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Abstract— When solving global optimization problems in
practice, one often ends up repeatedly solving problems that
are similar to each others. By introducing a rigorous definition
of similarity to exploit priors obtained from past experience
to efficiently solve new (similar) problems, in this work we
incorporate the META-learning rationale into SMGO-∆, a
global optimization approach recently proposed in the liter-
ature. Through a benchmark numerical example we show the
practical benefits of our META-extension of the baseline algo-
rithm, while providing theoretical bounds on its performance.

I. INTRODUCTION

Black-box optimization is a fundamental tool whenever
objective functions and/or constraints are unknown or expen-
sive to evaluate. Such an approach to optimization has been
studied extensively, with many different algorithms proposed
for solving this problem. As a noticeable example, Bayesian
Optimization uses probabilistic models to guide the search
process and has proven its effectiveness in many applications
[1]. Other methods include gradient-based optimization [2],
simulated annealing [3], and particle swarm optimization [4].

Despite the large number of available algorithms, black-
box optimization still remains a challenging problem, par-
ticularly in high-dimensional spaces or when the objective
function is noisy or non-convex. Specifically, when the vector
of parameters is large, one might require several iterations
before converging to a satisfactory solution. To avoid this,
practitioners usually acquire expertise by repeatedly solving
problems that despite their differences share some common
features and, thus, they are somehow similar. The idea
behind this paper starts from the observation that the experi-
ence acquired in solving optimization problems with shared
characteristics can be re-used as valuable prior to solve more
efficiently a new (but similar) problem. This intuition is also
at the foundation of meta-learning, a sub-field of machine
learning that focuses on developing algorithms that can
automatically learn how to solve new tasks more efficiently
and effectively by leveraging prior experience from similar
tasks [5], [6].

There are several approaches to meta-learning [7] in-
cluding metric-based, model-based, and optimization-based
methods. Nonetheless, while meta-learning has a wide range
of applications in machine learning, see e.g., [8], [9], [10],
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it has seldom been exploited for control systems, with just
a few very recent exceptions [11], [12], [13], [14], despite
the fact that it could of great benefit in several control
applications. Indeed, many control algorithms, especially
those based on the use of experimental data, require the
calibration of hyper-parameters that significantly affect the
resulting closed-loop performance [15], which are generally
chosen with expensive experiments, involving either sensi-
tivity analyses, or driven by expert-based and rule-of-thumb-
based design.

Because of its remarkable efficiency when compared to
similar approaches like Bayesian optimization, in this work
we consider a recently proposed black-box optimization
technique called SMGO-∆ [16] and we apply meta-learning
tools to show that prior experience with similar problems
can be used to further boost its performance. In particular, we
leverage on the set-membership nature of SMGO-∆ to derive
a theoretical bound on the performance of its META-version,
and we show on a numerical case study that the META-
version of SMGO-∆ reduces both the number of iterations
for convergence and constraint violations.

The remainder of the paper is organized as follows. For
the self-consistency of the work, Section II is devoted to a
review of the main features of SMGO-∆. These preliminaries
allows us to formulate the problem stated in Section III
and to discuss the proposed META extension of SMGO-∆,
introduced in Section IV. In this section, we further prove
two key properties of META-SMGO-∆, while discussing
how the proposed approach can be implemented in practice.
The effectiveness of META-SMGO-∆ is then evaluated in
Section V, showing the advantages of exploiting similarities
for hyper-parameter tuning for SMGO-∆. The paper is ended
by some concluding remarks.

II. AN OVERVIEW ON SMGO-∆

SMGO-∆ is an iterative optimization procedure specifi-
cally devised to tackle the following class of problems

min
X∈X

f(X) (1a)

s.t. gs(X) ≥ 0, s = 1, . . . , S, (1b)

where the function f : X 7→ R one aims at minimizing is
assumed to be unknown. Note that the minimum, namely

X⋆ = argmin
X∈X ,gs(X)≥0

f(X), (2)

should satisfy a set of inequality constraints, characterized by
gs(X) : Gs 7→ R, for s = 1, . . . , S, that are also supposed to
be unknown. The method rests on the following assumptions.
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Assumption 1: The functions f(·) and gs(·) are assumed
to be Lipschitz continuous, namely they satisfy:

|h(X1)− h(X2)| ≤ γh ∥X1 −X2∥2 , ∀X1, X2 ∈ X , (3)

with h(·) being a placeholder for either of the two functions,
and γh > 0 being the associated Lipschitz constant.

