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Abstract— We study optimal information provision in trans-
portation networks when users are strategic and the network
state is uncertain. An omniscient planner observes the network
state and discloses information to the users with the goal of
minimizing the expected travel time at the user equilibrium.
Public signal policies, including full-information disclosure, are
known to be inefficient in achieving optimality. For this reason,
we focus on private signals and restrict without loss of generality
the analysis to signals that coincide with path recommendations
that satisfy obedience constraints, namely users have no incen-
tive in deviating from the received recommendation according
to their posterior belief. We first formulate the general problem
and analyze its properties for arbitrary network topologies and
delay functions. Then, we consider the case of two parallel links
with affine delay functions, and provide sufficient conditions
under which optimality can be achieved by information design.
Interestingly, we observe that the system benefits from uncer-
tainty, namely it is easier for the planner to achieve optimality
when the variance of the uncertain parameters is large. We then
provide an example where optimality can be achieved even if
the sufficient conditions for optimality are not met.

Index Terms— Information design, Bayesian routing games.

I. INTRODUCTION

Routing games describe the behaviour of a non-atomic set
of strategic users travelling in transportation networks [1].
Each link of the network is endowed with a delay function
that returns the travel time along the link as a function of the
flow, and users aim at selecting paths with minimum travel
time. A user equilibrium of the game is a flow such that no
user has an incentive in deviating to other paths from the one
she has selected. Typically, user equilibria are suboptimal in
terms of total travel time on the network. The goal of a
network planner is then to influence the user behaviour by
incentive mechanisms to steer the equilibrium of the game
towards the system optimum. Standard approaches are to
charge tolls [2], [3], or to intervene on the network structure
[4], [5]. When the state of the network is uncertain (we
refer to this class of games by Bayesian routing games), this
uncertainty can be leveraged by an omniscient planner that
observes the state of the network and discloses information
to the users. How to disclose this information to minimize
the system cost at equilibrium is called in the literature
information design problem.

The role of information in routing games has been widely
studied in the literature. Informational Braess’ paradox shows
that the travel time at the equilibrium may decrease when a
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fraction of users are not aware of some roads of the network
[6]. In [7], [8] the authors analyze how the efficiency of the
equilibrium varies in terms of the fraction of adopters of
information providers, showing that too much information
might hurt the system. The information design problem in
routing games has been first considered in [9], where the
authors show by examples that in routing games revealing
full-information and all public signal policies are in general
suboptimal and providing private information is preferable.
In [10] it is studied an information design problem with
two parallel links and affine delay functions where the free-
flow delay of one link is a discrete random variable, and
sufficient conditions for optimality of private information
are provided. In [11], the authors focus on computational
perspectives and propose an algorithm to solve efficiently the
information design problem with polynomial delay functions
and arbitrary network topologies. Dynamical information
provision is studied in [12]–[14].

Motivated by the suboptimality of public signal policies,
in this paper we consider private information provision in
Bayesian routing games. Compared to [10], we formulate
Bayesian routing games and the corresponding information
design problem for arbitrary network topologies and arbitrary
delay functions described by continuous random variables.
We show how to equivalently reformulate the problem (due
to the revelation principle [15], [16]) by restricting the signal
space to path recommendations such that users have no
incentive in deviating from the received recommendation,
which is known as obedience constraint. The policy then
specifies the fraction of users that receive each recommen-
dation as a function of the network state. The users are not
aware of the recommendations received by other ones, but
the prior distribution of the network state and the information
policy are publicly known.

After analyzing the properties of the general problem, we
focus on the special case of two links with affine delay
functions, which is a convex problem. We show that under a
restrictive assumption on the support of the random variables
that describe the delay functions, there exist sufficient and
necessary conditions on the moments of the random variables
under which the optimality can be achieved by information
design. Interestingly, we show that the uncertainty on the
network state is beneficial for the system under the optimal
information policy, namely the planner is able to persuade
the users to distribute according the system optimum flow,
which typically does not happen when users have full-
information on the network state. We also remark that the
approach can be generalized to arbitrary topologies although
the corresponding information design problem is in general
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non-convex, which is left for future research. Finally, we
analyze a particular case that allows explicit computation,
showing that optimality can be achieved even if the restrictive
assumption on the support of the random variables is not met.

The paper is organized as follows. In Section II we present
Bayesian routing games, formulate the information design
problem, and analyze its properties. We then present the
results in Section III. In Section IV we summarize the
contribution and discuss future research lines. The proofs
of the theoretical results are omitted and can be found in the
extended version of this paper [17].

