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Abstract— This paper uses the repetitive process setting to
develop new results on the design of higher-order learning
control laws. The basic idea of higher-order iterative learning
control is to use information from a finite number of previous
trials instead of just the last trial to update the control input for
application on the subsequent trial, with the primary objective
of improving the error convergence performance. The sufficient
conditions ensuring the convergence of the resulting control
scheme are established with repetitive process setting and
utilizing non-unit memory repetitive process models. Also, the
corresponding control law gains are derived from a set of linear
matrix inequality constraints. Finally, an example demonstrates
the properties of the new design.

I. INTRODUCTION

The reference trajectory is repetitive in many applications,
such as robotics or chemical batch systems. The repetition
of the trajectory allows the application of a feedforward-type
control known as iterative learning control (ILC). This fact
enables the control input for each repetition to be a function
of previous trial data to improve performance from trial to
trial. In ILC, it is the input, a signal, that is updated rather
than the controller, which is a system.

Each repetition is known as a trial, and the sequence of
operations is that a trial is completed, the system resets to the
starting position, and then the subsequent trial begins, either
immediately after the resetting is complete or after a further
time has elapsed since completion of the resetting. Different
from repetitive control, ILC can be applied to systems that
operate over a finite duration, and then there is a stoppage
time before the next one of the same duration begins, and
so on. The duration of a trial is known as the trial length.

The objective of ILC design is to construct the input such
that the corresponding output precisely tracks a reference
signal specified over a finite time interval. Given a reference
vector, the error on each trial can be formed as the difference
between this vector and the trial output vector, also known
as the trial profile vector. The ILC design problem is to force
this sequence of trial errors to converge with an increasing
trial number and ensure acceptable performance along the
trials. A novel feature is the availability to the control law
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of temporal information from the previous trial that would
be non-causal outside the ILC setting, e.g., for discrete
dynamics at sample instant p information at p + λ, λ > 0,
can be used provided it has been generated on a previous
trial.

Since the original work, widely credited to [1], ILC has
remained a significant area of control systems research with
many algorithms experimentally verified in the research
laboratory and applied in industrial applications. The survey
papers [2], [3] provide an overview of the early develop-
ments. The survey paper [4] focuses on run-to-run control in
the chemical process industries. This area is one where there
is a stoppage time between one trial and the next instead
of resetting. Applications areas include industrial robotics,
for early application see, e.g., [5], nano-positioning, for
recent progress see, e.g., [6] and optimizing broiler weight
in agriculture [7]. Also, there has been productive work on
using ILC in healthcare. For examples of recent progress in
this last area, see, e.g., [8], [9].

As the trial length is finite, the values of a discrete variable
along a trial can be assembled into a column vector, termed a
super-vector, in the literature. The outcome is that a standard
difference equation governs the trial-to-trial updating of the
error for linear. Hence, all associated analyses from standard
linear systems theory can be applied. Given the finite trial
length, trial-to-trial error convergence is possible even if the
system is unstable (all system state matrix eigenvalues inside
the open unit circle in the complex plane). Therefore, it is
necessary to design a stabilizing feedback control law in such
cases and apply ILC to the resulting dynamics.

An alternative setting for analysis is provided by formu-
lating the dynamics as a 2D system, where the directions of
information propagation are from trial to trial and along the
trial, respectively. Repetitive processes are a distinct class of
2D systems where information propagation in one direction
only occurs over a finite duration, see [10] and hence a close
match with ILC dynamics. The stability theory for these
processes has led to ILC laws designed and experimentally
validated. For the first results on this latter aspect, see [11].
This setting allows the single-step design of an ILC law for
error convergence and regulation of the dynamics along the
trials.

In ILC on a particular trial, information from all previous
trials is available for use in design. In particular, higher-
order ILC uses information from a finite number M > 1 of
previous trials in forming the control input for the subsequent
trial. The use of such information is the subject area of this
paper. By utilizing repetitive process setting and some ma-
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trix transformation techniques, sufficient conditions for the
existence of the ILC law are derived by a set of linear matrix
inequality (LMI) constraints, ensuring that the resulting ILC
scheme ensures the tracking error convergence. Also, the
new design is extended to cases where the system dynamics
are strictly proper. Finally, an example demonstrates the
feasibility and effectiveness of the new design.

