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Abstract— In this paper we consider the problem of optimally
steering an ensemble of battery-powered agents over a network.
This is an important problem in applications such as traffic flow
control for electric vehicles, where both capacity constraints
from the roads and the locations of charging stations need
to be taken into account. We extend previous work where
origin-destination problems have been formulated using optimal
transport. By introducing a state representing the charge
level, we can formulate the steering problem as a structured
multi-marginal optimal transport problem. The computational
method is based on a dual coordinate ascent algorithm applied
to the entropy regularized problem, in which we can exploit
the decomposable structure of the cost tensor for efficient
computations. In this formulation the capacity constraints are
represented in terms of certain linear operators, and we derive
explicit expressions for the corresponding updates of blocks
of the dual variables. Finally, the method is illustrated with a
numerical example where vehicles having different charges are
required to travel over a grid from origin to destination while
minimizing the total energy consumed.

I. INTRODUCTION

With technology advancing rapidly, electric vehicles (EV)
and electric robots are becoming ubiquitous in many areas
of the society. In the coming years, EVs will have a key role
in smart cities [1], while fleets of electric robots could be
employed in numerous sectors, such as warehouse operations
[2], mining industry [3] and agricultural applications [4].
In all these contexts, the batteries and their relatively long
recharging times still represent a major limitation. Further-
more, in many of these applications, vehicles and robots are
often not indistinguishable as vehicles can have assigned
origins and destinations, or the tasks that robots can per-
forms might not be interchangeable, making the macroscopic
steering problem more challenging. Due to the increasing
interest in this area, there has recently been a large amount
of research proposing strategies and optimization methods
for routing and control of electric vehicles [5], [6], [7], [8],
[9], [10], [11], [12]. Nevertheless, the results for effective
solutions of the steering problem of electric fleets, including
both origin-destination and charge constraints, is limited
and leave space for additional contributions. An example
of a routing problem for electric vehicles, incorporating
such constraints is given in [13]. The problem is there
formulated as a MILP, which is known to be NP-hard, and
a metaheuristic bilevel solution is proposed.

A classical approach to the macroscopic traffic control
problem is the dynamic network flow formulation. This
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method goes back to the work [14], and the procedure builds
on transforming the discrete time-horizon to a static problem
by time-expansion of the underlying network. However, by
doing this, the time structure in the problem is not fully
utilized, and thus limits current techniques in terms of
number of commodities and problem sizes. Therefore, the
focus has mainly been to include only few commodities
representing, e.g., a couple of classes of vehicles [15]. An
alternative approach is the optimal transport framework,
which has recently been used to solve control, steering, and
estimation problems [16], [17], [18], [19] and utilizes the
underlying time structure. Indeed, by exploiting the graph
structure of the constraints imposed on the marginals, we
can efficiently solve problems such as the origin-destination
problem [20], and multi-commodity flow problems [21].

In this paper we formulate the steering problem over a
network of an electric fleet with origin-destination constraint,
using a multi-marginal optimal transport formulation. We
first introduce the charge state of the batteries, creating
multiple copies of the network for different charge levels.
Then we formulate a multi-marginal optimal transport prob-
lem on the charge-expanded graph, which we approximate
with the addition of entropic regularization. We propose an
algorithm for solving the problem, based on dual coordinate
ascent. This generalizes the results in [20] as the new
formulation can handle charge constraints. We also derive
explicit expressions for the updates in the blocks dual ascent
method, which leads to an efficient algorithm. Finally, we
illustrate the algorithm on a numerical example where fleets
of different agents are steered from origin to destination over
a grid, while maintaining positive charge.

II. BACKGROUND

A. Notation

By �, �, exp(·), log(·) we denote element-wise multipli-
cation, division, exponential and logarithm of matrices and
vectors. The Kronecker product of two matrices is denoted by
⊗. With 1n we denote a n×1 column vector of ones (or just
1 if the dimension is clear from the context). Similarly In is
the identity matrix of size n. The set of integers from 1 to n
is indicated with [n]. The set of non-negative real numbers is
denoted by R+ = [0,+∞). By 〈·, ·〉 we indicate the standard
Frobenius inner product between vectors, matrices or tensors.