A. Notation

Given a vector x, we let x′ denote its transpose. 1, I and
δ(i) denote the vector of all ones, the identity matrix the
vector with 1 in i-th entry δ(i)

i and 0 in all the other positions,
whose size may be deduced from the context. For a finite
set P , let ∆P denote the simplex on P , i.e.,

∆P = {x ∈ RP+ : 1′x = 1}.

Given x, a, b in R, with a ≤ b, we let

[x]ba = max{a,min{x, b}} =


a if x < a

x if x ∈ [a, b]

b if x > b.

II. MODEL AND PROBLEM FORMULATION

We present the model in Section II-A, and formulate the
problem in Section II-B.

A. Model

We model the transportation network topology as a di-
rected multigraph G = (N , E), where N is the set of nodes
and E is the set of links. Every link e in E is directed
from its tail node σ(e) in N to its head node ξ(e) in N .
The transportation network topology is fully characterized
by its node-link incidence matrix B in RN×E , with entries
Bne = 1 if σ(e) = n, −1 if ξ(e) = n, or 0 otherwise.

We denote by o and d in N , with o 6= d, the origin
and, respectively, the destination nodes. We assume that d
is reachable from o. Let a unitary mass of non-atomic users
travel from o to d, and define ν = δ(o) − δ(d). We then let

F = {f ∈ RE+ : Bf = ν}

be the set of unitary o-d flows, where a flow describes how
users are distributed across links.

The state of the network is described by a random variable
θ taking values on a probability space (Θ,A,P). Each link of
the network is endowed with a delay function τe : R+×Θ→
R+ that depends on the flow and on the realization of the
network state. We shall assume that τe(fe, θ) is increasing
in fe for every θ in Θ to consider congestion effects.

A network flow is a function f : Θ → F that assigns to
each network state θ in Θ a vector f(θ) in F . We define the
system cost as the expected travel time on the network, i.e.,

C(f) =

∫
Θ

∑
e∈E

fe(θ)τe(fe(θ), θ)dP(θ) .

Network flows depend on the available information on the
network state. A setting of interest is the full-information
setting, where all users know exactly the realization of the
network state θ. Given the information setting, we can define
two solution concepts, the system optimum flow and the user
equilibrium flow. System optimum flows describe a scenario
where each user is forced to select a path with the goal
of minimizing the system cost. However, users are typically
strategic and aim at minimizing their own travel time. This
behavior is captured by the notion of user equilibrium flow.

In full-information setting, flows are allowed to depend
on the network state θ, which is known to the users. We can
imagine this as the result of an omniscient planner observing
the network state and revealing this information to the users.
In this setting, the system optimum is a network flow that
depends on θ and minimizes the system cost:

f∗ ∈ arg min
f :Θ→F

∫
Θ

∑
e∈E

fe (θ) τe(fe(θ), θ)dP(θ). (1)

Observe that in full-information setting, f∗ is independent of
the prior distribution of θ, since f∗(θ) is the unitary o-d flow
that minimizes

∑
e∈E fe (θ) τe(fe(θ), θ) for a given network

state θ. To formalize the notion of user equilibrium, let P
denote the set of paths from o to d and let z : Θ → ∆P
denote a path flow, describing how users distribute on the
paths given the network state. Let A in RE×P be the link-
path incidence matrix, with entries Aei = 1 if link e belongs
to path i, or 0 otherwise. A path flow z induces a unique
network flow f(θ) = Az(θ), and the cost of a path i for a
network state θ is the sum of the delay functions of the links
along the path, i.e.,

ci(f(θ), θ) =
∑
e∈E

Aeiτe(fe(θ), θ).

The full-information user equilibrium is a network flow fW :
Θ → F that admits zW : Θ → ∆P such that fW (θ) =
AzW (θ) and such that, for every i in P and θ in Θ, zWi (θ) >
0 implies

ci(f
W (θ), θ) ≤ cj(fW (θ), θ) ∀j ∈ P,

In other words, the full-information user equilibrium is a
network flow such that, for each network state θ, each used
path has optimal cost, which means that no user has an
incentive in deviating to other paths.

In general, it is known that revealing full-information is
suboptimal for the system, namely the full-information user
equilibrium is suboptimal compared to the full-information
system-optimum, which is by definition the best network
flow in terms of system cost. Moreover, it is known that
any public signal is inefficient in achieving optimality [9]–
[11]. For this reason, in the next part of the paper we shall
consider how to design optimal private signal policies.