The following notation is used in this paper; the identity
and null matrices of compatible dimensions are denoted,
respectively, by I and 0. Also, the notation M � 0 (re-
spectively M ≺ 0) denotes a symmetric positive definite
(respectively negative definite) matrix. The symbol sym {M}
is a shorthand notation for M +MT , and (?) denotes block
entries in a symmetric matrix. Moreover, ρ(·) denotes the
spectral radius of its matrix argument, and ⊗ the matrix
Kronecher product. The symbol diag{M1,M2, · · · ,Mn}
denotes a block diagonal matrix with diagonal blocks
M1,M2, · · · ,Mn.

Finally, the new results in this paper are formulated in
terms of LMIs, and hence, the following lemma is useful in
transforming non-LMI formulations into LMI form.

Lemma 1: [12] Given matrices Γ = ΓT ∈ Rp×p and two
matrices Λ, Σ of column dimension p, there exists a matrix
W that satisfies

Γ + sym{ΛTWΣ} ≺ 0, (1)

if, and only if

Λ⊥
T

ΓΛ⊥ ≺ 0, and Σ⊥
T

ΓΣ⊥ ≺ 0, (2)

where Λ⊥ and Σ⊥ are arbitrary matrices whose columns
form a basis of null spaces of Λ and Σ respectively. This
means that ΛΛ⊥ = 0 and ΣΣ⊥ = 0.

II. HIGHER-ORDER ILC FOR LINEAR DISCRETE-TIME
SYSTEMS

Consider the discrete time-invariance linear state-space
system model

xk(p+ 1) =Axk(p) +Buk(p),

yk(p) =Cxk(p),
(3)

where the subscript k ≥ 0 denotes the trial number and p
denotes the discrete-time variable such that 0 ≤ p ≤ α − 1,
with α < ∞. This last parameter denotes the number of
samples along a trial (α times the sampling period denotes
the trial length). Furthermore, xk(p) ∈ Rn is the state vector,
yk(p) ∈ Rm is the output vector, and uk(p) ∈ Rm is
the control input vector, and it is assumed that the system
resets to the same initial state vector xo on each trial, where
no loss of generally occurs in assuming xo = 0.

Additionally, it is assumed that the system in (3) has
relative degree κ > 1, i.e., the first κ−2 Markov parameters
are the null matrix and that for κ − 1 is nonsingular.
Specifically, for all i < κ−1 CAiB = 0 and CAκ−1B 6= 0.

Define the output tracking error on the current trial by

ek(p) = yref (p)− yk(p),∀k ≥ 1, p ∈ [0, α− 1], (4)

where yref (p) denotes the desired trajectory that is the same
on each trial. Suppose also that the control law has the form

uk+1(p) = uk(p) + ∆uk(p) (5)

where ∆uk(p) is the correction term. This form of control
law constructs the input for the next trial as the sum of
the previous trial input and ∆uk(p), where this last term
uses the previous trial error data. In the more general case,
∆uk(p) uses data from a finite number (denoted here as M )
of previous trials since such data can be collected and stored
in memory. In such a case, the control law correction term
∆uk(p) in (5) is defined as

∆uk(p) = Kηk+1(p+ 1)+

M∑
j=1

Kj−1ek+1−j(p+ κ), (6)

where K and Kj−1, j = 1, 2, . . . ,M are matrices of
compatible dimensions to be designed. Also, ηk+1(p + 1)
is a vector-valued variable such that

ηk+1(p+ 1) = xk+1(p)− xk(p).

The form of (6) is used to compensate for the influence of
κ. The second term in the ILC law, i.e., (6), has an antici-
patory gain operator form as described in [13]. In particular,
∆uk+1(p) at sample instant p is paired with ek+1−j(p+ κ)
at sample instant p + κ for all j = 1, 2, . . . ,M . Moreover,
the terms ek+1−j(p+κ) are available for computations since
the error vector from the already completed trials k + 1− j
are available.