B. Optimal Transport

The optimal transport problem is to find the most efficient
way to transport resources from one distribution to another
while minimizing the transportation costs [22]. In the dis-
crete setting, which will be of interest for this paper, the
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distributions can be represented by two non-negative vectors
µ0, µ1 ∈ Rn+, and costs by a matrix C ∈ Rn×n+ , where Cij
is the cost of moving one unit of mass from location i to
j. Analogously we consider the transport plan M ∈ Rn×n+

between µ0 and µ1, where Mij is the amount of mass moved
from location i to j. The optimal transport problem can then
be formulated as

minimize
M∈Rn×n

〈C,M〉

subject to M1n = µ0, MT1n = µ1.
(1)

Problem (1) has been generalized to a multi-marginal setting
[23], [24], in which (T + 1)-mode tensors C,M ∈ RnT+1

+

represent the cost and the transport plan between a set of
T + 1 marginals µ0, . . . , µT ∈ Rn+. Each entry of the
tensors C,M will be denoted by a tuple of indexes i =
(i0, . . . , iT ) ∈ [n]T +1, so that Ci is the cost and Mi is the
mass associated with the tuple i = (i0, . . . , iT ). The multi-
marginal optimal transport problem can then be formulated
as

minimize
M∈RnT+1

+

〈C,M〉

subject to Pt(M) = µt, t = 0, . . . , T ,
(2)

where Pt(M) ∈ Rn+ is the projection operator on the t-th
mode of the tensor M, defined by

(Pt(M))it :=
∑

i1,...,it−1,it+1,...,iT

Mi0,...,it−1,it,it+1,...,iT . (3)

In recent years its application to large scale problems have
become widespread, mainly thanks to entropy regularization
[25]. This approach has been applied also to the multi-
marginal setting [26], but the complexity of computing
the projections scales exponentially with the number of
marginals, making it in general computationally intractable.
However, for cost tensors C corresponding to certain graph-
structures, these structures can be utilized to compute the
projections efficiently, e.g., for tree graphs or graphs with
small treewidth [27], [28], [21], [29]. This is also the case
for the model proposed in this paper. The multi-marginal
entropy regularized optimal transport problem is

minimize
M∈RnT+1

+

〈C,M〉+ εD(M)

subject to Pt(M) = µt, t = 0, . . . , T ,
(4)

where ε > 0 is the regularization parameter, and

D(M) =
∑

i∈[n]T+1

(
Mi log(Mi)−Mi + 1)

is an entropy term. The addition of D makes problem (4)
strictly convex. It can be shown that the unique solution of
(4) has the form K�U, where K = exp(−C/ε), while U =⊗T

t=0 ut, in which ut = exp(−λt/ε) for t = 0, 1. . . . , T .
Here λt ∈ Rn are the Lagrangian multipliers associated with
the constraints Pt(M) = µt. The vectors ut can be found as
the fixed point of the Sinkhorn iterations

ut ← (ut � µt)� Pt(K�U), (5)

which can also be seen as block coordinate ascent to the dual
of (4), and therefore are guaranteed to converge [30], [31].
In this paper we generalize these concepts in order to apply
the theory to traffic flow problems with charge constraints.

III. PROBLEM FORMULATION

In this section we formulate the problem of optimally steer-
ing an ensemble of electric vehicles over a network. First, we
expand the network by introducing charge levels, and then we
describe how to formulate the steering problem as a multi-
marginal optimal transport problem, taking into account the
temporal structure of the problem. Similar to [20], we also
include origin-destination constraints, allowing agents with
different tasks or destinations to be distinguished from one
another.

A. Expanded network with charge levels
We consider an ensemble of agents, each of them equipped
with a battery with a certain charge level. The ensem-
ble operates on a directed network G = (V, E), where
V = {v1, . . . , vm} is the set of vertices and where E =
{e1, . . . , en} is the set of directed edges, so that each edge
is a tuple of vertices (vi, vj) for vi, vj ∈ V . We further
assume that a subset of nodes C ⊆ V represents charging
stations, i.e., nodes where agents can increase the charge
of their battery. The charge level is modeled with Q + 1
discrete levels of charge, where q = 0 corresponds to 0% and
q = Q corresponds to 100%. We create a charge-expanded
network G̃ = (Ṽ, Ẽ), such that the charge-expanded node set
Ṽ consists of Q+ 1 copies of the original node set V:

Ṽ := {(vi, q) : vi ∈ V, q = 0, . . . , Q}.