Assumption 2: The search space X and the space of all
feasible solutions are not disjoint, namely

X ∩

{
S⋂
s=1

Gs

}
̸= ∅, (4)

thus implying that a solution to (1) exists.
By relying on these assumptions, SMGO-∆ addresses the
problem in (1) by iteratively performing three following
steps, until a maximum number of iterations nmax is attained.

Let D(n) be the set comprising all the information on the
points X explored up to the n−1-th iteration, i.e., the points
and the corresponding values of f(·) and gs(·) defined as:

z(n) = f
(
X(n)

)
, (5)

c(n)s = gs

(
X(n)

)
. (6)

The information in D(n) are initially used in SMGO-∆ to
estimate the Lipschitz constant of the objective function as

γ
(n)
f = max

(X(i),z(i))∈D(n),

(X(j),z(j))∈D(n)

(
|z(i) − z(j)|
∥X(i) −X(j)∥

, γ
f

)
, (7)

and that of each function characterizing the constraints as

γ(n)
gs = max

(X(i),c(i)s )∈D(n),

(X(j),c(j)s )∈D(n)

(
|c(i)s − c

(j)
s |

∥X(i) −X(j)∥
, γ
gs

)
, (8)

for s = 1, . . . , S. Note that both computation rely on a lower-
bound on the Lipschitz constant (i.e., γ

f
and {γ

gs
}Ss=1),

initialized by the user and then iteratively replaced with the
updated estimate of these constants over exploration1. These
estimates are used to update the bounding functions

f
(n)

(X) = min
k=1,...,n

(
z(k) + γ

(n)
f

∥∥∥X −X(k)
∥∥∥ ), (9a)

f (n)(X) = max
k=1,...,n

(
z(k) − γ

(n)
f

∥∥∥X −X(k)
∥∥∥ ), (9b)

g(n)s (X) = min
k=1,...,n

(
c(k)s + γ(n)

gs

∥∥∥X −X(k)
∥∥∥ ), (9c)

g(n)
s

(X) = max
k=1,...,n

(
c(k)s − γ(n)

gs

∥∥∥X−X(k)
∥∥∥ ), (9d)

for each s ∈ {1, . . . , S}, the central approximations

f̃ (n)(X) =
1

2

(
f
(n)

(X) + f (n)(X)
)
, (10a)

g̃(n)s (X) =
1

2

(
gs

(n)(X) + gs
(n)(X)

)
, s=1, . . . , S. (10b)

1At the first iteration of SMGO-∆, the estimates of the Lipschitz constants
are set at a user-defined lower-bound.

and the uncertainty bounds

λ
(n)
f (X) = f

(n)
(X)− f (n)(X), (11a)

λ(n)
gs (X) = gs

(n)(X)− gs
(n)(X), s = 1, . . . , S. (11b)

The central approximation and the uncertainty bounds are
then exploited to choose the next candidate point X

(n)
θ ,

which is obtained by solving

min
X∈E(n)∪T (n)

f̃ (n)(X)− βλ
(n)
f (X) (12a)

s.t. ∆g̃(n)s (X)+(1−∆)g(n)
s

(X) ≥ 0, ∀s, (12b)

where β,∆ > 0 are tunable parameters, and the state of
space is restricted to the intersection of a (cumulative) set of
candidate points E(n) and a trust region T (n) centered on
the current estimate X⋆(n) of the minima (2), defined as

T (n) =
{
X ∈ X :

∥∥∥X −X⋆(n)
∥∥∥
2
≤ v(n)

}
. (13)

An expected improvement test is then performed on X
(n)
θ ,

by checking if the bounding function f (n)(·) satisfies the
following:

f (n)(X
(n)
θ ) ≤ z⋆(n) − αγ

(n)
f , (14)

where z⋆(n) is the function value at the current estimated
minima, and α > 0 is another tunable parameter. If the
inequality is satisfied, then X

(n)
θ becomes the point to be

evaluated at the next iteration

X(n+1) ← X
(n)
θ , (15)

otherwise exploration is promoted over more uncertain re-
gions by defining a new candidate point X(n)

ψ as

X
(n)
ψ = argmax

X∈E(n)

ξ
(n)
ψ (X), (16)

where ξ
(n)
ψ : E(n) → R is the so-called exploration merit

function. Since this specific step is not modified by our
META extension of the approach, we refer the reader to [16]
for additional details.