Application of the control law given in (6) results in
controlled dynamics described by

ηk+1(p+ 1) =Aηk+1(p) +

M∑
j=1

Bj−1ek+1−j(p),

ek+1(p) =Cηk+1(p) +

M∑
j=1

Dj−1ek+1−j(p),

(7)

where

A=A+BK, B0 =BK0, Bj=BKj , Dj=CBKj ,

C =− CAκ−1(A+BK), D0 =I−CAκ−1BK0

(8)

and j = 1, . . . ,M − 1. This state-space model has the form
of a non-unit memory linear repetitive process (which is unit
memory in the special case of M = 1). Such processes make
a series of sweeps, termed trials in this paper, through a
set of dynamics defined over a finite duration. Once a trial
is complete, the process resets to the starting location, and
the next trial can begin. The 2D systems structure arises
because the output on any trial acts as a forcing function
and contributes to the next trial’s dynamics. The control
problem that standard systems designs cannot remove is that
the sequence of outputs can contain oscillations that increase
in amplitude with the number of trials.

The background to repetitive processes, including their
application to modeling physical processes, can be found
in [10] and the relevant references cited in this publication.
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Also, the most straightforward form of boundary conditions
are

xk+1(0) =dk+1, k ≥ 1, y1−j(p) = Y1−j(p),

where j = 1, 2, . . . ,M , dk+1 is an n× 1 vector with known
constant entries and the vectors Y1−j(p) have entries that
are known functions of p over the trial length. No loss of
generality arises from setting dk+1 = 0, k ≥ 1.

In [10], a stability theory for linear repetitive processes is
developed, which, given the unique control problem, requires
that a bounded initial trial profile produces a sequence of
bounded trial outputs, where boundedness is defined in terms
of the norm on the underlying function space. This stability
theory distinguishes between the property over the finite and
fixed trial length, termed asymptotic stability, and uniformly,
i.e., for all possible values of the (finite) trial length, termed
stability along the trial. Moreover, this theory can be applied
to non-unit memory examples, as detailed next.

Remark 1: Parts of the analysis that follows are based
on the z-transform. See, e.g., [3] for details of why this
transform is applicable given that the trial length is finite.

Introduce the matrix

D̄ =



0 I 0 · · · 0

0 0 I
. . . 0

0 0 0 · · · 0
...

...
...

. . . I
DM−1 DM−2 DM−3 · · · D0

 . (9)

The following is a version of the results presented in [10]
extended to a non-unit memory case and gives the corre-
sponding stability conditions.

Lemma 2: The discrete non-unit memory linear repetitive
process described by (7) and (8) is stable along the trial if
and only if

i) ρ(D̄) < 1,
ii) ρ(A) < 1,

iii) all eigenvalues of the transfer-function matrix Ḡ(z) have
modulus strictly less than unity ∀|z| = 1

where

Ḡ(z) =



0 I 0 · · · 0

0 0 I
. . . 0

0 0 0 · · · 0
...

...
...

. . . I
GM (z) GM−1(z) GM−2(z) · · · G1(z)


and

Gj(z) = C(zI −A)−1Bj−1 +Dj−1, 1 ≤ j ≤M.
This last result is difficult to apply directly to the design

of the ILC law matrices. In particular, checking the condition
iii) of the above lemma requires computations at all points
on the boundary of the unit circle in the complex plane. This
fact, in turn, introduces difficulties in stability checking and
transforming into design procedures for control law matrices
in (6).

A possible way to overcome these problems is to rewrite
the model of (7) in unit memory form as

ηk+1(p+ 1) =Aηk+1(p) + B̄ēk(p),

ēk+1(p) =C̄ηk+1(p) + D̄ēk(p),
(10)

where D̄ is defined in (9) and

ēk(p) =
[
eTk−M+1(p) · · · eTk−1(p) eTk (p)

]T
,

B̄ =
[
B̂M−1 · · · B̂1 · · · B̂0

]
,

C̄ =
[
0 0 · · · 0 ĈT

]T
.