The state space is then defined as Ẽ := Ẽ ∪ C̃. Here, the
charge-expanded edge set

Ẽ = {((vi, q), (vj , q − 1)) : (vi, vj) ∈ E , q = 1, . . . , Q)}

contains Q copies of every original edge (vi, vj) ∈ E ,
where the copies represent different charge levels of the same
physical edge. The set C̃ represents the states where vehicles
are stationary and charging,

C̃ = {((vi, q − 1), (vi, q)) : vi ∈ C, q = 1, . . . , Q},

which consists of Q copies each element of C representing
different charge levels. This means that it is possible, for an
agent who is stationary in a node in C, to increase its charge
by one level at a time. This is a simplified model where
travelling along any road consumes exactly one level of
charge and where recharging is also one level per time unit.
However, it is straightforward to generalize this to settings
where, e.g., recharge pace and loss of charge depends on
properties of the road or the vehicle type (cf. [21], [17]).

The total number of states is ñ := |Ẽ | = (|E|+|C|)×Q, and
we define an ordering among them for subsequent reference:

ẽ(k−1)Q+q =


((vi, q), (vj , q − 1))

for 1 ≤ q ≤ Q, (vi, vj) = ek, 1 ≤ k ≤ n,
((vik−n

, q − 1), (vik−n
, q))

for 1 ≤ q ≤ Q, vik−n
∈ C, k ≥ n+ 1.
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Fig. 1. The network G (above), with the charging station in green, and the
corresponding charge expanded network G̃ for Q = 4 (below). The solid
edges represent Ẽ while dashed edges illustrate C̃.

Example 1: We consider a network G with 5 nodes, 6
edges, and only 1 charging station (the node C). Both G, and
the corresponding charge-expanded network G̃ for Q = 4 are
illustrated in Figure 1.

Remark 1: This approach is similar to the time-expanded
network used in the dynamic network flow formulation of the
minimum cost network flow problem [14], [32]. However,
rather than expanding the graph in both time and charge
dimensions, we introduce the time dimension using an en-
tropy regularized multi-marginal optimal transport approach,
circumventing the need to solve a large linear program.

B. Steering of ensembles on the expanded network

In this section, we outline how to include the charge-
expanded network G̃ = (Ṽ, Ẽ), described in Section III-A,
into an optimal transport framework. In a setting with T + 1

time steps, we introduce the cost tensor C ∈ Rñ(T+1)

+ . The
key assumption is that C decouples as the sum over time of a
cost matrix C ∈ Rñ×ñ+ , in which the element Cij represents
the cost of going from state ẽi to state ẽj in Ẽ . We obtain

Ci0,...,iT =

T∑
t=1

Cit−1it . (6)

The element Ci0,...,iT thus represents the cost of taking
the path formed by the edges ẽi0 , . . . , ẽiT . Here we use a
constant cost matrix C for ease of notation, but our method
easily extends to the time-varying scenario, allowing for
networks that change over time.

We introduce the transport plan M ∈ Rñ(T+1)

+ : its compo-
nent Mi0,...,iT accounts for the amount of mass transported
over the path formed by the edges ẽi0 , . . . , ẽiT . Our objective
will then be to minimize 〈C,M〉, while satisfying origin-
destination and capacity constraints. Origin-destination con-
straints are commonly encountered in traffic applications,
where agents are required to have distinct identities. In such
scenarios, the flow of agents from one location to another can
be effectively represented using an Origin-Destination (OD)
matrix [33], which encodes the number of agents traveling
between specific origin-destination pairs. In our context, it

is reasonable to assume that both initial position and charge
are known, while the target is to reach a specified location,
regardless of the battery level at the end. Final states with
higher charge can be made more attractive by adjusting the
cost of the paths reaching them. Exploiting the previously
introduced ordering of the states, we define

B := I|E|+|C| ⊗ 1Q. (7)

The OD matrix is then R ∈ Rñ×(|E|+|C|)
+ , and we impose

the constraint as P0,T (M)B = R, where Pt1,t2 : RñT+1 →
Rñ×ñ is the bi-marginal projection operator, defined as

(Pt1,t2(M))it1 it2 :=
∑

i0,...,iT \{it1 ,it2}

Mi0,...,iT , (8)

while the matrix B ∈ {0, 1}ñ×(|E|+|C|) is utilized to aggre-
gate the duplicates of the edges considered as destinations,
by summing over all charge levels. We also assume that the
edges in the original graph, as well as the charging stations,
have a maximum capacity d ∈ R(|E|+|C|)

+ . Similarly to the
origin-destination constraint, we need to impose a maximum
capacity on the aggregated Q duplicates in Ẽ . The constraint
can be written as BTPt(M) ≤ d, for t = 1, . . . , T − 1.

