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Abstract— Recent results in the verification of cyber-physical
systems have focused not just in giving guarantees of properties
such as safety, but also in ensuring that these systems are secure.
One such notion of security is that of initial-state opacity, where
one seeks to ensure that an outside intruder is not able to
determine some sensitive information about the initial-state of
the system by observing the output traces. An existing approach
to verify the initial-state opacity of a system relies on finding a
barrier certificate over an appropriately constructed augmented
system. However this search for a barrier certificate relies on
the dynamics of the system being known. Unfortunately, in
many scenarios, it may be difficult or infeasible to determine
the dynamics of a given system.

We thus consider the problem of determining whether a
system is opaque when its dynamics are unknown. To do so,
we recast the conditions of opacity on the augmented system
as a robust program with uncountably many constraints. By
collecting data from the system’s trajectories, we construct a
corresponding scenario program. We show that if a feasible
solution of the scenario program satisfies some conditions,
then the original system with unknown dynamics is opaque
under reasonable assumptions. We show the effectiveness of the
proposed approach by demonstrating the opacity of a room-
temperature model.

I. INTRODUCTION

Broad deployment, and access to sensitive data makes
many of the cyber-physical systems (CPS) vulnerable to
attacks and information leaks. CPS has traditionally been
verified against temporal logic specifications [1], [2], [3],
[4], [5], which stipulate properties on the set of system
executions. While these properties can express a wide range
of requirements that take individual CPS execution traces
into account, they are unable to capture other properties
concerned with information-flow features and planning ob-
jectives that require relating different execution traces. These
properties that rely on relations between traces have been
collectively called hyperproperties [6]. A key hyperproperty
is that of opacity [7]. Opacity is a security property that
is concerned with the system’s information flow. It refers
to a system’s secret’s plausible deniability in the presence
of an outside intruder. Different concepts of information
flow properties are discussed in [8], [9], [10], and different
notions of opacity have been discussed in [11], however in
all cases these information flow properties are not defined
over individual traces but rather depend on the relation
between traces of a system. Another key challenge faced
in the verification of CPS is knowing the system model.
In many cases finding or determining such a closed form
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expression may be difficult or infeasible, either practically
(when identifying the model may be difficult) or to preserve
intellectual property information. We thus consider the prob-
lem of verifying approximate opacity for unknown systems
and provide a sound guarantee.

We observe that one faces challenges when verifying
opacity even when one has an exact model of a system.
While there exist complete decision procedures to verify
notions of opacity for finite state While systems [12], [10],
the problem is undecidable for infinite state systems. This
follows from the fact that verifying simple trace properties
such as safety are undecidable. Thus verifying properties
such as even reachability for CPS with uncountable state
spaces turn out to be undecidable [13], and these challenges
carry over for opacity verification. Secondly, one may no
longer use standard abstraction based approaches as they
do not preserve hyperproperties [12]. Lastly, unlike in the
case of finite programs, the output observations for CPS
tend to be real values over an uncountable set. In many
cases, it is unrealistic to expect an intruder to be able
to precisely measure these observations. Thus the authors
of [14] proposed a notion of approximate opacity. This
definition takes into account the intruder’s measurement
precision, which is specified by a parameter δ. Here, any
pair of observations separated by a distance that is less than
δ are indistinguishable to the intruder.

Recent results in [15] provide guarantees for opacity by
recasting the problem to that of synthesizing a controller
to ensure the safety of an “augmented” system. To do so,
the authors provide a sound guarantee through the use of
barrier certificates [16]. This allows for one to make use
of optimization approaches such as semidefinite program-
ming to automatically search for barrier certificates that act
as proofs of opacity. These approaches have since been
extended for interconnected systems [17], as well as in
designing controllers to ensure opacity [18].

However these approaches are inapplicable when the sys-
tem dynamics are unknown. Recent results [19], [20] on
data-driven approaches to compute barrier certificates, rely
on the scenario approach [21], [22] to verify safety based
on the connection between robust convex programs, chance-
constrained programs and scenario convex programs [23].
Unfortunately, these approaches can not be extended to
search for a controller to ensure the opacity of a system
as the problem is no longer convex. While results exist in
the nonconvex case [24], all of the above rely on relating
solutions of scenario programs to robust ones via chance-
constrained programs. All of the above mentioned results
provide a confidence while giving a guarantee of safety.
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To consider a data-driven approach for opacity, we provide
a direct relation between the scenario and robust programs
and so our approach provides a sure (100%) guarantee. To do
so, we partition the state-set of an “augmented” system into
finitely many regions. We then select representative points
from these regions and construct a scenario program. If the
solution for the scenario program satisfies some conditions,
under reasonable assumptions, then we can formally verify
that the system is approximately opaque.