Remark 2: In the unit memory case, for ease of presen-
tation only, this last model has the structure of a controlled
discrete linear repetitive process with no current trial input
where ηk+1(p) is the current trial state vector and ek+1(p)
is the current trial output vector. Condition i) of the previous
result will guarantee convergence of the error sequence (the
core ILC design requirement) over the finite trial length.
Still, this condition is independent of the state dynamics,
which govern the performance along the trials. Condition ii)
of this last result regulates the dynamics along the current
trial, and condition iii) enforces error convergence for all
possible finite trial lengths. (In the case of κ = 1 condition
i) of this last result requires that ρ(I − CBK0) < 1, and
hence not possible if CB = 0.)

Applying the z-transform to the state-space model (10)
gives

ēk+1(z) = G(z)ēk(z)

where G(z) = C̄(zI − A)−1B̄ + D̄. Moreover, the entries
in the transfer function matrix G(z) that govern the trial-
to-trial error convergence performance are those in the last
block row since

ek+1(z) =
[
GM−1(z) GM−2(z) · · · G0(z)

]
ēk(z),

where Gj−1(z) = C(zI −A)−1Bj−1 +Dj−1, 1 ≤ j ≤M .
Given the unit memory repetitive process description

of (10), the problem of selecting required control law matri-
ces K and Kj−1, j = 1, 2, . . . ,M in (6) can be formulated as
an LMI-based stability condition (at the expense of sufficient
but not necessary conditions for stability along the trial).
Introduce the matrices

Π1 =

[
1 0
0 −1

]
,Φ =

[
1 0
0 −1

]
(11)

and then the following lemma gives an LMI-based sufficient
condition for stability along the trial of processes described
by (10), where this result is from [14].

Lemma 3: A unit memory linear repetitive process de-
scribed by (10) is stable along the trial if there exist com-
patibly dimensioned matrices P1 � 0, P2 � 0 such that[
A I
C̄ 0

]
(Φ⊗ P1)

[
A I
C̄ 0

]T
+

[
B̄ 0
D̄ I

]
(Π1⊗P2)

[
B̄ 0
D̄ I

]T
≺0

(12)
is feasible.

Clearly, the result of Lemma 3 cannot be directly applied
for the considered ILC design since there exist product terms
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between control law matrices and matrix variables P1 and
P2. Additionally, given Remark 1, it is required to impose
structural constraints on P2 since the bottom block row of
G(z) is of critical interest. Therefore, the matrix variable P2

has the structure

P2 = diag{P21, γ
2I}, (13)

where P21 � 0 and γ is a positive scalar satisfying 0 < γ ≤
1. Given this structure of P2, the following constraint can be
imposed

‖GM−1(z) GM−2(z) · · · G0(z)‖∞ < γ.

III. LMI-BASED CONTROLLER DESIGN

This section uses the stability results for unit memory
linear repetitive processes [10] to develop a new ILC design
algorithm. Specifically, introducing additional slack matrix
variables decouples the product terms between control law
matrices and matrix variables P1 and P2 and also provides
additional design options. The condition stated in Lemma 3 is
further modified to give results for characterizing the stability
along the trial that is also well suited for the control law
design of the corresponding ILC law.

Theorem 1: Let γ be a positive scalar satisfying 0 <
γ ≤ 1. Also, suppose that an ILC law (6) is applied to a
discrete linear system represented by (3). Then the resulting
ILC scheme described as a unit memory discrete linear
repetitive process of the form (10) is stable along the trial,
and hence trial-to-trial error convergence occurs, if there exist
compatibly dimensioned matrices P1 � 0, P21 � 0, W1, W2,
F1, F2, F3 and a scalar β such that |β| < 1 and the following
LMI is feasible Υ1 −sym{W1} (?)

Υ3+ΨWT
1 −βW1 Υ2+sym

{
βW1ΨT

}
Fb−W2 −FTa +W2ΨT

(?)
(?)

P2−sym{F3}

≺0,

(14)

where P2 is of the form in (13) and

Ψ=

[
A B̄
C̄ D̄

]
,Υ1=

[
P1 0
0 0

]
,Υ2=

[
−P1 0

0 −P2

]
,

Υ3 =

[
0 F1

0 F2

]
, Fa=

[
F1

F2

]
, Fb=

[
0 F3

]
.