Remark 2: In traffic applications, one often assumes
nodes as origins and destination, instead of edges, as done
in this work. The two approaches are equivalent. Indeed,
given the sources and sinks nodes sets S+,S− ⊆ V , one
can augment the state space Ẽ with the sets S̃+, S̃−, defined
as

S̃+ := {((vi, q), (vi, q)) : vi ∈ S+, q = 0, . . . , Q},
S̃− := {((vi, q), (vi, q)) : vi ∈ S−, q = 0, . . . , Q}.

Then B can be adjusted so that it performs also a summation
over the copies of S+,S− representing different charge
levels of the same physical origin or destination, i.e.,

B :=

[
I|E|+|C| ⊗ 1Q 0

0 I|S+|+|S−| ⊗ 1Q+1

]
. (9)

Even though the capacity constraints are here imposed on
the edges, it would be possible to instead consider capacity
constraints on the vertices by aggregating all the edges
entering into each node.

The problem that we are solving is then (4) with modified
constraints

minimize
M∈RñT+1

+

〈C,M〉+ εD(M) (10a)

subject to P0,T (M)B = R (10b)

BTPt(M) ≤ d, for t = 1, . . . , T − 1. (10c)

The graph-structure of the problem is illustrated in Figure 2,
where the marginals of (10) are shown as circular nodes.
Two nodes are connected with an edge if there is a cost or
constraint on the corresponding bi-marginal. The marginals
Pt(M) and Pt+1(M) are connected due to the cost (6), and
the marginals P0(M) and PT (M) are connected due to the
constraint (10b) which creates a cyclic structure.
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P1(M)P0(M) PT−1(M) PT (M)

BTP1(M) ≤ d BTPT−1(M) ≤ d

P0,T (M)B = R

C C

Fig. 2. Origin-destination problem with charge constraints. The grey nodes
indicate that there is a constraint in the corresponding marginal.

IV. MAIN RESULTS

In this section we illustrate the computational aspects in-
volved in solving problem (10). Proceeding as for the solu-
tion of (4), we start by finding the dual problem.

Theorem 1: Consider the optimization problem (10) and
assume that R ∈ Rñ×(|E|+|C|)

+ and d ∈ R|E|+|C|+ are strictly
positive with 1TR1 ≤ 1T d. Then the Lagrangian dual of
problem (10) is

max
Λ∈Rñ×(|E|+|C|)

λ1,...,λT−1∈R|E|+|C|+

−ε〈K,U〉 − 〈Λ, R〉 −
T −1∑
t=1

〈λt, d〉, (11)

where U ∈ Rñ(T+1)

has the form

Ui0,...,iT = (UBT )i0iT · (Bu1)i1 · . . . · (BuT −1)iT−1
(12)

with U := exp (−Λ/ε) and ut := exp (−λt/ε), and K =
exp(−C/ε). Furthermore, the optimal solution of (10) is
given by M = K�U where U is on the form (12).

Proof: The Lagrangian of (10) is

L(M,Λ, λ1, . . . , λT −1) = 〈C,M〉+ εD(M) +

+ 〈Λ, P0,T (M)B −R〉+

T −1∑
t=1

〈λt, BTPt(M)− d〉, (13)

where Λ ∈ Rñ×(|E|+|C|) represents the dual variable
associated with the constraint P0,T (M)B = R, while
λt ∈ R(|E|+|C|)

+ denotes the dual variables corresponding to
BTPt(M) ≤ d, for t = 1, . . . , T − 1. We minimize the
Lagrangian with respect to Mi, and noting that the derivative
of the entropy term tends to minus infinity as the argument
tends to zero, the optimal solution is always strictly positive
and attained by setting the derivative equal to zero

∂L

∂Mi
= Ci + ε log(Mi) + (ΛBT )i0iT +

T −1∑
t=1

(Bλt)it = 0,

which can be rewritten as

Mi = exp

(
−Ci − (ΛBT )i0iT

ε
−
T −1∑
t=1

(Bλt)it
ε

)
.