III. PROBLEM STATEMENT

Let us assume that we have already exploited SMGO-∆ to
retrieve the global optimum of M functions, that are similar
to the one we aim at optimizing. Our goal is to exploit
this similarity to enhance the performance of SMGO-∆ in
tackling this new optimization instance. To formally state this
problem, let us define the concept of similarity considered
in this work.

Definition 1: Let f1(X,φ1) and f2(X,φ2) be two func-
tions satisfying Assumption 1. These functions are said:

• ρ-similar, if there exists ρ < ∞ such that the radius ρ
of the smallest enclosing circle of their minima X⋆

1 and
X⋆

2 satisfies ρ ≤ ρ.
• ζ-similar, if there exists ζ ∈ [0,∞) such that ζ ≤ ζ,

with ζ being the distance of their Lipschitz constants:

ζ = |γ1 − γ2|. (17)

1295



Suppose now that M constrained problems in the form
of (1) are solved with SMGO-∆ over the same number
of optimization steps nmax, for different instances of the
cost function that are yet ρ-similar and ζ-similar according
to Definition 1. Let us additionally assume that all these
problems share the same set of constraints2. As outcomes
of these optimization routines, one can extract the resulting
estimated minima X⋆

i and minimum value z⋆i , the set of
explored states {X(n)

i }
nmax
n=1 , function values {z(n)i }

nmax
n=1 and

constraints {c(n)s,i }
nmax
n=1 , for s = 1, . . . , S, and the estimates

of the Lipschitz contants

γ̂i =
[
γ
(nmax)
f,i γ

(nmax)
g1,i

· · · γ
(nmax)
gS ,i

]⊤
, (18)

with i = 1, . . . ,M . These elements can be used to construct
a META-dataset Dmeta, that, in turn, can be exploited to
tackle a new optimization problem (1) when the cost function
f(X) is ρ-similar and ζ-similar to the M functions already
optimized.

Under our assumptions, we thus aim at exploiting Dmeta

to (i) reduce the number of iterations required by SMGO-
∆ to find the global optimum, and (ii) reduce the number
of constraints violations throughout the optimization. In this
work, this goal is achieved by using Dmeta to initialize both
the first evaluation point X(1) of the new instance of SMGO-
∆ and the initial lower bounds on the Lipschitz constant
γ
f

required at the first to compute (9)-(10), i.e., to META-
initialize the new instance of SMGO-∆.

IV. META-LEARNING FOR SMGO-∆

The performance of SMGO-∆ are, by construction, shaped
by the initial choices that the user has to perform. Here we
focus on two crucial hyper-parameters, namely the initial
exploration point and the lower bound for the cost’s Lipschitz
constant. Our idea is thus to extend this algorithm to its
META version, relying on the intuition that information
collected solving similar problems can help in improving
the choices of these initial parameters, ultimately enhancing
the optimization procedure.

To this end, let us introduce the similarity vector

S =
[
S1 · · · SM

]⊤ ∈ RM , (19)

whose elements satisfy the following relationships:

Si ≥ 0, i = 1, . . . ,M, (20a)
M∑
i=1

Si = 1. (20b)

This vector characterizes the relative similarity between the
problem we aim at solving and the M ones whose features
are included in the META-dataset Dmeta. Note that, if the
new problem has already been solved (and it corresponds to
the one associated with the m-th instance of the META-
dataset), then we have Sm = 1 and Sj = 0, for all

2This assumption is likely to be verified in many practically relevant
applications where constraints are more general and less dependant on the
specific context, e.g., the basic traffic rules in autonomous driving.

j ∈ {1, . . . ,M}, j ̸= m. Let us then define the META-
initialization of X(1) and γ

f
as follows:

X(1),meta =

M∑
i=1

SiX⋆(nmax)
i , (21a)

γmeta
f

=

M∑
i=1

Siγ(nmax)
f,i , (21b)

so that the initial exploration point and lower bound on the
Lipschitz constant for META-SMGO-∆ are constructed as
convex combinations of the estimates of the global minima
and Lipschitz constants comprised in Dmeta.