B. Problem formulation

We assume that an omniscient planner observes the real-
ization of the network state, and given this observation sends
private signals to the users, with the goal of minimizing the
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expected total travel time of the user equilibrium flow. A
signal policy is a map π : Θ → ∆P that assigns to each
network state the fraction of users that is recommended to
take each path. One might consider more general types of
signals, however assuming that signals coincide with path
recommendations is without loss of generality, as stated by
the revelation principle [15], [16].

A fundamental assumption is that the signal policy and the
prior distribution of the network state are known to the users.
Once the signals have been sent, users update their belief on
the network state. Let dPi denote the posterior belief of users
that receive recommendation i, which is computed according
to Bayes’ formula, i.e.,

dPi(θ) =
πi(θ)dP(θ)∫

Θ
πi(ω)dP(ω)

, (2)

and let Ei[·] =
∫

Θ
· dPi(θ) denote the expected value after

receiving signal i, i.e., according to posterior belief (2).
As the users update their beliefs on the network state, the

user equilibrium varies accordingly. Indeed, users follow the
recommendation only if it is a best response to do so. Let
y in RP×P+ be a matrix such that y1 = 1, whose element
yij denotes the fraction of users that choose path j among
those who receive recommendation of taking path i. We can
interpret y as the action distribution of a population game
with multiple populations that differ in the received signal.
Given π and y, the network flow depends on the network
state θ via

fπ,ye (θ) =
∑
j∈P

Aej
∑
i∈P

πi(θ)yij , ∀e ∈ E ,

or, more compactly,

fπ,y(θ) = Ay′π(θ) .

Definition 1 (Bayesian user equilibrium): Given a policy
π, a flow fπ,y(θ) = Ay′π(θ) is a Bayesian user equilibrium
if πi(θ)yij > 0 for at least a θ in Θ and i, j in P implies
that

Ei[cj(f
π,y(θ), θ)] ≤ Ei[ck(fπ,y(θ), θ)] ∀k ∈ P.

In other words, we require that if some users receive
recommendation i and travels on path j, then path j has to
be optimal according to the posterior belief of users that have
received recommendation i. The next result characterizes
Bayesian user equilibria.

Proposition 1: Given a policy π, a flow fπ,y
∗(π)(θ) =

A(y∗(π))′π(θ) is a Bayesian user equilibrium if and only if
y∗(π) is a solution of the convex program

y∗(π) ∈ arg min
y∈RP×P+ :y1=1

Φπ (y) , (3)

where

Φπ (y) =

∫
Θ

∑
e∈E

∫ (Ay′π(θ))e

0

τe(θ, s)dsdP(θ).

Furthermore, the equilibrium fπ,y
∗(π) is unique for every

policy π.

The idea of the proof is to show that y∗(π) is the Nash
equilibrium of a population game that admits a weighted
potential, where a population corresponds to the set of users
that receive different the same recommendation.

For simplicity of notation, from now on we shall denote
by fπ the Bayesian user equilibrium corresponding to infor-
mation policy π. We express the cost of a policy π as the
expected total travel time at the corresponding Bayesian user
equilibrium, i.e.,

C(π) =

∫
Θ

∑
e

fπe (θ)τe (fπe (θ), θ) dP(θ).

The system planner then wants to solve the problem

π∗ ∈ arg min
π:Θ→∆P

C(π). (4)

Problem (4) can be reformulated by using the revelation
principle [15], [16], which states that given a policy π,
there always exists a policy π̃ such that C(π) = C(π̃) and
y∗(π̃) = I, hence f π̃(θ) = Aπ̃(θ). In other words, this
means that restricting the attention to policies under which
no user wants to deviate from the received recommendation
is without loss of generality. This requirement is known as
obedience constraint. Revelation principle allows to formu-
late the information design problem as follows.

Problem 1: The optimal information policy is

π∗ = arg min
π:Θ→∆P

∫
Θ

∑
e∈E

fπe (θ)τe(f
π
e (θ), θ)dP(θ)

subject to

πi(ω)Ei[ci(f
π(θ), θ)− cj(fπ(θ), θ)] ≤ 0,∀i, j ∈ P,∀ω ∈ Θ

fπ(θ) = Aπ(θ).

Remark 1: Multiplying the obedience constraints by
πi(ω) allows a distinction in two cases: if some user receives
signal i, i.e., πi(ω) > 0 for at least a ω in Θ, then we impose
that following the recommendation must be convenient; if no
user receives signal i, i.e., πi(ω) = 0 for every ω, then the
constraint is trivially satisfied.