We observe that, since B is binary with one nonzero element
in each row, it holds that exp

(
ABT

)
= exp(A)BT and

exp(BA) = B exp(A) for any matrix A of appropriate
dimension. Therefore

Mi = exp

(
− Ci

ε

)
(UBT )i0iT

T −1∏
t=1

(But)it , (14)

which in matrix form corresponds to M = K � U, with
K = exp(−C/ε) and U defined as in (12). Then by
plugging expression (14) into the Lagrangian (13) we obtain
(neglecting constant terms)

L(K�U,Λ,λ1, . . . , λT −1)

= −ε〈K,U〉 − 〈Λ, R〉 −
T −1∑
t=1

〈λt, d〉.
(15)

Since (15) is the minimum of the Lagrangian for given
dual variables Λ ∈ Rñ×(|E|+|C|) and λt ∈ R|E|+|C|+ for
t = 1, . . . , T − 1, this is also the objective function of the
dual, and thus (11) is the dual problem. Finally, since R and
d are positive with 1TR1 ≤ 1T d, there exists a positive
feasible solution, and by Slater’s condition strong duality
holds. By strict convexity of the problem a unique solution
exists on the form M = K�U.

We proceed to describe the numerical solution of the dual
problem (11) through a dual coordinate ascent algorithm.
The method involves iteratively optimizing the dual objective
function with respect to one of the dual variables at a time,
while holding the remaining variables constant.

Theorem 2: Let the same assumptions of Theorem 1 hold.
Then dual coordinate ascent is to iteratively update the
components of U according to

U ← (U �R)� (P0,T (K�U)B), (16a)

ut ← min(ut � d� (BTPt(K�U)),1)

for t = 1, . . . , T − 1, (16b)

where the minimum in (16b) is taken entry-wise. This con-
verges to a limit point Λ = −ε log(U) and λt = −ε log(ut)
for t = 1, . . . , T − 1 which is optimal for problem (11).

Proof: First note that, as shown in Theorem 1, strong
duality holds and there exists an optimal solution to the
dual problem. In dual coordinate ascent, the dual objective
function is maximized with respect to one dual variable at a
time while keeping the others fixed:

Λ← arg max
Λ∈Rñ×(|E|+|C|)

−ε〈K,U〉 − 〈Λ, R〉, (17a)

λt ← arg max
λt∈R|E|+|C|+

−ε〈K,U〉 − 〈λt, d〉 t = 1, . . . , T − 1.

(17b)

The iterations are guaranteed to converge by [31]. First,
we show that (17a) is equivalent to (16a). The optimization
problems (17) are unconstrained and the objective functions
are strictly concave with compact superlevel sets due to the
positivity of K,R, d, and thus a necessary and sufficient con-
dition for optimality is that the gradient vanishes. Recalling
that U = exp(−Λ/ε), we set the derivative of the objective
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function in (17a) with respect to Λkl equal to zero, obtaining

Uk`
∑
iT

BT`iT

∑
i1,...,iT−1

Kk,...,iT

T −1∏
t=1

(But)it = Rk`.

By observing that

(P0,T (M))i0iT =
∑

i1,...,iT−1

Ki0,...,iT (UBT )i0iT

T −1∏
t=1

(But)it

we get∑
iT

BT`iT

∑
i1,...,iT−1

Kk,...,iT

T −1∏
t=1

(But)it

=
∑
iT

(P0,T (K�U)kiT
(UBT )kiT

BiT `.

Using Lemma 1 in Appendix A with V = P0,T (K�U) we
obtain

Uk` ←
Rk`

(P0T (K�U)B)k`/Uk`
,

which in matrix form is (16a). Consider now the objective
function in (17b), and take the derivative with respect to
(λt)k. The minimizer is obtained either where the gradient
vanishes, if it does so for a positive value, or in 0 otherwise,
because of the nonnegativity constraint on λt. By recalling
that ut = exp(−λt/ε) we get

dk = (ut)k
∑
it

Bitk
∑

i0,...,it−1

it+1,...,iT

Ki(UB
T )i0iT

∏
1≤s≤T −1

s 6=t

(Bus)is .

Proceeding as before:∑
it

Bitk
∑

i0,...,it−1

it+1,...,iT

Ki(UB
T )i0iT

∏
1≤s≤T −1

s6=t

(Bus)is

=
∑
it

BTkit
Pt(K�U)it

(But)it
=
(
BT (Pt(K�U)� (But))

)
k
.

By transposing Lemma 1 we obtain BT (Pt(M)� (But)) =
(BTPt(M))�ut, which gives us, if the positivity constraint
is respected,

(ut)k ←
dk(ut)k

(BTPt(K�U))k
.

