predictor-corrector method:

1) Prediction: solve (7) with µk = 0 and solution ∆ωa
k =

(∆xa
k,∆ya

k,∆zak ,∆sa
k)

2) Step Size and Centering Parameter: compute the pri-
mal and dual step sizes

αa
p =max {α ∈ [0, 1]|sk + α∆sa

k ≥ (1− τ)sk} ,
αa
d =max {α ∈ [0, 1]|zk + α∆za

k ≥ (1− τ)zk} , (8)

with the scaling parameter τ = 0.995 chosen heuristi-
cally [24], [28] that ensures the iterates do not get too close
to the boundary of the feasible set, and evaluate the centering
parameter following [27]

σk = max{0,min{1, ηk}}3 (9)

with ηk =
((

sk + αa
p∆sak

)⊤
(zk + αa

d∆zak)
)
/
((
s⊤k zk

)
/m

)
.

3) Combined Correction and Centering: compute µk =(
s⊤k zk

)
/m and solving (7) with replacing rsk by

rsk = −Skzk︸ ︷︷ ︸
prediction

−∆sak ◦∆zak︸ ︷︷ ︸
correction

+σk · µk · 1m︸ ︷︷ ︸
centering

(10)

yields solution ∆ωc
k = (∆xc

k,∆yc
k,∆zak ,∆sc

k). Then, update
(xk+1, sk+1, yk+1, zk+1) :=

(xk, sk, yk, zk) + (αc
p∆xc

k, α
c
p∆sc

k, α
c
d∆yc

k, α
c
d∆zc

k)

with step sizes

αc
p =max {α ∈ [0, 1]|sk + α∆sc

k ≥ (1− τ)sk} ,
αc
d =max {α ∈ [0, 1]|zk + α∆zc

k ≥ (1− τ)zk} . (11)

Based on the aforementioned discussion, the primal-dual
iterate (ξk, λk, νk) is optionally updated as outlined in Algo-
rithm 2 proposed by [24, Section 5.1.4]. Here, we introduce
the primal-dual residual with respect to the k-th iteration

pk =

∥∥∥∥[ Axk − b
Gxk − h+ sk

]∥∥∥∥
∞

,

dk =
∥∥Pxk + c+A⊤yk +G⊤zk

∥∥
∞ .

Moreover, δ and ρ are limited by δ and ρ for numerical
stability.

Now, we can summarize a predictor-corrector-based prac-
tical computational framework for the interior-point proximal
method of multipliers to solve (2) in Algorithm 1.

Remark 2 Algorithm 1 is a practical variant of the standard
interior-point proximal method of multipliers as presented
in [24, Algorithm 1], which substitutes the correction step
and regularization update in [24, Algorithm 1] by the
Mehrotra’s predictor-corrector method and Algorithm 2,
respectively. Note that Algorithm 2 is a numerical heuristic
to update the primal-dual iterates (ξk, λk, νk) such that the
convergence analysis proposed in [24, Section 3] cannot be
rigorously established step by step. However, this heuristic
leads to a more reliable and effective numerical convergence,
although compared to the update in [24, Algorithm 1]
without theoretical guarantees. Analyzing the theoretical
convergence guarantee of practical Algorithm 1 is beyond
the scope of this paper and will be investigated in our future
work.

Algorithm 1 Interior-Point Proximal Method of Multipliers
for Convex Quadratic Programming
Initialization: choose (ξ0, s0, λ0, ν0), set δ0, ρ0 > 0.

1: for k = 0, 1, ... do
2: Set (xk, yk, zk) = (ξk, λk, νk);
3: Solve (7) with rsk = −Skzk for ∆ωa

k;
4: Compute (αa

p, α
a
d) by (8);

5: Update µk =
(
s⊤k zk

)
/m and σk by (9);

6: Solve (7) with rsk by (10) for ∆ωc
k;

7: Compute (αc
p, α

c
d) by (11) and update

(xk+1, sk+1, yk+1, zk+1)←
(xk, sk, yk, zk) + (αc

p∆ξc
k, α

c
p∆sc

k, α
c
d∆yc

k, α
c
d∆zc

k);

8: Run Alg. 2 to get (ξk+1, λk+1, νk+1), (δk+1, ρk+1).
9: end for

Algorithm 2 Penalty and Estimate Updates
Input: r =

∣∣s⊤k zk − s⊤k+1zk+1

∣∣ /s⊤k zk.
Output: (ξk+1, λk+1, νk+1) and (δk+1, ρk+1).

