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Abstract— This paper proposes a dynamic event-triggered
control strategy for the leader-following multi-agent control
under directed topology. A synthesis approach combining dis-
tributed controllers and observers design is developed under
a dynamic sampling scheme, and only local information is
required for each agent to implement the proposed method.
The control protocol incorporates model-based estimation and
clock-like auxiliary dynamic variables to prolong the inter-
event time as long as possible. Sufficient conditions for leader-
following consensus control are established by linear matrix
inequalities, and an explicit inter-event time is given to en-
able flexible tuning. Due to the carefully selected Lyapunov
function, the proposed method exhibits significant advantages
over the dynamic event-triggered control methods described in
the existing literature. Compared to the existing static event-
triggered strategy, the proposed approach significantly reduces
the utilization of communication resources while preserving
asymptotic convergence to the state consensus. The validity
and effectiveness of the proposed theoretical results are demon-
strated by comparative simulations.

I. INTRODUCTION

Advancements in technology have highlighted the signif-
icance of cooperative control issues in multi-agent systems
(MASs). As the core of cooperative control, consensus issues
have been widely studied and applied in engineering practice
in recent years. One of the particularly intriguing topics is
leader-following control, where a group of agents needs to
achieve consensus with a leader agent. This topic has been
extensively explored for both linear [1] and nonlinear MASs
[2], and for MASs comprising homogeneous or heteroge-
neous agents [3]. The techniques used for leader-following
consensus can also be extended to formation control such as
in [4].

In time-triggered control systems, control updates and data
transmissions occur periodically. This can lead to an exces-
sive burden on communication networks and an increase in
computing resources for MASs [5]. In order to address this
issue, an event-triggered mechanism (ETM) was introduced,
which enables a minimum rate of data sampling, commu-
nication, and control updates while still ensuring system
performance. The concept of ETM for stabilizing control
is first introduced in [6], then gains significant development
and is applied in different dynamic systems [7], [8].
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In order to increase the inter-event time (IET), a dynamic
event-triggered mechanism (DETM) was proposed in [9],
where the event’s threshold value is dynamically changing,
which makes it different from the former static one. The
DETM has been successfully applied in MASs in many
different scenarios [10], [11], [12]. In the literature [10] and
[13], auxiliary dynamic variables (ADVs) are introduced as
clock-like variables, providing more freedom to select a pre-
ferred (minimum) IET by choosing appropriate parameters
in the controller design phase; thus, the Zeno behavior of
MAS is excluded, though the rigorous proof of the minimum
IET (MIET) is still challenging without enforcing a dwell-
time [13]. This method is extended in [14] with an improved
DETM based on a moving average approach. A more generic
result is proposed for nonlinear systems in [15].

The physical state of most real systems cannot be de-
termined by direct measurement. Therefore, state observers
become necessary to estimate the system’s internal states
based on its inputs and outputs. Observers for MASs entail a
co-design problem that involves event-triggered control and
estimation. There have been some studies that address this
issue. In the literature [16], the control/observer co-design
problem for generic linear MASs for leaderless consensus
is studied. The results are then developed in [17] for the
leader-following problem but only apply to second-order
linear MASs. In the literature [18], an observer-based ETM
is proposed to deal with formation control problems under
switching and directed topology. A more generic approach
is proposed in [19], which uses linear matrix inequalities
(LMIs) to synthesize the controller and observer, but the
solution is not distributed. The aforementioned studies are
based on static event-triggered control, with few utilizing
DETMs. Notably, the literature in [20] and [11] designs
observers-based DETM control while also eliminating the
Zeno behavior. However, the complexity of parameter tuning
presents a challenge in designing the MIET quantitatively.
Based on the above discussion, the synthesis of a distributed
controller and observer under DETM with adjustable MIET
has yet to be fully explored.

This work is inspired by [13], [10], [15], where DETMs
are realized based on clock-like ADVs to facilitate the MIET
adjustment. However, in [10], a discontinuous Lyapunov
function chosen will fail to achieve leader-following consen-
sus. The resulting DETM only guarantees stability between
two consecutive events, though the authors did not report
this remark. Based on the above discussion, we improve the
DETM in [10] by introducing a new continuous Lyapunov
function and propose a novel distributed controller/observer
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synthesis method using the LMI approach, which is devel-
oped under a directed communication topology. This method
significantly reduces the frequency of information exchange
and communication updates while ensuring asymptotic con-
vergence of the system. The mechanism allows the adjust-
ment of the minimum inter-event time by tuning the upper
bound of the auxiliary dynamic variables and guarantees a
Zeno-free operation.