II. PROBLEM DEFINITION

We let R, Z, and N to denote the set of real numbers,
integers, and non-negative integers respectively. For a ∈ R,
we write R≥a and R>a for the intervals [a,∞[ and ]a,∞[,
respectively. We write Z≥n and N≥n for the set of integers
and non-negative integers greater than or equal to n ∈ Z.
We denote an infinite sequence using the angular bracket
notation ⟨a1, a2, . . .⟩ and a finite sequence as (a1, a2, . . . an).
For sets A,B, we write |A| for the cardinality and An

for its n-ary Cartesian power. The Cartesian product of A
and B is defined by A × B = {(x, y)|x ∈ A, y ∈ B}.
Given sets A,B, and a function f : A → B, we define
the product of the function f with itself as the function
(f × f) : A × A → B × B, where for all a1, a2 ∈ A,
(f × f)(a1, a2) = (f(a1), f(a2)). As usual, we use ∧,
∨, and =⇒ to denote logical conjunction, disjunction,
and implication, respectively. Given a vector v ∈ Rn, we
use ||v||, and |v|∞, to denote its 2-norm, and ∞-norm,
respectively. A ball of radius r ∈ R>0 centered at point
p ∈ Rn with respect to a distance metric ζ : Rn × Rn → R
is the set {x ∈ Rn | ζ(p, x) ≤ r}.

A. Optimization Programs

Given an action or decision space D ⊆ Rl, an infinite set
Q, and a measurable function g : D ×Q → R we consider
the following two optimization problems.

(1) Robust Programs (RP) An optimization problem is a
RP, with a parameter if it is of the form:

RPξ :

{
min
d

cT d

subject to g(d, q) ≤ 0 for all q ∈ Q.

We abbreviate this as RP when the parameter ξ is set
to 0.

(2) Scenario Program (SP) An optimization problem is a
scenario program if it of the form:

SP :

{
min
d

cT d

subject to g(d, qi) ≤ 0 for q1, . . . , qN ∈ Q.

We refer to the function cT d as the objective or the
cost function. A value d ∈ D is a feasible solution for a
robust (scenario) program if it satisfies the constraints of the
problem. We say a value dopt ∈ D is an optimal solution if
cT dopt ≤ cT d for all d ∈ D.

B. Discrete-time Control Systems

A discrete-time control system S is a tuple
(X,X0, U, f, Y, h), where X ⊆ Rn denotes the state
set of the system, X0 ⊆ X is the set of initial states,
U = {u1, . . . , um} denotes the set of finite control
inputs, Y ⊆ Rp denotes the set of outputs, and functions
f : X × U → X , and h : X → Y are the state transition
function and output function, respectively. The state
evolution of the system S is described by the following
difference equations:

S :

{
x(t+ 1) = f(x(t), u(t)),

y(t) = h(x(t)).
(1)

A trace or state sequence is an infinite sequence xx0,u =
⟨x0, x1, . . .⟩ of the system starting from a state x0 under an
input sequence u = ⟨u0, u1, . . .⟩, such that xi+1 = f(xi, ui)
for all i ∈ N. We denote the corresponding output of this
trace as y = ⟨y0, y1, . . .⟩, such that yi = h(xi) for all i ∈ N.
Throughout the rest of the paper we assume the state set X
to be uncountable but compact.

C. Approximate Opacity Verification via Barrier Certificates

We first define the notion of δ-approximate opacity for a
system S with respect to a parameter δ ∈ R>0, and set of
secret states Xs ⊆ X as follows.

