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Design of nonlinear coupling for efficient synchronization in networks
of nonlinear systems
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Abstract—This paper proposes a design methodology of
nonlinear coupling functions for guaranteed network synchro-
nization. Compared to commonly used linear coupling, the
proposed nonlinear coupling allows for a significant reduction
of coupling energy cost and output noise sensitivity. This is
achieved by activating the coupling only where necessary. Using
the novel concept of strict incremental feedback passivity with
a nonlinear gain, we estimate the magnitude and state-space
location of potential incremental instabilities present in the
systems’ intrinsic dynamics, which could drive systems apart
in the absence of coupling. Then we introduce a nonlinear
coupling design that provides a gain only in the part of the
coupled systems’ state-space where the estimated incremental
instabilities need to be suppressed. We provide constructive
methods to design the nonlinear couplings for guaranteed syn-
chronization over any connected, undirected, weighted network.
By means of a numerical example, we demonstrate that our
nonlinear coupling design, compared to linear couplings, results
in significant performance improvements in terms of noise
sensitivity and required coupling energy.

I. INTRODUCTION

Synchronization, referring to any persistent state of co-
herent behavior of systems (agents, entities, etc.) in time, is
omnipresent in both the natural and man-made world [1]-
[3]. In this paper, we study synchronization in networks
in its strongest form, which is that all systems in the
network converge to a common trajectory (which may be
oscillatory and is not required to be unique). For this type of
synchronization, the literature mostly covers either systems
with “simple” intrinsic dynamics with nonlinear coupling, cf.
[4]-[6], or systems with “complex” (even chaotic) intrinsic
dynamics with linear coupling, cf. [T]-[11].

We consider networks of systems with nonlinear, pos-
sibly complex, intrinsic dynamics, which mutually interact
via nonlinear coupling functions. The considered nonlinear
coupling functions take the form of a definite integral of
a non-negative nonlinear coupling density function over the
outputs of pairs of interacting systems. As shown in [12],
this type of nonlinear coupling has performance advan-
tages over conventional linear coupling. This is achieved
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by activating couplings only in those parts of the coupled
systems’ state-space where instabilities that could drive the
systems apart need to be suppressed. These instabilities can
be estimated using the system property: incremental strict
feedback passivity (iISFP) with a nonlinear gain function. In
[12], it was shown that, on so-called sequentially decolorable
(SD) networks, synchronization is guaranteed by using a
nonlinear coupling density function that is larger or equal
to the nonlinear iSFP gain function, which is multiplied by
global coupling strength that exceeds a computable threshold
value. However, as the class of SD networks is restrictive (for
instance, any ring network with more than four systems is
not SD), the problem of designing these nonlinear coupling
functions that synchronize systems on any (given) network
is still open.

The main contribution of this paper is in providing a
constructive design of nonlinear coupling functions for syn-
chronization of systems on any undirected weighted network.
Compared to [13], in which the existence of a class of
synchronizing nonlinear coupling functions for unweighted
networks was proved, this paper presents a constructive
design for guaranteed synchronization in weighted networks.
We also show that the extra assumptions on the coupling
density function imposed in [13] (compared to [12], [14])
are redundant. Therefore, our new results enable systematic
design of, among others, saturated couplings [15] and cou-
pling functions with deadzones [16] for synchronization in
any undirected weighted network. However, a price to pay for
allowing for more general coupling density functions is that
we need extra conditions for boundedness of solutions of the
coupled systems (which is at least a technical requirement).
A second contribution of this paper is to prove that the
solutions of the coupled systems are bounded if the (isolated)
systems satisfy a semipassivity (SP) property [17], which is
a generalization of the well-known concept of passivity.

We demonstrate our results with a numerical study in a
ring network with five FitzHugh-Nagumo oscillators [18].
We show that this oscillator is iSFP and SP, and we compute
nonlinear coupling functions that guarantee synchrony in
the network. The obtained results are constructive and close
to optimal in the sense that synchronization would not be
possible for lower coupling strengths. We present simulation
results in which we corrupted the signals in the coupling with
noise. In these simulations, we demonstrate that, compared
to linear couplings, the nonlinear coupling functions are
superior in terms of coupling energy cost and measurement
noise sensitivity.