The rest of the paper is structured as follows: In section
II, we provide notations and the problem formulation. Sec-
tion III presents the design of distributed dynamic event-
triggered control, including the controller/observer synthesis
and rigorous proof of adjustable MIET. We demonstrate the
effectiveness of the proposed strategies through numerical
simulations and discuss the results in section IV. The main
conclusion is presented in section V.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries

Let R denote the set of real numbers. Let N+ denote
the set of positive natural numbers. Given a matrix E, ET

denotes its transpose. If E is a square matrix, λmin(E) and
λmax(E) denote the minimum and maximum eigenvalues of
E respectively, and E−1 (resp. E−T ) represents its inverse
(resp. the transpose of the inverse). For a symmetric matrix
E, E < 0(≤ 0) denotes that E is negative definite (negative
semi-definite), and E > 0(≥ 0) means −E < 0(≤ 0). In
denotes an identity matrix of dimension n. 0m×n (resp. 0n)
denotes a zero matrix of dimension m×n (resp. of dimension
n × n). ⊗ denotes the Kronecker product. ∥ · ∥ denotes ℓ2-
norm for vectors or spectrum norm for matrices. Let ∗ denote
the symmetric entries in a matrix.

The communication topology of N (N ∈ N+) follower
agents is represented by a directed graph G = (V, E)
consisting of a vertex set V = {v1, ..., vN} and an edge set
E ⊆ V × V . Follower agent i and the leader are represented
as vertices vi and v0, respectively. Denote Ni the set of
neighbors of agent i. The weighted adjacency matrix A =
(aij) ∈ RN×N of G is defined such that aii = 0, aij = 1
if vi is connected to vj (i.e., there exists a directed edge
(vi, vj) from vj to vi) and aij = 0 otherwise. The Laplacian
matrix L = (lij) ∈ RN×N is defined as lii =

∑
i ̸=j aij

and lij = −aij , i ̸= j. Define Ḡ = (V̄, Ē) the augmented
graph of G, with V̄ = V ∪ {v0} and (vi, v0) ∈ Ē if agent
i is connected to the leader. Define leader adjacency matrix
D = diag(d1, ..., dN ) as a diagonal matrix where its diagonal
element di = 1 if (vi, v0) ∈ Ē otherwise di = 0. Define
H = L+D.

B. Problem Statement

Consider a linear MAS with N (N ∈ N+) follower agents
and one leader represented by

ẋi(t) = Axi(t) +Bui(t), i = 1, ..., N

yi(t) = Cxi(t), i = 1, ..., N

ẋ0(t) = Ax0(t)

(1)

where xi(t), i = 1, ..., N and x0(t) denote the states of
follower agents and the leader, respectively. yi(t) is the
output of agent i, ui(t) ∈ Rm is the control input of
agent i. A ∈ Rn×n,B ∈ Rn×m, C ∈ Rr×n. Define the
consensus error of agent i as ξi(t) = xi(t) − x0(t) and
ξ(t) = [ξT1 (t), ..., ξ

T
N (t)]T . The objective of this study is

to design an event-based control law such that all follower
agents and the leader achieve the state consensus, i.e.,

lim
t→∞

∥ξi(t)∥ = 0,∀i ∈ {1, ..., N} (2)

In order to estimate the agents’ internal states, Luenberger-
type observers are designed for each follower agent i to
reconstruct the state xi(t) from the output yi(t) and the
input ui(t):{

˙̃xi(t) = Ax̃i(t) +Bui(t) +Lo(ỹi(t)− yi(t))
ỹi(t) = Cx̃i(t)

(3)

where Lo ∈ Rn×r is the gain to be designed, and x̃i(t)
is the observer state. Define observer error of agent i as
ζi(t) = x̃i(t)− xi(t) and ζ(t) = [ζT1 (t), ..., ζ

T
N (t)]T .

The following assumptions hold in this paper:
Assumption 1: The leader’s states are accessible.
In practical engineering, leaders are usually specially

designed or virtual, and we can directly access the state of
the leader.

Assumption 2: (A,B,C) is stabilizable and observable.
Assumption 3: The graph G is fixed and directed. Further-

more, the augmented graph Ḡ contains a spanning tree with
the leader agent being its root.