Definition 2.1: A discrete-time control system S is said to
be δ-approximate initial-state opaque for some δ ∈ R>0 and
a secret set of states Xs ⊆ X , if: for any state run xx0,u =
⟨x0, . . . , ⟩, that starts from some secret state x0 ∈ Xs, there
exists some state run xx̂0,û = ⟨x′

0, . . . , ⟩ starting from a non-
secret state x′

0 ∈ X0 \Xs such that: ||h(xi) − h(x′
i)|| ≤ δ,

for all i ∈ N.
Intuitively, the definition of approximate initial-state opac-

ity requires that an intruder with imperfect measurement
precision (captured by the parameter δ) should never know
for sure that the system was at a secret state initially. We
assume without loss of generality that for all xs ∈ X0∩XS ,
there exists xns ∈ X0\XS , such that ∥h(xs)−h(xns)∥ ≤ δ;
otherwise, initial-state opacity is trivially violated. To study
the opacity for the system S, we construct the augmented
system as the following.

Definition 2.2: Consider a control system S. We define
its associated augmented system as the product of S with
itself:

S×S = (X̃, X̃0, Ũ , f̃ , Ỹ , h̃),
where X̃ = X×X is the state set, the set X̃0 = (X0∩Xs)×
(X0 \Xs) is the initial set of states, Ũ = U ×U is the input
set, and Ỹ = Y × Y is the output set. We define the state
transition function as f̃ = (f×f) and the output function as
h̃ = (h×h). We use the notation x̃ = (x, x′) ∈ X̃ to denote
a state, ũ = (u, u′) ∈ Ũ a control input, and ỹ = (y, y′) ∈ Ỹ
an output of S ×S. Let (xx0,u,xx̂0,û) denote the trace of
S × S starting from x̃0 = (x0, x

′
0) under input sequence

(u,u′), and define the set X̃u = {(x, x′) | ∥h(x)−h(x′)∥ >
δ}, i.e., the set of all pairs of states such that the distance

5086



between their outputs is greater than δ. Now we define the
notion of augmented barrier certificates.

Definition 2.3: We say a function B : X̃ → R is an
augmented barrier certificate for a system S × S with
initial states X̃0 and unsafe states X̃u if there exists γ < λ
satisfying:

B(x̃) ≤ γ, for all x̃ ∈ X̃0, (2)

B(x̃) ≥ λ, for all x̃ ∈ X̃u, and (3)

for all x̃ ∈ X̃ \ X̃u, for all u ∈ U, there exists u′ ∈ U,

B
(
f̃(x̃, ũ)

)
− B(x̃) ≤ 0. (4)

A system S is initial-state opaque if there exists an
augmented barrier certificate B : X̃ → R as in Definition 2.3.
This follows from [15, Theorem 5], by ensuring that for any
trace starting from a secret state, there exists another trace
starting from a non-secret state such that the difference in
their observations are not more than δ far apart. When the
control input set U = {u1, . . . , um} is finite, we can rewrite
condition (4) as:

for all x̃ ∈ X̃,∧
(1≤i≤m)

∨
(1≤j≤m)

(
B
(
f̃(x̃, ũi,j)

)
− B(x̃) ≤ 0

)
, (5)

where ũi,j = (ui, uj). For easier readability, we use
ϕ(x̃, ũi,j) to denote

(
B
(
f̃(x̃, ũi,j)

)
− B(x̃) ≤ 0

)
, and

abbreviate condition (5) as
∧

(1≤i≤m)

∨
(1≤j≤m)

ϕ(x̃, ũi,j).

D. Opacity Verification for Unknown Systems

To reason about opacity for “unknown” systems, we rely
on the following assumptions. We consider the system S
to be “unknown”, in the sense that the only way to acquire
knowledge about its transition function f is through samples.

Assumption 1: We assume that we can initialize the sys-
tem at any state x ∈ X , and simulate it to collect the points
Dx = {x, f(x, u1), . . . , f(x, um)}.

We consider augmented barrier certificates to be continu-
ous functions that are weighted sums of z user-defined basis

functions p1(x̃), . . . , pz(x̃), i.e., B(x̃) =
z∑

j=1

bjpj(x̃). In a

specific case, where the barrier certificates are polynomials,
functions pj are monomials. As a result, the search for barrier
certificates as in Definition 2.3, reduces to a search for the
values b1, . . . , bz such that the function B(b, x̃)that satisfies
conditions (2) to (4).

The key problem we study in this paper is as follows:

Problem 1 (Opacity verification for Unknown Systems):
Given a system S, where the state transition function
f is unknown, parameter δ ∈ R≥0, and a set of secret
states Xs ⊆ X , verify whether S is δ-approximate
initial-state opaque.