Remark 2: Observe that (4) is a bi-level program, namely
the planner optimizes the policy π, but the performance of
the policy depends on y∗(π), which in turn is the result of
the convex program (3) that depends on π. Instead, Prob-
lem 1 is a single-level optimization problem with obedience
constraints, which is more tractable. Notice also that, if the
delay functions are convex in the first argument, the objective
function of Problem 1 is convex in π independently of the
network topology and the prior distribution of the network
state. In contrast, the obedience constraints are in general
non-convex, and they convex if the network has two parallel
links and affine delay functions.

We now define the price of anarchy (PoA).
Definition 2 (Price of anarchy): Let π∗ be the solution of

Problem 1. Then,

PoA =

∫
Θ

∑
e∈E f

π∗

e (θ)τe(f
π∗

e (θ), θ)dP(θ)∫
Θ

∑
e∈E f

∗
e (θ)τe(f∗e (θ), θ)dP(θ)

≥ 1.
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In other words, in the context of information design the
price of anarchy measures how suboptimal the optimal policy
π∗ is compared to the full-information system optimum.

III. INFORMATION DESIGN ON TWO PARALLEL LINKS

In this section we consider the information design prob-
lem in a network with two parallel links and affine delay
functions. For this case, we first establish in Section III-A
sufficient conditions on the support and on the moments of
the random variables that describe the delay functions under
which PoA = 1, and apply these conditions to a case of
interest in Section III-B. Then, we consider in Section III-C
a case-study showing that optimality can still be achieved
even if these sufficient conditions are not met.

A. Arbitrary prior

We consider a graph G = (N , E) with two nodes N =
(o, d) and two parallel links from o to d. We assume that the
delay functions are affine in the flow, i.e.,

τe(ae, be, fe) = aefe + be, e ∈ {1, 2},

where ae, be are non-negative random variables. In this set-
ting the policy is a map π(a, b) such that π1(a, b)+π2(a, b) =
1, hence we can formulate the problem in terms of π1. With
this in mind, by noticing that the policy depends on b via
x = b1 − b2, and rearranging the terms, the problem reads
as follows.

Problem 2: Find π∗1 : Θ→ [0, 1] to minimize∫
Θ

[(x− 2a2)π1(a, x) + (a1 + a2)π2
1(a, x)]dP(a, x)

under obedience constraints∫
Θ

[(x−a2)π1(a, x)+(a1 +a2)π2
1(a, x)]dP(a, x) ≤ 0 , (5)

∫
Θ

[a2 − x+ (x− a1 − 2a2)π1(a, x)

+(a1 + a2)π2
1(a, x)]dP(a, x) ≤ 0 .

(6)

Lemma 1: Consider Problem 2. Then,

f∗1 (a, x) =

[
2a2 − x

2 (a1 + a2)

]1

0

.

Observe that in networks with parallel links, under obedi-
ence constraints it holds fπ = π, because A = I and z = I.
Hence, if the full-information system optimum f∗ satisfies
the obedience constraints, then π∗ = f∗ and PoA = 1,
which means that private information design can achieve
optimality. This idea is the core of the next result. To better
formalize the next result, let us define the support of a
random variable. Given a random variable X in Rn, its
support is the set of values that the random variable can
take, i.e.,

supp(X) = {x ∈ Rn : P(B(x, ε)) > 0 ∀ε > 0},

where B(x, ε) is the open ball centered in x with radius ε.

Theorem 1: Consider Problem 2. Assume that:{
max(supp(x)) ≤ 2 min(supp(a2))

min(supp(x)) ≥ −2 max(supp(a1)).
(7)

Then, π∗ = f∗ and PoA = 1 if and only if
E

[
2a2x− x2

(a1 + a2)

]
≤ 0

E

[
−2a1x− x2

(a1 + a2)

]
≤ 0

(8)

The proof follows from noticing that, under (7), the policy
π = f∗ satisfies the obedience constraints if and only if (8)
is satisfied, guaranteeing that PoA = 1.

Remark 3: As already observed, Problem 1 is in general
non-convex unless the network is composed of two parallel
links with affine delay functions. Hence, finding the optimal
information policy π∗ is not an easy task in general. How-
ever, the approach adopted in Theorem 1 to verify whether
the system-optimum flow can be induced by information
design can be generalized for arbitrary network topologies.
Indeed, if there exists a policy π∗ that satisfies the obedience
constraints and is compatible with the system-optimum flow
(i.e., f∗(θ) = Aπ∗(θ)), then any other policy cannot achieve
a better cost by definition of f∗, proving that π∗ is the
optimal policy and achieves PoA = 1.