(15)

Proof: Assume that the inequality defined in (14) has
a feasible solution. Then, it can be rewritten as (1) with

Γ=

Υ1 ΥT
3 FTb

Υ3 Υ2 −Fa
Fb −FTa P2−sym{F3}

 ,ΛT =

 I 0
βI 0
0 I

 ,
W=

[
W1

W2

]
,Σ=

[
−I ΨT 0

]
.

(16)

Next, by Lemma 1, the inequality (14) is solvable for W if
and only if the inequality (2) holds. Select

Σ⊥ =

ΨT 0
I 0
0 I

 , Λ⊥ =

βI−I
0

 .

and the first inequality in (2) becomes[
(β2−1)P1 0

0 −P2

]
+sym

{[
0
−βI

] [
F1 F2

] [ I 0
0 I

]}
≺ 0.

(17)
Hence

Γ←
[

(β2−1) 0
0 −P2

]
,ΛT←

[
0
−βI

]
,W←

[
F1 F2

]
,Σ←

[
I 0
0 I

]
and by Lemma 1 with Λ⊥ = [I 0]

T and noting that
Σ⊥

T
ΓΣ⊥ vanishes, (17) reduces to (β2−1)P1 ≺ 0. This

last inequality holds for any |β| < 1 and P1 � 0. Next,
with the notation of (16) the second inequality in (2) can be
rewritten asAP1AT−P1 AP1C̄T 0

C̄P1AT C̄P1C̄T−P2 0
0 0 P2


+sym


I 0 0

0 I 0
0 0 I

F1

F2

F3

 [B̄T D̄T −I
] ≺0.

(18)

Next, assign

Γ←

AP1AT−P1 AP1C̄T 0
C̄P1AT C̄P1C̄T−P2 0

0 0 P2

 ,W←
F1

F2

F3

 ,
ΛT ← I, Σ←

[
B̄T D̄T −I

]
and by Lemma 1, feasibility of (18) implies that the second

inequality in (2) can only hold since, as detailed above, the
first inequality in (2) vanishes. Finally, the last inequality is
equivalent to (14), and by Lemma 3, stability along the trial
is ensured, and the proof is complete.

The result of Theorem 1 is not an LMI since it involves
bilinear terms arising from a product of the matrices W1, W2

and the control law matrices K and Kj−1, j = 1, 2, . . . ,M
in (6). These difficulties are removed by the result below.

Theorem 2: Let γ be a positive scalar satisfying 0 <
γ ≤ 1. Also, suppose that an ILC law (6) is applied to a
discrete linear system represented by (3). Then the resulting
ILC scheme described as a unit memory discrete linear
repetitive process of the form (10) is stable along the trial,
and hence trial-to-trial error convergence occurs, if there exist
compatibly dimensioned matrices P1 � 0, P21 � 0, W1, N ,
F1, F2, F3 and a scalar β such that |β| < 1 and the following
LMI is feasible Υ1 −sym{W1} (?)

Υ3+AWT
1 +BN−βW1 Υ2+sym

{
β(AWT

1 +BN)T
}

Fb−[0 I]W1 −FTa +[0 I](AWT
1 +BN)T

(?)
(?)

P2−sym{F3}

≺0,

(19)

where Υ1, Υ2, Υ3, Fa and Fb are as in (15), P2 is of the
form in (13), and

A=


A 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0

CAκ−1 0 0 . . . I

, B=


B
0
0
...
0

 . (20)
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If the LMI of (19) is feasible, the following formula gives
the corresponding controller matrices of (6)

K=[K K0 K1 . . . KM−1]=NW−11 . (21)
Proof: Assume that the LMI (19) holds. Also, it follows

immediately that the feasibility of (19) of (19) implies that
W1 is non-singular and hence it is possible to compute
K in (21). The remaining part of the proof follows as
for Theorem 1 where Ψ is rewritten as

Ψ=

[
A B̄
C̄ D̄

]
= A + BK.