III. A SCENARIO-BASED APPROACH TO VERIFY
OPACITY

We present a data-driven approach to solve Problem 1,
and thus verify δ-approximate initial state opacity for an un-

known system S. To do so, we frame the search for a barrier
certificate over the augmented system as in Definition 2.3 as
an optimization problem. Conditions (2) and (3) can easily be
framed as constraints of an optimization problem, however to
frame disjunction and quantification in condition (4), we first
assume that the system has finitely many inputs, and so we
instead consider equation (5). Observe that this conjunction
can be split into m different constraints each of the form
ci =

∨
(1≤j≤m)

ϕ(x̃, ũi,j) for each 1 ≤ i ≤ m. We now replace

each of these disjunctions with a different constraint that
provides a sufficient condition via the S-procedure [25].

Lemma 1: The existence of values τi,0, . . . , τi,m−1 ∈ R≥0

satisfying the following condition:

(B(x̃)−B(f̃(x̃, ũi,m)))

−
m−1∑
j=1

τi,j(B(f̃(x̃, ũi,j))−B(x̃)) ≥ 0 (6)

implies the satisfaction of
∨

(1≤j≤m)

ϕ(x̃, ũi,j) for each 1 ≤

i ≤ m.
Finally, we consider the decision variables of the opti-

mization problem to be elements of a vector containing a
“deflation parameter” η, γ, and λ from conditions (2) and (3),
weights b of the non-linear basis functions, and the variables
introduced by S-procedure τi,j for every 1 ≤ i ≤ m and
1 ≤ j < m collected as a vector τ . We consider three sets
X̃0, X̃ , and X̃u, and denote elements of these sets as x̃0, x̃,
and x̃u, respectively.

This allows us to reformulate the search for a barrier
certificate as in Definition 2.3 as the following RP.

RP :



min
d

η

s.t. g1(d, x̃0) ≤ 0, for all x̃0 ∈ X̃0

g2(d, x̃u) ≤ 0, for all x̃u ∈ X̃u

max
1≤i≤m

{gi+2(d, x̃)} ≤ 0, for all x̃ ∈ X̃ \ X̃0

d = [η; γ;λ; τ ; b], η, γ, λ ∈ R,
τi,j ∈ R≥0, for all 0 ≤ i ≤ m, b ∈ Rz,

where,

g1(d, x̃) = (B(b, x̃0)− γ)− η, (7)
g2(d, x̃) = (−B(b, x̃u) + λ)− η, (8)
g3(d, x̃) = (B(b, f̃(x̃, ũ1,m))− B(b, x̃))

+

m−1∑
j=1

τ1,j(B(b, f̃(x̃, ũ1,j))B(b, x̃))− η, (9)

...

...
gm+1(d, x̃) = (B(b, f̃(x̃, ũ(m−1),m))− B(b, x̃))

+

m−1∑
j=1

τ(m−1),j(B(b, f̃(x̃, ũ(m−1),j))

−B(b, x̃))−η, (10)
gm+2(d, x̃) = γ + ϵ− λ− η, (11)
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and ϵ ∈ R>0 is a small positive value.
Let the optimal solution of RP be η∗rp. If η∗rp ≤ 0, then

conditions (7)-(8) imply the satisfaction of conditions (2)-
(3), while condition condition (11) ensures that γ < λ.
Conditions (9)-(10) imply the condition (5). Thus a solution
to RP with η∗rp ≤ 0 gives us an augmented barrier certificate
and acts as a proof of opacity. The value η acts as a deflation
parameter as decreasing it makes the conditions of the barrier
certificate more difficult to satisfy and hence “deflates” the
set of points where these conditions hold. Unfortunately, the
above RP has uncountably many constraints as the sets X̃ ,
X̃0, and X̃u are uncountable. A further challenge is that
we cannot leverage techniques such as sum-of-squares pro-
gramming or semidefinite programming as these approaches
rely on the knowledge of the function f̃ . We observe that
conditions (4)-(10) contain terms f̃(x̃, ũi,j) for every point
x̃ ∈ X̃ and every input pair (ui, uj), for all 1 ≤ i ≤ m and
1 ≤ j ≤ m.