The update (16b) is then the minimum between the expres-
sion above and 1 = exp(0), resulting from λt ∈ R|E|+|C|+ .

The results can be extended to the case of a sparse
network, allowing us to incorporate the network topology
directly in the cost matrix, by setting Cij = +∞ whenever
ẽi is not adjacent to ẽj , resulting in infinite cost for infeasible
paths. Indeed, under certain regularity conditions, as stated in
Theorem 3 below, the previous results still hold. The theorem
can be proved by removing the variables that are trivially
constrained, with analogous arguments to those used in the
proofs of Theorem 4 and Proposition 1 in [21].

Theorem 3: Let C ∈ Rn
T+1

+ , R ∈ Rñ×(|E|+|C|)
+ and d ∈

R|E|+|C|+ , where d is strictly positive. Assume that there is a

feasible solution M of (10) for which Mi0...iT > 0 for all
indices i0 . . . iT where Ci0...iT < ∞ and (RBT )i0iT > 0.
Then the optimal solution to (10) has the structure M =
K�U where K = exp(−C/ε) and U factorizes as in (12).
Moreover, the iterative scheme (16) converges, and the limit
point corresponds to a tensor U for which M = K �U is
the optimal solution of (10).

The computationally expensive part of the iterations (16)
is the evaluation of the projections P0,T (K�U) and Pt(K�
U). Here we need to exploit the sequential decoupling of the
cost tensor (6): after defining K := exp(−C/ε), we obtain

Ki0,...,iT =

T∏
t=1

Kit−1it . (18)

Furthermore, the entries of K = exp(−C/ε) corresponding
to infeasible paths become zero, leading to a sparse tensor.
The projections can then be computed as described by the
following result.

Theorem 4: Consider K ∈ RñT+1

decoupling as in (18),
and U ∈ RñT+1

decoupling as in (12). Then the projections
P0,T (M) and Pt(M) of M = K�U can be computed as:

P0,T (M) = φ̂T � (UBT ) = (UBT )� φ0, (19a)

Pt(M) = But � (φ̂Tt � (φt(UB
T )T ))1 (19b)

= But � (φ̂Tt UB
T )� φt)1

for t = 1, . . . , T − 1, in which

φ̂t = Kdiag(Bu1)K . . .Kdiag(But−1)K, (20a)
φt = Kdiag(But+1)K . . .Kdiag(BuT −1)K. (20b)
Proof: See Appendix B

We underline how the variables φ, φ̂ can be computed
recursively, allowing for faster computation. Indeed, after
setting φT −1 = φ̂1 = K, from (20) it directly follows

φ̂t = φ̂t−1diag(But−1)K, 2 ≤ t ≤ T , (21a)
φt = Kdiag(But+1)φt+1, 0 ≤ t ≤ T − 2. (21b)

Finally, in Algorithm 1 we recap the procedure for numer-
ically solving (11), using the updates (16) while exploiting
the recursions (21) for computing the marginal projections.
The algorithm returns the marginal projections Pt(M) for all
t as well as the dual variables U and ut for t = 1, . . . , T −1,
which can be used for reconstructing M = K�U.

The computational complexity of one iteration (updating
all the dual variables) in Algorithm 1 is O(T ñ3), because
of the matrix-matrix multiplications in the updates of φ, φ̂
(21). However, the actual computational complexity is typi-
cally considerably lower. First, due to the charge-expanded
construction, K has a sparse structure even if the underlying
network is complete. Furthermore, if the matrix R has only L
non-zero entries (i.e., the problem has only L commodities),
only LQ columns of φ and only L rows of φ̂ need to
be computed. Both these factors significantly reduce the
computational cost.
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Algorithm 1 Dual coordinate ascent for problem (11)
U ← 1 · 1T , ut ← 1 for t = 1, . . . T − 1
φ̂1 ← K, φT −1 ← K
for t = T − 2, T − 3, . . . , 0 do