This paper is organized as follows. After introducing the
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adopted notation, we discuss the problem setting and we
introduce the notion of synchronization. Next, in Section III
we introduce iSFP. In Section IV, we present our coupling
design philosophy and we state our main synchronization
results. Boundedness of solutions is discussed in Section
V. (As the order of these latter two sections suggests, our
synchronization conditions do not rely on a-priori bounds on
the solutions of the coupled systems). The numerical example
is presented in Section VI. Concluding remarks are given in
Section VII.

Notation. R denotes the real numbers, and Ry := {s €
R|s > 0}. We let | - | be the vector 2-norm, i.e. for
any x € R", |22 = 2Tx, where T denotes transposition.
1 € R" and 0 € R™ denote the vectors with all entries
identical to 1, respectively, 0. We also use O to denote the
zero matrix of appropriate dimension. I denotes the identity
matrix (of appropriate dimension). C"(X,Y’) is the space
of (at least) r-times continuously differentiable functions
that assign elements of X to elements of Y. A function
f + R™ — R is called positive semidefinite if f(x) > 0
for all z € R™. If, in addition, and f(z) = 0 < z = 0, then
f is positive definite. A square matrix A € R™*™ is positive
(semi)definite if f(z) = a7 Az is positive (semi)definite.
The function f is called radially unbounded if f(x) — oo
as ||z]] = oo0. Lo is the space of (essentially) bounded
functions. £, is the space of measurable functions over R
with finite 1-norm, i.e., for any f € L1, [, [f(s)|ds < oc.

II. PROBLEM SETTING

We represent a network by a graph G = (V,€) with V =
{1,2,..., N} being the set of nodes and &€ C V x V being
the unordered set of edges. An element (i,5) € £ defines
the edge between nodes 7 and j (and thus G is an undirected
graph). We adopt the following assumption.

Assumption 1.
The graph G is simple and connected.

In a simple graph, there is at most one edge between nodes
i and j, and edges of the form (7,) (self-loops) are absent.
A graph is connected if, for every two distinct nodes ¢ and j
in G, there exists a path in G (which is a sequence of edges
that join a sequence of disjoint nodes) connecting ¢ and j
(which are the start and end nodes of the path). N; := {j €
V| (i,7) € £} denotes the set of neighbors of node i, i.e. the
set of nodes that connect to node .

We consider systems on G of the form

&; = f(t,z;) + Bu,
{nzdh 2
defined for all ¢ > tg, where, for any ¢ € {1,2,..., N} =:
V, z; € R™ is the state, y; € R is the output, and
u; € R is the input. The function f : R x R® — R"
is piece-wise continuous in the first argument, and at least
once continuously differentiable in its second argument, and
matrices B and C' are of appropriate dimension. The systems

(1) on G interact via the following coupling functions:

Ui =0 Z Wi /yj A(s)ds, 2)

JEN; Y

where the real constant o > 0 is the global coupling strength,
real constants w;; € (0, co) denote the interaction weights,
and A : R — R, is the coupling density function. Note that
u; =0 if y; = y; for all j € NV, i.e. the couplings vanish if
the outputs of all systems are identical.

We define synchronization as follows:

Definition 1. The network of systems (1), which interact via
(2), synchronizes if
« the solutions of the coupled systems (1) and (2) are
bounded in forward time, and
o for any initial condition, the states asymptotically
match, i.e., for every ¢ € V, it holds that for every

j € V\{i},
|z (t)

Remark 1. In the definition of synchronization, we explicitly
state that the solutions of the coupled systems must be
bounded. This is obviously a condition of practical interest.
Besides, many theoretical results rely (often implicitly) on
solutions to be bounded. An example illustrating the neces-
sity of bounded solutions is found in [19].

—z;(t)] >0 as ¢t — oo.

The main objective that we pursue in this paper is to
determine conditions on the systems (1) and the coupling (2)
— in particular, the design of the coupling density function
A(+) and the coupling strength o — leading to synchronization
of all systems on a given graph G with given weights w;;
(which can be thought of as edge weights).

III. INCREMENTAL STRICT FEEDBACK PASSIVITY

In this section, we present a definition and characterization
of the system property incremental Strictly Feedback Passiv-
ity (iSFP) with nonlinear gain, which are taken from [12].
We sometimes write iSFP systems, or systems are iSFP, in
which the P then stands for passive.