To adopt a data-driven technique, we construct a SP by
collecting a finite set of samples S = {ˆ̃x1, . . . , ˆ̃xN} from the
augmented system as follows. First, we pick a discretization
parameter ζ ∈ R>0, and cover the state set X̃ of the
augmented system by finitely many sets X̃1, . . . , X̃N such
that X̃ ⊆

⋃
1≤i≤N

X̃i. We then pick the points ˆ̃xi for every

cover element 1 ≤ i ≤ N such that for every x̃ ∈ X̃ , there
exists some point ˆ̃xj ∈ X̃j with ||ˆ̃xj − x̃|| ≤ ζ for some
1 ≤ j ≤ N . One way to do this is to cover the state set of
the augmented system by finitely many balls each with radius
ζ and select the centers of these balls as sample points.

Observe that ˆ̃xi consists of a pair of points
(x̂, x̂′). From Assumption 1, we can construct
the sets Dx̂ = {x̂, f(x̂, u1), . . . , f(x̂, um)}, and
Dx̂′ = {x̂′, f(x̂′, u1), . . . , f(x̂

′, um)}. We can use
the elements from these sets to thus construct the
set Dˆ̃x = {ˆ̃xi, f̃(ˆ̃x, ũ1,1), . . . , f̃(ˆ̃x, ũm,m)}, where
ũi,j = (ui, uj) for all 1 ≤ i ≤ m and 1 ≤ j ≤ m.

This allows us to construct the scenario program SP as
follows:

SP :



min
d

η

s.t. g1(d, x̃0) ≤ 0, for all x̃0 ∈ S ∩ X̃0

g2(d, x̃u) ≤ 0, for all x̃u ∈ S ∩ X̃u

max
1≤i≤m

{gi+2(d, x̃)} ≤ 0, for all x̃ ∈ S ∩ X̃ \ X̃0

d = [η; γ;λ; τ ; b], η, γ, λ ∈ R,
τi,j ∈ R≥0, for all 0 ≤ i ≤ m, b ∈ Rz,

where functions gj are the same as in conditions (7)-(11) for
all 1 ≤ j ≤ m+2. Observe that the set S has finitely many
points and so one can determine whether each point is in the
set X̃0, X̃u, or X̃ \ X̃u, respectively. Furthermore, the above
program has finitely many constraints.

Assumption 2: We assume that functions
g3(d, x̃), . . . , gm+1(d, x̃) to Lipschitz-continuous in X̃ \ X̃u

with Lipschitz constants Lg3 , . . . ,Lgm+1
with respect to the

2-norm. Let the maximum of these be denoted as L′.

The following theorem indicates when a solution for SP can
be used as an augmented barrier certificate to verify that a
system is δ-approximate initial-state opaque.

Theorem 1: Consider an unknown system S =
(X,X0, Xs, U, f, Y, h), value δ ∈ R>0 to specify the
parameter for approximate opacity, and Xs ⊆ X to indicate
a secret set of states. Let the augmented state set of the
system be partitioned into N finite covers. Construct SP
by selecting representative points for each cover element,
such that for every state x̃ ∈ X̃ , there exists some cover
element ˆ̃x whose distance is at most ζ. Let the values of
the decision variables for the sub-optimal solution of SP be
d∗sp = [η∗; γ∗;λ∗; τ∗; b∗]. If η∗+L′ζ ≤ 0, and conditions (2)
and (3) hold, then the system is δ-approximate initial-state
opaque.

Proof: First, observe that conditions (2) and (3) can
be checked by substituting the values of b∗, λ∗, and γ∗ in
the candidate certificate B(b, x̃) as they do not depend on
the transition function of the system. Thus, one can exactly
check if the above conditions are satisfied or not. We now
need to show that condition (9) holds, or equivalently that
conditions (9) to (10) hold for every state x̃ ∈ X̃ . We observe
that any point x̃ ∈ X̃ , there exists some sample point x̃i ∈
S, such that ||x̃ − x̃i|| ≤ ζ. Since functions g1, . . . , gm+1

are Lipschitz-continuous, one has ||gj(d∗, x̃)−gj(d∗, x̃i)|| ≤
L′||x̃ − x̃i||. From reverse triangle inequality, one obtains
gj(d

∗, x̃) ≤ gj(d
∗, x̃i)+L′||x̃− x̃i||. Thus, for every x̃ ∈ X̃ ,

one has gj(d
∗, x̃) ≤ gj(d

∗, x̃i)+L′ζ for all 2 ≤ j ≤ m+1.
If η∗ + L′ζ ≤ 0, then we have gj(d

∗, x̃) ≤ 0 for all x̃ ∈ X̃ .
This concludes that the function B(b∗, x) is an augmented
barrier certificate and, hence, the system is δ-approximate
initial-state opaque.