Then, make the change of variables as N = KW1. Ad-
ditionally, introduce the constraint on the multiplier W2 as
W2 = [0 I]W1. This choice introduces conservativeness but
still has some additional freedom by introducing the slack
matrix variables F1, F2, and F3. The proof is complete.

IV. CASE STUDY

This section gives a numerical example that showcases
the practicality and efficiency of the newly developed ILC
design, as described in the preceding section. Specifically, the
example uses the experimental transfer function of a gantry
robot used in previous research to verify the efficacy of ILC
designs for repetitive process/2D systems. Consult [11], [15]
for further details of this facility, where the following transfer
function is given for one of the axes

G(s) =
15.8869(s+ 850.3)

s(s2 + 707.6s+ 3.377× 105)
.

Sampling using the zero-order-hold method at a frequency
of 100[Hz], the resulting z-transfer function incorporates a
one-sample delay. This delay is generated by the zero-order
hold function, which is included in the real-time control
card. Consequently, the following transfer function is used
for design purposes

G(z) =
0.00036482(z2 + 0.09791z + 0.005951)

z(z − 1)(z2 + 0.005922z + 0.0008451)

and hence in (3)

A =


0.9941 0.0406 0.027 0
0.125 0 0 0

0 0.25 0 0
0 0 0.25 0

 , B =


0.0625

0
0
0

 ,
C =

[
0 0.0467 0.0183 0.0044

]
.

In this last model, κ = 2 (relative degree two). Let β =
0.01 and consider the cases when M = 1, M = 2 and
M = 3. Then applying Theorem 2 to minimize γ gives the
following data

• M = 1

K=[−17.4730 − 1.4033 − 0.4320 − 0.0000],

K0 =2754.6029,

‖G0(z)‖∞ = 0.0050,

• M = 2

K=[−17.4730 − 1.4033 − 0.4320 − 0.0000],

K0 =2740.9036, K1 = −12.5174,

‖G1(z) G0(z)‖∞ = 0.0046,

• M = 3

K=[−17.4730 − 1.4033 − 0.4320 − 0.0000],

K0 =2740.9040, K1 = −0.0071, K2 = −8.5506,

‖G2(z) G1(z) G0(z)‖∞ = 0.0031

The reference trajectory for the system considered is which

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Fig. 1: The reference trajectory for the considered axis.

has been selected for a pick and place robotic task with trial
length 2 secs. From Fig 2, it follows that the higher order

10-1 100 101 102
3

3.5

4

4.5

5

5.5
10-3

Fig. 2: H∞ norm of the bottom row in G(z).

ILC increases flexibility during design, and it is possible
to optimize some variables. Hence, higher-order ILC law
outperforms the M = 1 case. To compare this new design
with previously reported alternatives, the design described
in [13] results in the following control law matrices

K=[−16.3275 − 0.8546 − 0.4320 0.0000], K0 =733.9686
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and the design in [16] gives

K=[−17.0918 − 1.2237 − 0.4331 0.0000], K0 =641.7524

The controlled dynamics for each of these designs were
simulated over 20 trials. For each, the Euclidean norm of
the tracking error was calculated. From Fig. 3, it can be
deduced that the new ILC design can lead to more effective
controllers that provide faster monotonic error convergence
than known alternatives. However, using a higher-order ILC
law does not improve this performance aspect when con-
vergence speed is considered. Further investigation could, as
suggested previously in the literature, improve robustness to
noise and modeling uncertainties.
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Fig. 3: Tracking error over 20 trials.

V. CONCLUSIONS AND FURTHER RESEARCH

The problem of designing robust ILC laws for discrete-
time linear time-invariant systems with polytopic uncertainty
has been considered. In particular, a design based on the
static output feedback has been developed. The repetitive
process setting and the linearly parameter-dependent frame-
work have been used to develop a unified procedure for
controller design in terms of LMIs. Furthermore, it gives the
possibility of reducing design conservatism since some slack
matrices are linearly dependent on the parameter over the
whole uncertainty domain. A numerical example illustrates
the effectiveness of the design. Future research will include
experimental verification, external disturbance attenuation
over finite frequency ranges, and the possible use of different
control laws, e.g., dynamic ILC.
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