Under the assumption that none of the M instances of
SMGO-∆ considered in the construction of Dmeta has been
trapped in a local minima, we can now formalize the impact
of the META-initialization on the difference between the
initial estimate of the minimal function value and the true
minimum as follows.

Proposition 1: Consider problem (1) and assume that its
cost function f(X) is ρ-similar and ζ-similar (in the spirit
of Definition 1) to a set of M functions {fi(X)}Mi=1 for
which (1) has already been solved without being trapped by a
local minima. Assume that ρ ≤ v(1), with v(1) characterizing
the trust region T (1) according to (13). Further assume that
X(1),meta in (21a) is a feasible initial exploration point.
Under these assumptions, for the first exploration point
obtained with a META-initialization (in (21a)-(21b)), the
following bound holds

z
(1)
θ − z⋆ ≤ 2ρ(γmax

f + ζ), (22)

where

z
(1)
θ = f (1)(X

(1)
θ ), γmax

f = max
i=1,...,M

γ
(nmax)
f,i . (23)

Proof: Since the optimization subroutines used to
populate the META-dataset are assumed to be ρ-similar, then
the following holds∥∥X⋆(nmax)

i −X⋆
∥∥
2
≤ 2ρ. (24)

The distance between X(1),meta and the optimal solution can
thus be bounded as∥∥X(1) −X⋆

∥∥
2
=
∥∥ M∑
i=1

SiX⋆(nmax)
i −X⋆

∥∥
2

≤
M∑
i=1

Si
∥∥X⋆(nmax)

i −X⋆
∥∥
2

≤ 2

M∑
i=1

Siρ = 2ρ (25)

where the second inequality holds thanks to the properties
of the similarity vector S in (20) and the bound (24). As
ρ ≤ v(1) by assumption, then X∗ ∈ T (1) and thus, (14)
holds. This implies that

z
(1)
θ ≤ z⋆(1) − αγ

(1)
f (26)
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Algorithm 1 Meta SMGO-∆

Require: S(1),Dmeta

X(1) =
(
S(1)

)⊤ [
X
⋆(nmax)
1 · · · X

⋆(nmax)
M

]⊤
γ
(1)
f =

(
S(1)

)⊤ [
γ
⋆(nmax)
f,1 · · · γ

⋆(nmax)
f,M

]⊤
while n ≤ nmax do

Evaluate z(n) = f(X(n)), c(n)s = gs(X
(n))

for i = 1, . . . ,M do
Compute ẑ

(n)
i as in (30)

end for
Find Ŝ⋆ by solving (31)
Update S(n)θ = S(n) as in (32)
Find X(n+1) with modified SMGO-∆ (33)

end while

Subtracting on both sides the actual value z⋆ of the function
we aim at optimizing at the global optimimum we further
obtain:

z
(1)
θ − z⋆ ≤ z⋆(1) − αγ

(1)
f − z⋆

≤ γf∥X(1) −X⋆∥2 − αγ
(1)
f

≤ 2ργf − αγ
(1)
f ≤ 2ργf , (27)

where γf is the actual (unknown) Lipschitz constant of
the function we are optimizing and the third inequality
stems from the definition of Lipschitz continuity. Adding and
subtracting on the right-hand-side of the previous inequality
2ργ

(1)
f we further obtain:

z
(1)
θ − z⋆ ≤ 2ργ

(1)
f + 2ρ(γ

(1)
f − γf ) ≤ 2ρ(γ

(1)
f + ζ). (28)

Since γ
(1)
f = γmeta

f
, based on the definition of γmeta

f
in

(21b), it straightforwardly follows that γ
(1)
f ≤ γmax

f , thus
concluding the proof.

The previous bound holds for any S satisfying (20), yet
it is of paramount importance for the similarity vector S
to provide a reliable estimate of the similarity between the
problem we aim at tracking and the M ones that we have
already solved to further reduce the distance of z

∗(n)
θ from

z∗. Toward this goal, in this paper we propose to iteratively
evaluate similarity through the META-SMGO-∆ iterations
as summarized in Algorithm 1, thus considering an iteration
varying similarity vector.