We should add that we proved Theorem 1 by assuming
the functions gj to be Lipschitz-continuous with respect to
the 2-norm for all 2 ≤ j ≤ m + 1. We can equivalently,
consider the theorem for other norms as well. Now, we
discuss techniques to solve the scenario program SP and
determine the Lipschitz constants of the constraints to verify
the δ-approximate initial-state opacity of a system.

A. Computation of Barrier Certificates and Lipschitz-
constants

To construct the scenario program SP, we first partition
the augmented state space X̃ into finitely many balls, with
respect to a norm. We then take the centers of these balls to
denote the sample points, and then simulate the system for
one unit of time from these points by applying every possible
input. We consider the template for the augmented barrier
certificate as a polynomial of a fixed degree d. Therefore, its
basis functions pj are monomials. We substitute the values
of the sample points in conditions (7) to (11) to construct
SP. Now, we search for an augmented barrier certificate by
solving SP. As the above program is bilinear, we make use of
V-K iteration [26]. We take an initial guess for the values of
variables τ0,0, . . . , τ(m−1),(m−1) and substitute them in SP.
We then use a linear programming solver such as Gurobi [27]
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Algorithm 1 Algorithm to estimate Lipschitz Constants
adapted from [28]

procedure LIPSCHITZ ESTIMATION(gi, N , M , α )
Input: function gi, number of samples N

number of rounds M , measure of closeness α
Initialize SL to an empty set

for j ← 1 to M do
set max to 0

for i← 1 to N do
Sample points ˆ̃xi,1 and ˆ̃xi,2

such that ||ˆ̃xi,1 − ˆ̃xi,2|| ≤ α

Set sli ←
||gi(d∗, ˆ̃xi,1)− gi(d

∗, ˆ̃xi,2)||
||ˆ̃xi,1 − ˆ̃xi,2||

if sli > max then
Set max to sli

end if
end for
SL← SL ∪ {max}

end for
Consider SL = {sl′1, . . . , sl′M}.
Fit the points of SL to a reverse Weibull Distri-

bution [28] with three parameters: its shape, scale, and
location.

Set Li to the location parameter of the above reverse
Weibull Distribution.

Return Li

end procedure

to find the values of the other decision variables (η, γ, λ
and b). Now, we fix the values of these variables, and
solve SP to optimize over the values τ . We iterate between
these until the difference in the optimal values is negligible,
and consider the values of the decision variables at this
point to be the sub-optimal values. Let this be denoted as
d∗ = [η∗, γ∗, λ∗, τ∗, b∗]. If η∗ + L′ζ ≤ 0, then the values
of b∗ correspond to the coefficients of an augmented barrier

certificate, and we have B(x̃) =
m∑
j=1

b∗jpj(x̃).

To determine the Lipschitz-constants of the functions
gj(d

∗, x), we make use of the technique proposed in [28]
as illustrated in Algorithm 1. We run the above algo-
rithm for the functions g3, . . . , gm+1 to get the values
Lg3 , . . . ,Lgm+1

. We define the maximum of these as L′ =
max{Lg3 , . . . ,Lgm+1}. We then determine if η∗ +L′ζ ≤ 0.
If so, we conclude that the system is δ-approximate initial-
state opaque, and otherwise our approach is inconclusive. We
consider the estimation technique for the Lipschitz constants
to be accurate and neglect the confidence involved in their
calculations. Following [28, Proposition 1], our estimate
for the constant approaches the true value of the Lipschitz
constant as the values N , M tend to ∞, and the value α
tends to 0.

IV. CASE STUDIES

As a case study, we consider the problem of demonstrating
the opacity of a room temperature model. The dynamics
of the system are described as follows and are adapted
from [29].