φt ← Kdiag(But+1)φt+1

end for
while constraint violation (10b)-(10c) > tolerance do

P0,T (K�U)← φ0 � UBT
U ← (U �R)� (P0,T (K�U)B)
for t = 1, . . . , T − 1 do

φ̂t ← φ̂t−1diag(But−1)K if t > 1
Pt(K�U)← But � ((φ̂Tt UB

T )� φt)1
ut ← min((ut � d)� (BTPt(K�U)),1)

end for
for t = T − 2, T − 3, . . . , 0 do

φt ← Kdiag(But+1)φt+1

end for
end while

V. NUMERICAL SIMULATIONS

In this section we illustrate an application of the methodology
described in Section III and Section IV, where we seek
to transfer L = 5 groups of battery-powered agents from
assigned origins to destinations, while respecting capacity
and charge constraints. We consider a grid of dimension
30 × 30, with Q = 60 charge levels, and assume that the
dynamics allow for agents to move from one square to
a neighbouring one (up, down, left, or right) in one time
step. Neighbouring squares are connected by two directed
edges, allowing capacity constraints to differentiate the flow
in opposite directions. Let the capacity be di = 10 for the
roads and di = 50 for each of three charging stations. In
order to allow for nodes to be origins and destinations, we
augment the state space with sources and sinks, as described
in Remark 2. The set of states is then Ẽ = Ẽ∪C̃ ∪S̃+∪S̃−.
The details on the initial data are given in Table I, and the
setup is illustrated in Figure 3. Note that units can have the
same origin and destination but different initial charge, hence
they need to be treated as separate commodities.

TABLE I
DATA OF THE EXAMPLE

Origin (row,col) Destination (row,col) Initial charge q # units
(9, 1) (15, 30) 15 50
(9, 1) (15, 30) 50 100
(1, 11) (30, 23) 15 50
(1, 11) (30, 23) 35 100
(26, 1) (6, 30) 55 200

We assume that the cost is 1 for all roads. In this setting,
we allow for agents to freely stay in sources and sinks
(without cost and loss of charge), but not in other states.
At the same time, it is possible to exit sources and to enter
sinks, but not vice-versa. In this case, the cost is 0.5, as
sources and sinks do not correspond to physical roads. We
also assume that using a charging station costs 1 for each
level of charge gained. As we are not imposing a final charge

Origins
Destinations
Charging Node

Fig. 3. Origin-destination pairs and charging stations on the grid. Each
pair is assigned a different color

TABLE II
THE COST MATRIX C

C Ẽ C̃ S̃+ S̃−

Ẽ
1 if adj.
∞ else

1 if adj.
∞ else ∞

1
2
+ (Q− q)if adj.
∞ else

C̃ 1 if adj.
∞ else

1 if adj.
∞ else ∞

1
2
+ (Q− q)if adj.
∞ else

S̃+
1
2

if adj.
∞ else

1
2

if adj.
∞ else

0 if adj.
∞ else

(Q− q)if adj.
∞ else

S̃− ∞ ∞ ∞ 0 if adj.
∞ else

level, in order to favour arrivals with higher battery charge,
we add the cost (Q− q) for ending up in a sink with charge
q. The cost matrix C is summarized in Table II, where we
say that ẽi is adjacent to ẽj if tail(ẽi) = head(ẽj). In other
words, two edges are adjacent if it is possible to directly go
from the first one to the second.

We run Algorithm 1 for T = 80, ε = 0.5. Despite
the large number of states (|Ẽ | ≈ 2 · 105), the matrix K
is highly sparse, making the matrix-matrix multiplication
computationally feasible. The computation required 1390
iterations for the algorithm to converge within a tolerance of
10−3, with a total runtime of 10 hours and 40 minutes. The
simulation was performed on a machine equipped with an
Intel Core i7-1165G7 CPU and 16 GB of RAM. The software
environment utilized Python 3.9, with the SciPy library used
for sparse matrix operations. The results of the simulation are
shown in Figure 4. In the first row, we show the flow over
time of the entire ensemble. In the following three rows we
divide the agents in groups based on their remaining charge.
These groups are referred to as low with 0 ≤ q ≤ 19,
medium with 20 ≤ q ≤ 39, and high with 40 ≤ q ≤ 60.
One can observe how the groups of agents with same origin
and destination but different initial charge behave differently.
In both cases with agents starting in (9, 1) and (1, 11), the
agents with low charge are immediately steered towards the
nearest charging stations, where they spend several time
steps to recharge, while the others continue towards their
destination. We can also observe how the capacity constraints
force agents to spread across different paths or to wait in their
starting point. Also note that as time passes, more vehicles
move from high to medium charge groups and from medium
to low. These are nontrivial behaviour, but they match what
one would intuitively expect for an optimal solution.
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Fig. 4. Optimal traffic flow, agents divided in groups based on their charge levels.