At the beginning of the new optimization routine no
information is available on the new function to be optimized.
Therefore, we initially impose

S(1) =
[

1
M

1
M · · · 1

M

]⊤
, (29)

not to (wrongly) prioritize any instance of the META-dataset
with respect to the others. Since at each new iteration
n ∈ [1, nmax] of META-SMGO-∆ we have access to a new
evaluated point X(n), they are then incrementally employed
to refine our initial guess. Specifically, we evaluate the
unknown function we aim at optimizing at the current data

point, namely

z(n) = f
(
X(n)

)
.

To extrapolate the updated similarity vector S(n), the latter
is then compared with the following natural neighbor inter-
polation3 of

ẑ
(n)
i =

nmax∑
k=1

wi(X
(k)
i )z

(k)
i , i = 1, . . . ,M, (30)

where we use a set of Laplacian weights [17]. In particular,
we solve the optimization problem (nested in the SMGO-∆
baseline routine):

min
Ŝ
∥z(n) − Ŝ⊤Ẑ∥22 (31a)

s.t. Ŝi ≥ 0, i = 1, . . . ,M, (31b)
M∑
i=1

Ŝi = 1, (31c)

where Ẑ =
[
ẑ
(n)
1 · · · ẑ

(n)
M

]⊤
. Its solution Ŝ⋆ is then com-

bined with the similarity vector available at the beginning of
current iteration, namely

S(n)θ = S(n) + τn−1Ŝ⋆, (32)

where τ ∈ [0, 1] is a discounting factor introduced to pro-
mote smoothness in the similarity estimate over consecutive
iterations. Clearly, (32) does not satisfy the properties of
the similarity vector (see (20)). Accordingly, the elements of
S(n)θ =S(n+1) are then normalized, in order to lay in [0, 1].
This updated similarity matrix is used to refine γ

(n)
f as

γ(n)
f

=
(
S(n)θ

)⊤ [
γ
(nmax)
f,1 · · · γ

(nmax)
f,M

]⊤
,

before the regular SMGO-∆ Lipschitz constant estimation.
Additionally, after the exploitation subroutine of SMGO-
∆, the estimated similarity vector is also used to promote
sampling near the updated estimate of the optimal value as
follows:

X
(n)
ϑ = (1− τn−1)X

(n)
θ + τn−1(S(n)θ )⊤X⋆(nmax). (33)

where X⋆(nmax) is a vector stacking the estimated global
minima comprised in Dmeta. This new point is then tested
with the expected improvement test (14), and selected as
the new sampling point X(n+1) if it passes this check.
Otherwise, the exploration routine takes place with no dif-
ference with respect the original SMGO-∆. Note that, in this
case, the discounting factor is of fundamental importance to
exploit meta information at the beginning of the optimization
procedure, and gradually relying on the SMGO-∆ capabili-
ties of finding the minimum when the number of iterations
increases.

3Accordingly, the more iterations nmax are performed, the more ẑ
(n)
i

will be informative.

1297



TABLE I: Nominal φf values of the example

a1 a2 a3 a4 a5 a6 a7 a8
1 16 5 1 16 5 2 80

TABLE II: Parameters for Dmeta generation

n. iter ∆ β α X(1) δmax ρ̃ ζ̃
500 0.5 0.1 0.1 (0.4775,0.0667) 75% 1.5 3000

Fig. 1: Contour plot of fo. In grey the unfeasible areas due to
g1 and g2. In green, the global (cross) and the local (circles)
minima, while the blue ones the sampled {X}nmax

n=1 .

V. NUMERICAL EXPERIMENTS

In this preliminary work, the advantages of meta-learning
methodology are illustrated with the low-dimensional (X ∈
R2) example taken from [16] (in noiseless settings). The
objective functions belong to the class of the parameterized
Styblinski-Tang function with offset, defined as:

f(X,φf ) =
1

a7

(
a1X

4
1 − a2X

2
1 + a3X1+ (34)

a4X
4
2 − a5X

2
2 + a6X2 + a8

)
,

with parameters φf =
[
a1, · · · , a8

]
. Each aj , j = 1, . . . , 8 is

randomly obtained as aj = aoj + δj , where aoj is the nominal
value as reported in Tab. I, and δj is a perturbation δj ∼
U(−1, 1) · δmax. The constraints are fixed and equal to

g1(X) = −4 +
∥∥X − [−2.90, 2.90]⊤

∥∥
2
, (35)

g2(X) = cos
(
2
∥∥X − [ 2.90, 2.90]⊤

∥∥
2

)
, (36)

independently from the considered problem instance. The
meta-data-set Dmeta (containing M = 10 meta-functions)
is generated optimizing each fm ∈ Dmeta with SMGO-
∆, by using the parameters values reported in Table II.
The generated functions are ρ̃ = 1.5 ζ̃ = 3000 similar to
each other. In Fig. 1, the contour plot of the nominal fo

and the sampled points during the procedure are displayed,
showing that the global minimum (green cross) is centered
in (−2.90,−2.90).