1: if pk+1 ≤ 0.95 · pk then
2: (λk+1, νk+1)← (yk+1, zk+1), δk+1 ← (1− r)δk
3: else
4: (λk+1, νk+1)← (λk, νk), δk+1 ← (1− r/3)δk
5: end if
6: if dk+1 ≤ 0.95 · dk then
7: ξk+1 ← xk+1, ρk+1 ← (1− r)ρk
8: else
9: ξk+1 ← ξk, ρk+1 ← (1− r/3)ρk

10: end if
11: δk+1 ← max{δk+1, δ}, ρk+1 ← max{ρk+1, ρ}

IV. NUMERICAL IMPLEMENTATION

A. Initialization

We initialize the primal and dual variables using the
standard method proposed in [29] by minimizing the un-
constrained optimization problem

min
ξ0,s̃0

LALM
δ0 (ξ0, s̃0; 0, 0) +

ρ0
2

∥ξ0∥22 +
1

2
∥s̃0∥22,

which can be posed as the solution to the linear system of
equationsP + ρ0In A⊤ G⊤

A −δ0Ip 0

G 0 −(1 + δ0)Im


ξ0λ0

ν̃0

 =

−c

b

h

 (12)
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with potentially negative slack variable s̃0 = −ν̃0. Note that
the structure is the same as for J̃(s̃0, ν̃0); hence, we can reuse
the symbolic factorization, resulting in lower computational
cost.

To guarantee that s0 and ν0 are in the non-negative orthant
with sufficient magnitude, we calculate the conservative step
sizes as

∆s̃0 = max{0,−1.5 ·min(s̃0)},
∆ν̃0 = max{0,−1.5 ·min(ν̃0)},

and similar to [24], we shift initial solutions further away
from the barrier based on the normalized complementarity
violation

∆s0 = ∆s̃0 + 0.5 · (s̃0 +∆s̃0)
⊤(ν̃0 +∆ν̃0)∑m

i=0([ν̃0]i + [∆ν̃0]i)
,

∆ν0 = ∆ν̃0 + 0.5 · (s̃0 +∆s̃0)
⊤(ν̃0 +∆ν̃0)∑m

i=0([s̃0]i + [∆s̃0]i)
,

resulting in the initial values for slack and inequality La-
grange multipliers s0 = s̃0 +∆s0, ν0 = ν̃0 +∆ν0

B. Termination Criteria

We adopt the same terminal criteria for convergence as in
SCS v3.0 [30]. More specifically, PIQP terminates when
it finds primal variables x ∈ Rn, s ∈ Rm, and dual variables
y ∈ Rp, z ∈ Rm which satisfy the conditions∥∥∥∥[ Ax− b

Gx− h+ s

]∥∥∥∥
∞

≤ ϵabs (13a)

+ ϵrel max (∥Ax∥∞, ∥b∥∞, ∥Gx∥∞, ∥h∥∞, ∥s∥∞) ,∥∥Px+A⊤y +G⊤z + c
∥∥
∞ ≤ ϵabs (13b)

+ ϵrel max
(
∥Px∥∞,

∥∥A⊤y
∥∥
∞ ,

∥∥G⊤z
∥∥
∞ , ∥c∥∞

)
,∣∣x⊤Px+ c⊤x+ b⊤y + h⊤z

∣∣ ≤ ϵabs (13c)

+ ϵrel max
(∣∣x⊤Px

∣∣ , ∣∣c⊤x∣∣ , ∣∣b⊤y∣∣ , ∣∣h⊤z
∣∣) ,

where ϵabs > 0 and ϵrel ≥ 0 are the user defined absolute
and relative accuracies. Condition (13a) corresponds to the
primal feasibility, and (13b) to the dual feasibility, which is
common in most solvers like OSQP [16] or qpSWIFT [31].
The condition on the duality gab (13c) is less commonly
checked, but if neglected, it can result in poor solution qual-
ity. The Maros-Mészáros problem set, for example, includes
problems that are solved inaccurately without the criteria on
the duality gap as discussed in [30, Section 7.2].