Definition 2. The system (1) is called iSFP with nonlinear
gain function v : R — R if there exists an incremental
storage function S € CY(R™,R,) such that for any two
solutions z,(+) and x(-) of (1) corresponding to inputs u,(+)
and wuyp(-), respectively, which are defined on [tg,c0), the
following dissipation inequality holds true for all ¢ > ¢g:

9 S aalt) -

o 2p(t)) < —p(lza(t) — (1))

Ya(t)

+ (Wa(t) = y(t)) [(ua(t) — up(t)) + / W(S)dS] 7

b (%)
where p : Ry — R, is a positive definite function, and
Ya(t) = Cao(t), yp(t) = Cap(t).

In case v(s) > 0 for all s in a closed interval with
endpoints y, and ¥y, the nonlinear gain function ~y specifies
the amount of potential shortage of incremental passivity
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at every point in that interval; If v(s) < 0 for some s
in the closed interval with endpoints y, and ¥y, there is a
guaranteed excess of incremental passivity in that interval.

Note that for constant vy(s) = constant > 0, i.e., when
the potential shortage of incremental passivity is uniform
over all s € R, our iSFP definition becomes identical to the
definition of iSFP from [11]. As will be demonstrated in the
next section, compensating (s) by means of feedback in
the areas where the system is potentially short of incremen-
tal passivity renders the closed-loop system incrementally
globally asymptotically stable. This targeted compensation
has a number of benefits for synchronization, compared to
uniform compensation, as demonstrated in Section VI.

The challenge in characterizing the iSFP property is in
finding the incremental storage function S and the nonlinear
gain function ~y(-). If 7(+) is chosen (or known), then the iSFP
property can be verified using the following result [12]:

Theorem 1. [f there exists positive definite matrices P =
PT > 0and R = R > 0 such that, for all x; € R" and
forall t > to,

of of T
e . ) <
o (bm) P Po(tag) = 20TCy(Cai) < =R, ()

PB=CT, 4

then the system (1) is iSFP with nonlinear gain function
y(-), incremental storage function S(x, — xp) = H(za —
)T P(xy — x3) and dissipation rate p(|z, — xp|) =
Amin(R)| 2o — 2|2, where Amin (R) is the smallest eigenvalue
of R (which is positive).

In [12], one can find an even more constructive result,
which gives (an estimate of) ~y(+) for a class of systems with
relative degree one.

IV. COUPLING DESIGN TO SYNCHRONIZE ISFP SYSTEMS

In this section, we show how to use the iSFP property
in designing the coupling density function in (2) to syn-
chronize two iSFP systems. Next we show that essentially
the same coupling density functions can be used to achieve
synchronization in any connected network, provided that
the coupling strength o is chosen appropriately. We present
constructive results for determining a threshold value (lower
bound) for 0. We remark that the use of the iSFP property,
which is a property of a single system, to establish conditions
for synchronization of multiple systems is justified as the
considered systems (1) are identical.

A. Two coupled systems

Consider two iSFP systems (1) with ¢ € {1,2}, which
interact via
Y2
Uy = —Ug =0
Y1

A(s)ds. 3)

The iSFP property implies that, along solutions of the two
coupled systems, it holds that

d ~
— 521 — w2) < — p(|1 — 22])

dt
+ (y1 — yz)/ 1 (7(s) — 20A(s)) ds.

Y2

Take any A € L, satisfying A(s) > max{v(s),0}, Vs ¢€
R. With this choice of A(-), we have, for any o > 1,
Y1
(1 -12) [ (s) =200 ds <0,
Y2
which implies %S’(azl —x2) < —p(|z1 — x2|). This, in turn,

under some additional mild conditions, implies that two the
systems synchronize [12].

The key observation is that any properly designed coupling
(that is, the coupling density function satisfying A(-) >
max{v(-),0} and sufficiently high coupling strength o) com-
pensates for the potential shortage of incremental passivity
in the systems, which results in synchronization.

B. Network synchronization

Below we show that the same philosophy used to synchro-
nize two coupled systems — the design of coupling density
functions using the knowledge of the nonlinear gain function
~(-) — leads to synchronization in any network of coupled
systems (1), (2), provided the coupling strength o exceeds
some computable threshold value. We impose the following
assumptions.