S :


T (t+ 1) = T (t) + tsαe(Te − T (t))

+αh(Th − T (t)))u(t),

h(T ) = T
15 ,

(12)

where T (t) indicates the temperature at time t, ts = 5
minutes indicates the sampling time, Te = −1C is the
ambient temperature, Th = 35C is the heater temperature,
αe = 0.01 and αh = 0.02 are the heat exchange coefficients,
U = {0, 1} are the two control inputs indicating whether the
heater is off or on, and u(t) ∈ U is the control input applied
at time t. We consider the state space of the system X =
[−1, 35], with the initial states X0 = [21, 22], and the secret
set of states Xs = [21, 21.5), and construct the augmented
system as in Definition 2.2, with X̃0 = {(x0, x

′
0) ∈ (X0 ∩

XS) × (X0 \ XS) | ||h(x0) − h(x′)|| ≤ δ − 0.02} and
X̃u = {(xu, x

′
u) | ||h(x) − h(x′)|| ≥ δ}, and δ = 2. We

then draw cover the augmented state-space X̃ by with the
size of their edges ζ = 0.0025. We select the centers of
these hyperrectangles as the sample points for SP and then
simulate the system for one unit of time under all possible
inputs. Note that we only use the closed-form expression for
the function f to simulate the system for one unit of time
from the sample points. We do not use equation (12) to find
the barrier certificate.

We assume the barrier certificate to be of degree three and
of the form B((x, x′)) = b1+b2x+b3x

′+b4x
2+b5x

′2+b6x·
x′ + b7x

3 + b8x
′3 + b9x

2x′ + b10xx
′2. We construct SP, set

the initial guess of the values of τ0,0 = 0, τ0,1 = 0.01, and
then solve the linear program using Gurobi. Now, we fix the
values of all the decision variables except η and τ , and solve
a linear program to determine their values. We repeat the
above V −K iteration until the difference in optimal values
is less than 10−4. The overall time taken is around 4.5 hours
on a machine running MacOS 11.2 (Intel i9-9980HK with
64 GB of RAM). We then find the values of η∗ = −0.0204,
γ∗ = 9.979, λ = 10, and the coefficients of the barrier to be

b∗ =[−10;−0.0072; 3.6408; 0.0026;−0.2445;
− 0.0137; 0.0009; 0.0105;−0.0083; 0.0028].

We estimate the maximum Lipschitz-constant to be 5.2, and
find the value of η∗ + L′ζ = −0.0074. As this is less
than 0, we conclude that the above system is opaque from
Theorem 1.

V. CONCLUSION

We presented a data-driven approach for approximate
opacity verification of discrete-time dynamical systems. Our
approach relied on relating the optimal solutions of a robust
program with that of a scenario program to find an ap-
propriate augmented barrier certificate to guarantee opacity.
We demonstrated its use on a room-temperature model and
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verified the system to be opaque. As future work, we plan on
investigating data-driven approaches for opacity verification
when the set of controls are uncountable. We also plan
on investigating approaches to reduce the conservatism of
current approaches for opacity verification.

REFERENCES

[1] M. Mazo Jr, A. Davitian, and P. Tabuada, “Pessoa: A tool for
embedded controller synthesis,” in Computer Aided Verification: 22nd
International Conference, CAV 2010, Edinburgh, UK, July 15-19,
2010. Proceedings. Springer, 2010, pp. 566–569.

[2] T. Wongpiromsarn, U. Topcu, and A. Lamperski, “Automata theory
meets barrier certificates: Temporal logic verification of nonlinear
systems,” IEEE Transactions on Automatic Control, 2015.

[3] M. Rungger and M. Zamani, “Scots: A tool for the synthesis of sym-
bolic controllers,” in Proceedings of the 19th international conference
on hybrid systems: Computation and control, 2016, pp. 99–104.

[4] P. Jagtap, S. Soudjani, and M. Zamani, “Temporal logic verification
of stochastic systems using barrier certificates,” in ATVA, 2018, pp.
177–193.

[5] M. Khaled and M. Zamani, “Omegathreads: symbolic controller design
for ω-regular objectives,” in Proceedings of the 24th International
Conference on Hybrid Systems: Computation and Control, 2021, pp.
1–7.

[6] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of
Computer Security, vol. 18, no. 6, pp. 1157–1210, 2010.

[7] J. W. Bryans, M. Koutny, L. Mazaré, and P. Y. A. Ryan, “Opacity
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