Under Assumption 3, we recall the following property of
matrix H due to [21]:

Lemma 1: There exists a positive diagonal matrix Ψ =
diag(ψ1, ..., ψN ) > 0 such that ΨH+HTΨ > 0.

The proposed event-triggered control input ui(t) of agent
i is defined as

ui(t) =Kzi(t)

zi(t) =
∑
j∈Ni

aij(x̂j(t)− x̂i(t)) + di(x0(t)− x̂i(t))

(4)
where K ∈ Rm×n is the gain of the feedback control, zi(t)
is the combinatory state. Define z(t) = [zT1 (t), ...,z

T
N (t)]T .

x̂i(t), i ∈ {1, ..., N} is defined as:

x̂i(t
i
k) = x̃i(t

i
k) and

d

dt
x̂i(t) = Ax̂i(t), t ∈ [tik, t

i
k+1) (5)

where x̃i(t
i
k) is the observer state at the last triggering

moment tik, and tik+1 is defined by event-triggered rules given
in the following section. Define measurement error of agent
i as ei(t) = x̂i(t)− x̃i(t) and e(t) = [eT1 (t), ..., e

T
N (t)]T .

Remark 1: The term x̂i(t) = x̃i(t
i
k)e

A(t−tik) is a kind
of model-based estimation [22]. Since the trivial estimation
x̂i(t) = x̃i(t

i
k) may differ from x̃i(t) very quickly, the

exponential term eA with agent’s dynamic matrix A is used
to reduce the error between x̂i(t) and x̃i(t) thus usually
increases the inter-event time.
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By definition of ξi(t), ζi(t) and ei(t), we can deduce zi(t)
as

zi =
∑
j∈Ni

aij(ej−ei+ζj−ζi+ξj−ξi)+di(−ei−ζi−ξi)

(6)
then we can have z = −(H ⊗ In)(e + ζ + ξ) and the
following expressions:

ξ̇ =(IN ⊗A−H⊗BK)ξ − (H⊗BK)(ζ + e)

ζ̇ =(IN ⊗ (A+LoC))ζ

ė =(H⊗BK)ξ + (IN ⊗A+H⊗BK)e

+ (H⊗BK − IN ⊗LoC)ζ

(7)

III. MAIN RESULTS

A. Observer and controller synthesis for distributed dynamic
event-triggered control

This section proposes a distributed design of controllers
and observers for follower agents and the DETM rule to
determine the non-periodic data transmission protocol.

Theorem 1: The MAS described in (1) achieves leader-
following consensus under the control law defined in (4) if
there exist scalars b1 > 0 and b2 > 0, matrices P1 > 0,
P2 > 0, the controller gain K and the observer gain Lo

satisfying the following inequality matrix:

S =

(
S11 S12

∗ S22

)
< 0 (8)

where S11, S12 and S22 are defined as

S11 =Ψ⊗ (P1A+ATP1)− (ΨH)⊗ P1BK

− (HTΨ)⊗KTBTP1

S12 =− (ΨH)⊗ (P1BK)

S22 =Ψ⊗ (P2A+ATP2 + P2LoC +CTLT
o P2)

+ (b1 + b2)INn

(9)

and the matrix H given by the associated topology, and the
matrix Ψ satisfying Lemma 1.

The event-triggered rule of agent i is defined as

tik+1 ≜ inf
{
t > tik | θi(t) ≤ 0

}
, θi(t

i
k) = θ̄i

θ̇i(t) =

{
min(ωi(t), 0)− τi if ∥ei(t)∥ ≠ 0

−τi otherwise

(10)

where θ̄i > 0 , τi > 0, and ωi(t) is defined as:

ωi(t) ≜− 1

Π3i

[
eTi Qei + ϵ

(
1

k
− δmin

2

)
∥zi∥2

+eTi (2ψiM1 − 2ψiθiM3)zi
] (11)

with Π3i = ψie
T
i P3ei, and

Q =
(
ϵk∥H−1∥2 − ϵ

2
+ 2ψmax∥H∥2∥M1∥

)
In

+ 2ψiθiP3A

+
ψmax∥H∥2

b1
MT

1 M1 +
ψ2
i θ

2
i

b2
MT

2 M2

(12)

and M1 = KTBTP1, M2 = P3LoC, M3 = P3BK,
ψmax = ∥Ψ∥, δ̄min = λmin(H−TH−1), k > 2/δ̄min, P3 >
0. ϵ > 0 is a scalar satisfying S + ϵI ≤ 0.