Assumption 2. The solutions of the coupled systems (1),
(2) are bounded in forward time.

Assumption 3. The systems (1) are iSFP with a radially
unbounded, positive definite incremental storage function
S € C*(R™, R, ), and ~(-) satisfies v* := sup g Y(s) < 00.
In addition, there exists a positive definite function p :
R4 — R4 and a positive real constant €; such that, for
all x,,xp € R™ (as y; = Cxy),

Pz = z6) = p(|wa — z]) + €1lya — vl

Assumption 4. The coupling density function A € L.
satisfies A(s) > max{7(s),0} for all s € R.

Remark 2. Assumption 3 is satisfied if the iSFP property
is established using Theorem 1. Indeed, in that case one can
take e€; > 0 such that R — ¢;CTC > 0 (which restricts the
value of €; not to be too large). Note that the constant €
can also be introduced by using ~y(-) + €; instead of y(-) in
the iSFP definition (as —¢1|ya — yo|* + (Yo — W) yy: (v(s)+
€1)ds = (Yo — Yp) 3: ~(s)ds). Using this construction, the
value of €; can be chosen freely (at the cost of possibly
increasing the support of A() that satisfies Assumption 4).

We let L = (L;;) € RV*N be the Laplacian matrix of

G, whose entries are L;; = Zje/\/,- w;; and

L. = 7wij if (iaj)ega
Y10 otherwise,
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where w;; are the (edge) weights specified in (2). Further-
more, we let Ly = NI—117 be the Laplacian matrix of the
complete graph, which is the graph in which every pair of
nodes is joined by an edge (of weight 1). The N x M matrix
FE, where M = N(A; ), is the oriented incidence matrix
of this complete graph. (See Appendix A for its definition.)

Our main result is summarized in the following theorems,

the proofs of which are presented in Appendix B.

Theorem 2. Consider N systems (1) on any graph G that
satisfies Assumption 1. Suppose that these systems satisfy
Assumption 3. Let the systems interact via (2) with a coupling
density function \(-) satisfying Assumption 4, and suppose
that the coupled systems have bounded solutions (Assumption
2 holds true). Then the coupled systems synchronize for any
o > 0 for which there exist an M x M diagonal real matrix
® such that

d >0,
L H(ONNL—7y'Lg —E®ET)) _  (6)
* EET =5

where % denotes the symmetric part, \* = supcp A(s) and
7" = supseg Y(s)-

Theorem 3. There exists a constant o* € (0, G|, where

()2
0= 461)\’)’1)\2(L)7 (7

such that for any o > o* there is a diagonal M x M matrix
® such that (6) is satisfied. Here \o(L) is the smallest non-
zero eigenvalue of L, i.e., the algebraic connectivity of the
weighted graph G.

As shown in the proof of Theorem 2 in Appendix B,
an incremental storage function is defined for the network
of coupled systems. The LMIs (6) guarantee that the total
potential shortage of incremental passivity is compensated
for by the coupling design.

Remark 3. In case L = Lk, i.e. complete graphs with
weights w;; = 1, one can easily show that (6) holds true for
® =0and any 0 > 0" = 1\7)\ This result is independent
of the value of €; > 0. In fact, with €; = 0 and noticing that
~v* < A* by Assumption 4, one recovers the results presented

in [14] and [12].

V. BOUNDED SOLUTIONS

Our synchronization conditions require the solutions of
the coupled systems to be bounded (i.e., Assumption 2 is
to be satisfied). In this section, we provide conditions under
which this assumption is valid. In [12], it is proved that iSFP
systems, for which the iSFP property is established using
Theorem 1, have bounded solutions when coupled via (2)
with A € £;. Therefore, we conclude the following.

Corollary 1. Theorem 2 is true without Assumption 2 if the
iSFP property is established using Theorem 1 and )\ € L;.

In case A ¢ L1, e.g. the linear coupling case for which
A(s) = constant, we need alternative methods to verify
Assumption 2.

The system property semi-passivity (SP) was introduced
in [17] (in a strict form) to establish ultimately bounded
solutions of linearly coupled systems.

Definition 3. The system (1) is called semi-passive (SP) if
there exists a storage function S € C*(R™,R,) such that

V‘l‘zl > R,

S(taxiay%ui) < Yils, A% > th

where S is the time derivative of S along the solutions of
(1), and R is a positive constant.