VI. CONCLUSIONS

In this paper we introduced a method for the steering an en-
semble of electric vehicles over a network with road-capacity
and origin-destination constraints. We expanded the network
in the charge-dimension, presenting a dual coordinate ascent
algorithm for efficiently solving the problem. Finally, we
illustrated an application of the algorithm on a grid network.

In the proposed approach very large optimization problems
are considered. However, in order to handle realistic sce-
narios even larger problems need to be solved [34]. Further
work therefore include the study of different graph structures
to develop even more computationally efficient algorithms,
while also including the impact of traffic congestion [34],
[35] and limitations imposed by the electrical grid on charg-
ing infrastructure.

APPENDIX A
LEMMA 1

Let B ∈ {0, 1}n×m be a binary matrix such that B1m = 1n
and let V ∈ Rp×n, U ∈ Rp×m be arbitrary matrices. Then(

V � (UBT ))B = (V B)� U. (22)

Proof: Consider the i, j-th element.[(
V � (UBT )

)
B
]
ij

=

n∑
k=1

(
Vik �

( m∑
`=1

Ui`B
T
`k

))
Bkj .

The property B1m = 1n implies that each row of B has
exactly one nonzero element. Therefore, if Bkj = 1, we
have

∑m
`=1 Ui`B

T
`k = Uij . This gives us

n∑
k=1

(
Vik �

( m∑
`=1

Ui`B
T
`k

))
Bkj =

n∑
k=1

VikBkj
Uij

= [(V B)� U ]ij .

which is the result of the lemma. As a remark, we notice
that Uij = 0 would result in infinity on both sides.

APPENDIX B
PROOF OF THEOREM 4

Observe that

(φ̂t)i0it = (Kdiag(Bu1)K . . .Kdiag(But−1)K)i0it

=
∑

i1,...,it−1

Ki0i1(Bu1)i1Ki1i2 . . . (But−1)it−1Kit−1it

=
∑

i1,...,it−1

(
t∏

s=1

Kis−1is

t−1∏
s=1

(Bus)is

)
,

and analogously

(φt)itiT =
∑

it+1,...,iT−1

( T∏
s=t+1

Kis−1is

T −1∏
s=t+1

(Bus)is

)
.

By considering (φ0)i0iT and (φ̂T )i0iT we get

P0,T (M)i0iT =

=
∑

i1,...,iT−1

( T∏
s=1

Kis−1is

)(T −1∏
s=1

(Bus)is

)
(UBT )i0iT

= (UBT )i0iT (Kdiag(Bu1)K . . .Kdiag(BuT −1)K)i0iT

= (UBT )i0iT (φ0)i0iT = (UBT )i0iT (φ̂T )i0iT ,

which is (19a). Now consider the projections

P0,t(K�U)i0it =

=
∑

i1,...,it−1

it+1,...,iT

( T∏
s=1

Kis−1is

)( T −1∏
s=1

(Bus)is

)
(UBT )i0iT .

The product in the right hand side can be split up into
two components, each accounting for the terms with indices
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smaller and larger than t, respectively. Then we identify (the
sum of) each such term with φt and φ̂t
P0,t(K�U)i0it =

= (But)it
∑

i1,...,it−1

( t∏
s=1

Kis−1is

t−1∏
s=1

(Bus)is

)
·

·
∑
iT

∑
it+1,...,iT−1

( T∏
s=t+1

Kis−1is

T −1∏
s=t+1

(Bus)is

)
(UBT )i0iT

= (But)it(φ̂t)i0it
∑
iT

(φt)itiT (UBT )i0iT

= (But)it(φ̂t)i0it((UB
T )φTt )i0it .

Proceeding in the same way for Pt,T (K�U) we obtain

P0,t(K�U) =
(
φ̂t � (UBTφTt )

)
diag(But), (23a)

Pt,T (K�U) = diag(But)
((
φ̂Tt UB

T
)
� φt

)
. (23b)

Finally, observe that

Pt(K�U) = P0,t(K�U)T1 = Pt,T (K�U)1, (24)

which leads to (19b). �
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“Convex relaxations in the optimal control of electrified vehicles,” in
2015 American control conference (ACC). IEEE, 2015, pp. 2292–
2298.
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Modélisation Mathématique et Analyse Numérique, vol. 49, no. 6, pp.
1771–1790, 2015.

[25] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal
transport,” Advances in neural information processing systems, vol. 26,
pp. 2292–2300, 2013.

[26] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré, “It-
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