Proof: Due to page limits, we can only provide a
brief proof and key ideas of this theorem. It consists of
showing the stability of the closed-loop system (7) by
using Lyapunov theorem. We choose the following Lya-
punov function V (t): V (t) = V1(t) + V2(t) + V3(t) where
V1(t) = ξ(t)T (Ψ ⊗ P1)ξ(t), V2(t) = ζ(t)T (Ψ ⊗ P2)ζ(t)
and V3(t) = e(t)T (ΨΘ(t) ⊗ P3)e(t), with P1,P2,P3 are
all positive definite, Ψ = diag(ψ1, ..., ψN ) satisfying Lemma
1, Θ(t) = diag(θ1(t), ..., θN (t)) > 0, and Θ̇(t) < 0
by definition of event-triggered rule (10), thus V (t) ≥ 0.
The rest of the proof is to study the derivative of V (t),
and apply Cauchy–Schwarz inequalities and matrix diago-
nalization to obtain a decoupled summation of functions of
each agent, leading to a final expression of V̇ (t): V̇ (t) ≤∑N

i=1

(
eTi Qei +Π1∥zi∥2 + eTi Π2izi +Π3iθ̇i

)
, where Q

is defined in (12), Π1 = ϵ( 1k −
1
2 δ̄min), Π2i = −2ψiθiM3+

2ψiM1 and Π3i = ψie
T
i P3ei. By substituting θ̇i in (10)

in V̇ (t) and we get V̇ (t) ≤ −
∑

i τi < 0. Therefore, the
closed-loop system (7) is asymptotically stable and the MAS
achieves consensus.

The difficulty of Theorem 1 lies in determining K and
Lo, which involves a set of bilinear matrix inequalities
(BMIs) (8). These equations can be challenging to solve
and may need a lot of attempts through numerical iterations.
In the following corollary, sufficient conditions of LMIs to
solve BMIs in Theorem 1 are proposed, which simplifies
numerical computation.

Corollary 1: The design conditions of Theorem 1 are
satisfied if there exist P1 > 0, P2 > 0, K and F satisfying
the following LMIs conditions:

Ω =


Ω11 0Nn Ω13 Ω14

∗ Ω22 −IN ⊗KT 0Nn

∗ ∗ −2INm 0Nm×Nn

∗ ∗ ∗ −INn

 < 0 (13)

where Ω11, Ω13, Ω14, Ω22 are defined as



Ω11 = Ψ⊗ (P1A+ATP1) + INn − 2
IN ⊗ P1

µ1

Ω13 = (ΨH)⊗ (P1B)

Ω14 =
IN ⊗ P1

µ1
− µ1(ΨH)⊗ (KTBT )

Ω22 = Ψ⊗ (P2A+ATP2 + FC +CTF T )

+ (b1 + b2)INn

(14)

where b1 > 0, b2 > 0, and µ1 > 0 are arbitrary positive
scalars. Then the observer gain is obtained as Lo = P−1

2 F .
Proof: We first make a change of variable of F =

P2Lo thus the term S22 in S (8) becomes Ω22. Notice that
the matrix S in (1) could be decomposed into S = ΓTΛΓ
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with Γ and Λ defined as

Γ =

 INn 0Nn

0Nn INn

0Nm×Nn −IN ⊗K

 (15)

Λ =

Λ11 0Nn H⊗ P1B
∗ Ω22 −IN ⊗KT

∗ ∗ −2INn

 (16)

where Λ11 = IN ⊗ (P1A + ATP1) − H ⊗ (P1BK +
KTBTP1). Then, Λ < 0 becomes a sufficient condition
for S < 0. To find a LMI form, the idea is to separate P1

and K in Λ11. We use the following inequalities: −H ⊗
(P1BK +KTBTP1) ≤ −H ⊗ (P1BK +KTBTP1) +
µ2
1H

2⊗KTBTBK ≤ (IN⊗P1/µ1−µ1H⊗BK)T (IN⊗
P1/µ1 − µ1H⊗BK)− IN ⊗ P 2

1 /µ
2
1, µ1 > 0. Notice that

−IN ⊗P 2
1 /µ

2
1 ≤ INn−2(I⊗P1)/µ1, then we have −H⊗

(P1BK+KTBTP1) ≤ (IN⊗P1/µ1−µ1H⊗BK)T (IN⊗
P1/µ1 − µ1H ⊗ BK) + INn − 2(I ⊗ P1)/µ1 Thus by
replacing this inequality for Λ11 in Λ (16) and the Schur
complement, we can obtain the matrix Ω in (13).