C. Sparse Pivot-Free LDL Factorization

The solution of the KKT system (7) constitutes the most
computationally expensive step in any interior-point method.
In our work, we have chosen to employ a direct method that
is particularly well-suited for use in embedded applications.
Specifically, we have opted for a modified version of Tim
Davis’ sparse pivot-free LDL factorization [32] with approx-
imate minimum degree (AMD) ordering [33], resulting in the
factorization

ΓKΓ⊤ = LDL⊤,

where Γ is the permutation matrix of the AMD ordering
reducing fill-in of the lower triangular matrix L, and D is a
diagonal matrix.

To ensure that the LDL factorization of any symmetric
permutation of the KKT matrix exists, it is sufficient if K
is quasi-definite [34]. Although adding terms to the diagonal
of (7) through the proximal method of multipliers typically
ensures that K is almost certainly quasi-definite, there may
be rare instances when it is not. In such cases, we slightly
perturb the regularization parameters and retry the factoriza-
tion. Thanks to this approach, there is no need to resort to
techniques such as dynamic regularization with subsequent
iterative refinement, which are employed in ECOS [11],
resulting in less computational overhead.

The LDL factorization process consists of two phases:
symbolic and numeric. During the symbolic phase, the
elimination tree and the fill-in pattern of the lower triangular
matrix L are determined, which provides the necessary
information regarding the required memory. In the numeric
phase, the factorization of K is performed using the pre-
viously calculated elimination tree, which fills in both L
and D. Since the structure of J̃(sk, zk) remains constant,
we can reuse the elimination tree and fill-in pattern for
every subsequent solve. As a result, symbolic computation
can be avoided, and all previously allocated memory can
be reused. This provides a significant advantage in terms
of computational efficiency, particularly in the context of
optimal control, where the structure of the sequence of solved
problems stays constant.

D. Preconditioning

Preconditioning is a well-established technique for re-
ducing the number of iterations for first-order methods by
decreasing the condition number of the KKT system [28,
Chapter 5]. Although commonly used for first-order meth-
ods, preconditioners can also be beneficial for interior-point
methods by improving numerical stability and convergence.
In our implementation, we adopt the Ruiz equilibration as our
default preconditioner [35]. This technique scales the prob-
lem data diagonally to reduce the conditioning number of
the unregularized KKT conditions (7) while being relatively
cheap to compute.

Remark 3 With the implementation of the Ruiz equilibration
technique, we observed a notable improvement, achieving an
average speedup of 22% on the Maros-Mészáros problem set.
Before preconditioning, one less problem could be solved.

E. Interface and Memory Allocation

In addition to the QP formulation (1) discussed in the
paper, our implementation includes an interface for incor-
porating box constraints of the form l ≤ x ≤ u with
l, u ∈ Rn. By exploiting this underlying structure, we are
able to achieve computational speedups when factoring the
corresponding KKT matrix.

Our QP solver, PIQP, leverages the high performance of
C/C++ and the efficient vectorized matrix/vector operations
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provided by the popular Eigen3 library [36]. In addition
to the C/C++ interface, we provide a Python, Matlab,
and an R interface, making it easy to integrate PIQP into
a wide range of computational pipelines. The code structure
and Python interface have been adopted from ProxSuite [19].

The interface of PIQP is comprised of three main routines:
setup, update, and solve. During the setup routine,
all necessary memory structures are set up, the problem data
is preconditioned, and the symbolic factorization, including
the AMD ordering, is computed. The update routine is
designed for updating problem data in subsequent solves,
reusing the existing memory and factorization, assuming the
sparsity structure remains unchanged. Similar to the setup,
the updated problem data gets preconditioned. Upon execut-
ing the algorithm, the solve routine returns the solution,
as well as the status of the optimization.