A. Limit case: f ≡ fm̃

The case where the new f is equivalent to an already-
optimized function fm̃ ∈ Dmeta is first tested, to verify

Fig. 2: Trajectory of the average coefficient values Sm̃, where
f = fm̃ (bold line) and their standard deviation (dictated by
the envelope of the vertical lines).

that the data-driven algorithm identifies the correct simi-
larity for S. This holds true for a test with 10 repeated
experiment, where the reference function changes such that
m̃ = 1, . . . , 10. On average, the similarity coefficient Sm̃
associated to the correct fm̃ is 0.75, as shown in Fig. 2 and,
consequently, Si is small ∀i ̸= m̃. This non-convergence to
1 is justified by the estimates of Ẑ that are obtained with
interpolation.

B. General case

SMGO-∆ with meta-learning (META) is tested on N =
10 experiments4, where each new objective fn, n = 1, . . . , N
is generated according to (34). Each fn is optimized with
META (τ = 0.9) and compared to standard SMGO-∆
optimization, with nmax = 100 iterations. For fairness,
in this preliminary work the Lipschitz constants of the
constraints γ

g1
, γ
g1

= 10−6 are initialized as if no meta-
information is available, though it is clear that a prior that
can be exploited to improve their initialization exists in the
considered framework. Future work will be devoted to derive
a more rigorous meta-formulation, that also considers this
aspect linked to the constraints. Trajectories of the average
best function value z∗(n) over the N experiments obtained
with META and SMGO-∆ are shown in Fig. 3, from
which we can appreciate that META-SMGO-∆ significantly
reduces the iterations required to reach the global minimum
(z(1)θ −z⋆ = 15.10 ≤ 2·1.5·(2817+3000), largely satisfying
condition of Prop.1). In addition, the average number of
infeasible samples is reduced by 25% (Fig. 5), even if no
prior on the constraint is employed. Finally, notice how the
initialization of γ

f
is closer to the final estimate of γf

at convergence (Fig. 4), promoting a more targeted search
of the regions where the minimum is expected from the
start. This holds true also for functions where, due to the
perturbation, the location of the (feasible) global minimum
varies significantly from the nominal optimum (Fig. 5).
In addition, in case the META-initialization of γ(1) is an
overestimate of the true γ, the update of S can compensate
the error such that γ̃(n) ≤ γ̃(n+1).

C. Sensitivity to M

The sensitivity to size M of the meta-data-set is tested
for M = 5, 10, 20, 40, on the N = 10 test experiments.
On average, both the distance from the optimal value z(1)−

4Accordingly, S(1) = [0.1, . . . , 0.1]⊤
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Fig. 3: Average trajectory of z∗(n) during optimization and
its standard deviation (envelope of the vertical lines).

Fig. 4: Average trajectory of γ̃
(n)
f during optimization and

its standard deviation (envelope of the vertical lines).

Fig. 5: Contour plot of f , with sampled points with META
(blue) and SMGO-∆ (red) [left panel] and average number
of infeasible points during the optimization [right panel].

z∗ and constraint violations (Fig. 6) are reduced for greater
M . Nonetheless, for M = 40 there is a settling of these
improvements. Numerical results thus confirm the intuition
that a more examples are informative up to that point where
they can eventually become redundant.

VI. CONCLUSIONS

This work applies the meta-learning rationale to SMGO-
∆, exploiting the similarity between optimization problems
already solved with the one at hand to initialize two hyper-
parameters of the nominal method, namely X(1) and γ

f
. We

demonstrate that such an initialization results in a theoretical
bound on the closeness of z

(1)
θ to the global minimum z∗.

Numerical experiments confirm the theoretical findings and
demonstrate that faster convergence and reduced constraint
violations can be attained by relying on a meta-learning
rationale. Further works will focus on the extension to non-
fixed constraints and time-varying functions.
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