Remark 2: The Lyapunov function proposed in the proof
of Theorem 1 is a continuous function, and the disadvantage
of handling the discontinuity in the study [10] is naturally
avoided. Notice that V1 and V2 are continuous since ξ
and ζ are continuous. In V3, although e(t) and Ψ(t) are
discontinuous at triggering moments, we can calculate the
left-hand limit and right-hand limit of V3, and since the
left-hand limit of Ψ(t) (the corresponding component of
triggered agent) and the right-hand limit of e(t) (of triggered
agent) are both 0, V3 is continuous and thus V is continuous.

Remark 3: Notice that this strategy is distributed; thus,
each agent determines its triggering moments according
to its local information, which also facilitates algorithm
implementation.

B. Quantization of minimum inter-event time

The following corollary deduces an explicit MIET and
proves that the Zeno behavior does not exist under Theorem
(1).

Corollary 2: Under Theorem 1, the inter-event time of
agent i is lower-bounded by timin defined as

timin =

∫ h=θ̄i

0

dh

max(c0 + c1h+ c2h2, 0) + τi
(17)

where

c0 =

(
ϵk∥H−1∥2 − ϵ

2
+
ψmax∥H∥2∥M1∥2

b1

+2ψmax∥H∥∥M1∥+
ψi∥M1∥2

σ1

)
1

ψiη

c1 =
α

η

c2 =
1

η
(
ψi∥M2∥2

b2
+

∥M3∥2

σ2
)

α = λmax(P3A+ATP3), η = λmin(P3)

(18)

with M1,M2,M3 defined in Theorem 1, k > 2/δ̄min, and
σ1, σ2 are two positive scalars satisfying ϵδ̄min

2 − ϵ
k −ψi(σ1+

σ2) = 0.
Proof: Due to page limit we can only provide a brief

proof. Notice that the IET is determined by the evolution of
θi(t) and is equal to the time required of θi(t) decreasing
from θ̄i to 0. By analyzing the lower bound of Q and Π3i

in (11), we can obtain ωi ≥ −(c0 + c1θi + c2θ
2
i ). Then by

definition of θ̇i(t) in (10), we can conclude that the time
required for θi descending from θ̄i to 0 is lower bounded by
timin =

∫ 0

h=θ̄i
dh

min(−(c0+c1h+c2h2),0)−τi
, which is equivalent

to (17).
Remark 4: We can calculate timin through either numerical

integration, or analytical integration. If c0 + c1h + c2h
2 ≥

0, h ∈ [0, θ̄i], the analytical integration depends on the the
discriminant of (c0+τi)+c1h+c2h2 = 0. Denote its roots as
h1 and h2. Notice that if c0+ c1h+ c2h2 ≥ 0 then c0, c1, c2
are all positive and (c0+τi)+c1h+c2h

2 > 0, and thus timin

can be written in (19).

timin =



1

c2(h1 − h2)
ln

(
h2(θ̄i − h1)

h1(θ̄i − h2)

)
if ∆ > 0

− 1

c2

(
1

h1
+

1

θ̄i − h1

)
if ∆ = 0

2√
−∆

[
arctan

(
2c2√
−∆

θ̄i +
c1√
−∆

)
− arctan

(
c1√
−∆

)] if ∆ < 0

(19)
where ∆ = c21 − 4c2(c0 + τi).

Corollary 2 implies that the Zeno behavior of the proposed
DETM is excluded. By adjusting the value of θ̄i, we can vary
the MIET and keep the communication frequency consis-
tently lower than 1/timin. Increasing the value of θ̄i enables
the inter-event time much longer to prevent overloading the
communication network. The theoretical limit of the most
prolonged timin is determined by the limit of (19) when θ̄i
tends to positive infinity. Indeed, a smaller θ̄i could also be
designed to keep better surveillance and a higher data trans-
mission rate if the network allows it. Therefore, by choosing
an appropriate parameter θ̄i, the control performance and the
communication frequency could achieve a good compromise.