Observe by Theorem 1 that, under (7), if E [x] = 0 (i.e.,
the two links have same expected free-flow delay), and a
and x are independent, i.e., E[aex] = E[ae]E[x], then the
two obedience constraints in (8) are always satisfied and
optimality is thus achieved by information policy π∗1 = f∗1 =
(2a2 − x)/2(a1 + a2). Instead, this does not hold true in
general if E[x] = 0, but a and x are not independent.
We remark that condition (8) is necessary and sufficient for
optimality assuming that (7) holds. Condition (7) guarantees
that the full-information system optimum does not saturate
and allows to express conditions for optimality in terms
of moments of the random variables. However, (7) is not
necessary for optimality. We shall analyze in Section III-C
a case where (7) is violated but optimality is achieved.

B. Deterministic linear coefficients and arbitrary prior

In this section we analyze Problem 2 when a is known
and b is the only random variable (hence, also x = b1 − b2
is random). The next result follows from Theorem 1.

Theorem 2: Consider Problem 2 with a known. Assume
that:

supp(x) ⊆ [−2a1, 2a2] . (9)

Then, π∗ = f∗ and PoA = 1 if and only if

−E[x2]

2a1
≤ E[x] ≤ E[x2]

2a2
. (10)

Remark 4: It is interesting to establish a parallelism be-
tween the price of anarchy in the setting of Theorem 2 and
in the standard setting of routing games where x and a are
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known to the users. To this end, it proves useful to write (10)
as {

σ2
x ≥ E[x](2a2 − E[x])

σ2
x ≥ −E[x](2a1 + E[x]).

(11)

where σ2
x is the variance of x. If σ2

x = 0 (i.e., x is known)
and x belongs to [−2a1, 2a2], then Theorem 2 states that
optimality can be achieved if and only if

x(2a1 + x) ≥ 0 ≥ x(2a2 − x)

i.e., when either x = 2a2 or x = −2a1 (all users select
the same link at user-equilibrium flow and the equilibrium
coincides with the system-optimum), or x = 0. For other
intermediate values of x, if σ2

x = 0 optimality cannot be
achieved. Instead, if x is uncertain, optimality is achievable
for intermediate values of E[x] also. In particular, (11)
states that the larger the variance is, the easier is to achieve
optimality through information design. This shows that the
uncertainty on the network state is beneficial for the system,
in the sense that an omniscient planner that discloses pri-
vately the information on the network state can leverage the
uncertainty to persuade the users to distribute according to
the system-optimum flow.

C. Deterministic linear coefficients and uniform prior

The theoretical results in Theorems 1 and 2 assume that
the support of the random variables is such that under
the system-optimum flow f∗ the users always distribute on
both the links. This assumption indeed allows us to state
sufficient and necessary conditions for optimality in terms of
moments of the random variables that characterize whether
the obedience constraints are active or inactive. In this section
we consider a case-study that allows explicit computation
even relaxing the assumption on the support. In particular,
we assume that

dP(b1, b2) =

{
1 if b1, b2 ∈ [0, 1]2

0 otherwise,
(12)

and assume that a is given and non-negative. The next result
characterizes the solution of the information design problem.

Theorem 3: Consider Problem 2. Let the prior distribution
of b be as in (12), and let a be known. Then, PoA = 1 for
every a in R2

+.
Notice that specifying the prior distribution of b de-

termines the distribution of x. Moreover, notice that (12)
implies that supp(x) = [−1, 1]. Hence, (9) is satisfied if
a1, a2 ≥ 1/2. Nonetheless, Theorem 2 states that optimality
is achieved for every value of a, extending the results of
Theorem 2.

IV. CONCLUSION

In this paper we study optimal information design in
Bayesian routing games. The problem investigates how a
planner that observes the stochastic state of a transportation
network should privately disclose information to strategic
users in order to influence their routing behavior, with the
goal of steering the system towards the system optimum.

Due to the revelation principle, the analysis focuses without
loss of generality on private path recommendations under
the assumption that users have no incentive in deviating from
the recommendation they receive (obedience constraints). We
formalize and analyze the general problem, and then focus on
the case of two links and affine delay functions, establishing
sufficient conditions on the moments and on the support of
the random variables under which the system optimum can
be achieved by information design. We then analyze a special
case where optimality is achieved even if these sufficient
conditions are not satisfied.

This work focuses on when optimality is achievable.
Future research lines focus on quantifying how suboptimal
is the best information policy when optimality cannot be
achieved. Other research lines aim at expanding the analysis
to more general network topologies and non-linear delay
functions. Finally, it would be interesting to analyze the
outcome of multiple information providers competing for
customers.
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