In predictive optimal control applications, it is common
to solve the same problem repeatedly without any changes
in structure. By utilizing the update routine, the problem
data can be updated while reusing the symbolic factorization
and already allocated memory. This significantly speeds up
subsequent solutions.

Similar to solvers like OSQP [16], ECOS [11], and
PROXQP [19], dynamic memory is only allocated during
the setup routine, ensuring that the update and solve
functions remain malloc-free. This feature is particularly
important for embedded systems, where memory should
be allocated statically or at least only once, without any
subsequent dynamic allocations.

V. NUMERICAL EXAMPLES

To demonstrate the performance of PIQP, we benchmark
it against the open-source toolkits OSQP [16], SCS [37], and
PROXQP [19], as well as commercial solvers Gurobi [38]
and Mosek [39]. Note that we did not compare our solver
with the dense solver qpOASES [9] or conic programming
solvers such as ECOS [11], as they do not support quadratic
objectives natively.

To make the comparison fair, we enforced the same
termination criteria across all solvers. Specifically, all solvers
verify the primal feasibility (13a) and dual feasibility (13b).
However, the duality gap (13c) is only checked by PIQP,
SCS, and PROXQP. As a result, other solvers may report an
optimal solution that fails to satisfy the duality gap condition
and may require more time or even fail to find a solution
that meets our termination criteria. Thus, it is important
to note that the reported results for these solvers may be
overly optimistic. For example, Mosek would fail on 75% of
problems if we check the termination criteria of the solution.

All benchmarks are run on a workstation with an AMD
Ryzen Threadripper 3990X 4.3 GHz CPU. Gurobi and
Mosek were limited to a single thread, and all solvers were
subject to a 1000 second time limit. We use an adapted
benchmark framework from OSQP [16].

A. Maros-Mészáros problems
We consider the standard Maros-Mészáros problem set,

comprised out of 138 hard QP problems [25]. Most problems

are very sparse, and a certain subset is numerically extremely
ill-conditioned.

Our implementation is based on the Python interface of
all solvers. Moreover, we only use the internally measured
times reported by the solver. This includes setup and solution
time.

We conduct two sets of experiments to evaluate the
performance of our QP solver. In the first scenario, we aim
to find solutions with low accuracy, setting ϵabs = 10−3

and ϵrel = 10−4. In the second scenario, we target highly
accurate solutions, setting ϵabs = 10−8 and ϵrel = 10−9.

Table I summarizes the failure rates of the solvers for the
different accuracy settings. Compared to the other solvers,
our solver, PIQP, demonstrates remarkable robustness, suc-
cessfully solving all problems with low accuracy settings and
failing to solve only a single problem with high accuracy
settings.

TABLE I
FAILURE RATES ON THE MAROS-MÉSZÁROS PROBLEM SET

PIQP OSQP SCS PROXQP GUROBI MOSEK

Low Accuracy 0.00% 4.35% 4.35% 12.32% 6.52% 5.07%

High Accuracy 0.72% 31.16% 23.19% 23.19% 6.52% 10.14%

We provide the individual solve times for each problem in
the Maros-Meszaros problem set for high accuracy settings
in Figure 1. The problems are sorted by PIQP solve time,
highlighting the speed of our solver relative to the others.
Notably, our solver is almost always the fastest for most
problems. These results highlight the advantages of interior-
point methods in high-accuracy settings, where they outper-
form most first-order methods.
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Fig. 1. Solve times for high accuracy settings for individual problems in
the Maros-Mészáros problem set, ordered by PIQP solve time. The lowest
point in each column corresponds to the fastest solver.

We include the Dolan-Moré performance profiles [40] for
the high accuracy settings in Figure 2. The x-axis of the
graphs shows the solve time normalized by the fastest solver,
with a performance ratio of one indicating that the solver
was the fastest and a performance ratio of ten indicating that
the solver was ten times slower than the fastest solver for
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a particular problem. The y-axis of the graphs shows the
ratio of problems solved. For instance, PIQP was the fastest
solver for 65% of the problems and took at most five times
longer for 96% of the problems.
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Fig. 2. Performance profiles on the Maros-Mészáros problem set for high
accuracy settings.
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