IV. SIMULATIONS

Consider a MAS with four follower agents and one leader.
These agents could present wheeled mobile robots whose
dynamics are defined in (1) with the following matrices:

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,B =


0 0
0 0
1 0
0 1

 ,C =


1 0
0 1
0 0
0 0


T

(20)
These matrices are widely used for mobile robots such

as in [12], [18]. Denote xi = [pxi, pyi, vxi, vyi]
T where

pxi, pyi are the position components along X and Y axes,
and vxi, vyi are the linear velocity components along X and
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Y axes. The agents’ initial conditions are set as x0(0) =
[−1 1.5 0.5 1]T , x1(0) = [−2 0 0 0]T , x2(0) = [0 2 0 0]T ,
x3(0) = [0 1 0.1 0]T , x4(0) = [2 2 0 0]T . The initial states
of observers are set as 0.

Consider a directed communication topology described
in Fig.1. The corresponding augmented graph Ḡ satisfies
Assumption 3.

Fig. 1. Communication topology

Set b1 = b2 = 1 and we obtain the following solution of
the gain of controllers K and the gain of observers Lo:

K =

(
0.0722 0 0.9545 0

0 0.0722 0 0.9545

)
(21)

Lo =

(
−1.40 0 −9.49 0

0 −1.00 0 −1.25

)T

(22)

Notation: in following figures, xji denotes the j-th com-
ponent of agent i’s vector x.

Set θ̄i = 10, i = 1, ..., 4. The trajectories of consensus
error within 60 seconds are shown in Fig.2. It can be seen
that the consensus is well achieved, and Fig.3 illustrates the
control inputs of each agent.

Fig. 2. Consensus error of follower agents. ξji denotes the j-th component
of agent i’s consensus error vector ξ.

The time evolution of θi(t) is presented in Fig.4. We can
see that θi(t) for each agent is asynchronous, and events
occur at the discontinuous points where θi(t) is reset to θ̄i ,
which shows a clock-like behavior. Furthermore, Fig.5 plots
event-triggered instants for each agent within 60 seconds.
The density of the event occurrence varies with time, which
during the initial stage (initial 5 seconds) is much denser than
when the system is stable (approximately after 45 seconds).

Table.I presents the inter-event time with different θ̄i and
also the inter-event time under the static event-triggered
mechanism (SETM). For SETMs, the Lyapunov function is
the same as in the proof of Theorem 1 by taking Θ =

Fig. 3. Control input of follow agents. uji denotes the j-th component of
agent i’s control input vector u.

IN , Θ̇ = 0, which finally leads to a static event-triggered
rule. The IET increases with larger θ̄i and can be easily
tuned to be longer than the SETM. Therefore, by appro-
priately adjusting θ̄i, the IET can be changed according to
requirements, which demonstrates the significant advantage
of the proposed method compared to the existing SETM.

Fig. 4. Time evolution of auxiliary dynamic variables θi(t) of follower
agents

Fig.6 plots timin with different θ̄i using (17). The proposed
DETM can prevent Zeno behavior as long as θ̄i > 0. By
adjusting θ̄i, we can control the MIET and guarantee that the
network communication is consistently below a designated
frequency. Notice that timin is only a lower bound of inter-
event time and the actual inter-event time according to
Table.I is much longer than the MIET, which only serves
as an indicator in the worst case.

V. CONCLUSION

This paper presents a novel solution to the leader-
following consensus problem in MASs under directed topol-
ogy. The proposed solution aims to reduce the frequency of
inter-agent information exchange by introducing a dynamic
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Fig. 5. Event-triggered instants of follower agents

TABLE I
INTER-EVENT TIME (IN MS) UNDER THE PROPOSED DETM STRATEGY

AND THE SETM: MEAN VALUES (MEAN), MINIMUM VALUES (MIN) AND

MAXIMUM VALUES (MAX) AMONG FOLLOWER AGENTS.

Case θi = 0.1 θi = 1 θi = 10 θi = 100 SETM
Mean 41.8 216.6 284.4 295.2 37.2
Min 21.4 169.0 208.3 219.8 18.6
Max 86.6 291.3 400.0 402.7 69.4

event-triggered control protocol. This protocol allows for the
design of the inter-event time, and an explicit expression for
the minimum inter-event time is provided, which enables
more flexible tuning and prevents Zeno behavior. Addi-
tionally, model-based estimation and clock-like auxiliary
dynamic variables prolong the inter-event time as much as
possible. The co-design of distributed controllers/observers
using the LMI approach is a novel contribution that further
distinguishes this study. The simulation results demonstrate
a significant improvement in enlarge the communication
interval compared to the static event-triggered methods,
showcasing the effectiveness of the proposed solution. Future
work will focus on extending these methods for consensus
problems of MASs that are subject to faults and switching
topology.
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