It follows from this definition that SP is a relaxation of
the well-known notion of passivity, for which the dissipation
inequality holds with R = 0 (and thus every passive system
is SP.) Roughly speaking, an SP system behaves as a passive
system outside the ball of radius R in R™ (the system’s state-
space). Using the fact that our nonlinear couplings (2) satisfy
a passivity property, namely Zf\; yiu; < 0 as shown in
Appendix B, we derive the following result:

Theorem 4. Suppose that the systems (1) are SP with a
positive definite and radially unbounded storage function.
Then for any graph G, the solutions of the coupled systems
(1), (2) are bounded for any non-negative coupling density
Sunction \(s).

VI. EXAMPLE AND NUMERICAL SIMULATIONS

We consider networks of FitzHugh-Nagumo (FHN) [18]
systems, whose dynamics are given by

Zi\ w(y; — Kzi) 0\
() - (20 () @
— -~

=:f(t,xz;) =:B

with positive, real constants pu,x,&, and, obviously, y; =
Cz; = BTx;. The FHN system is iSFP as Theorem 1 is
satisfied with

_(1/p O (2 0
pe () m= (5 )
(thus p(s) = 2min{x, e}s?) and
(s) =e+1— 52 9

=T

for some arbitrary, positive, real constant e. As y(s) > 0 for
s € (—v/1+¢€, V1+ €) we conclude that the FHN system
is potentially short of incremental passivity in that interval.

In addition, the FHN system is SP with the radially
unbounded storage function S = 5-z7 + 3y7. Indeed,
S = yiu; — K22 — %yf + y? + &y;, and it is straightforward
to show that there exists a positive constant R; such that
Lyt 4 y? + €y; < —ky? + R3. Therefore, S < y;u; for
all | (z yj,)T | > R = £L. Thus by Theorem 4, the FHN
systems coupled via (2) have bounded solutions.

We consider these FHN systems on the network depicted
in Figure 1, which satisfies Assumption 1. Our motivation to
include this network is that we can demonstrate (see section
VI-A) that the estimate of the coupling strength provided by
Theorem 2 is the best one can obtain. We emphasize that
our theory covers weighted networks as well, yet we did
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Fig. 1. The network of FHN systems. All edge weights w;; equal 1.

not include an example with a weighted network because of
limited space.
We take as coupling density function

A(s) = max{e+1—s>+¢1,0} > y(s)+e;, Vs eR, (10)

with constant €; > 0. Clearly, Assumption 4 is satisfied.
As we wish €; to be a design variable (that can be chosen
freely), we redefine v(s) — 7(s) + €1 such that v* = 1 +
€ + ¢ and \* = «*. (See Remark 2.) For this coupling
density function A(-), Theorem 2 guarantees synchronization
of the FHN systems for any o and €; such that LMIs (6) are
satisfied.

A. Computation of the lower bounds on o

The Laplacian matrix for this example is

We remark that the methods from [12] are not applicable, as
this ring network is not sequentially decolorable.

We fix ¢ = 0.001 and, for various values of ¢; > 0,
we solve the LMIs (6) using YalMip/SeDuMi [20], [21] for
o. This allows us to determine ¢* and compare it with the
guaranteed lower bound & (Theorem 3). The results of this
numerical exercise are shown in Figure 2, where the blue
solid line corresponds to the bound computed using (6),
and the red solid line corresponds to (7). In both cases, we
observe that the lower bound on o decreases monotonically
with ¢;. Moreover, for the larger ¢;, the more identical o*
and o become.

We compare these results with the linear coupling case.
As shown in [22], for this network with the linear coupling
(2) with A(s) = 1+e¢, a threshold value for o that guarantees
synchronization is

Glin = 3 —coszr7ay) ~ 0-7236.

For a fair comparison of the obtained lower bounds on o for
the nonlinear and the linear coupling cases, we multiplied
the computed nonlinear coupling strength lower bounds by
1)::6 = ”11% (Note that for our nonlinear coupling,
A* = 1+ € + €1, which increases with €;, whereas in the
considered linear coupling case, A* = 1 + € is constant.)
These ‘“normalized” coupling strength lower bounds are
represented by the dashed lines in Figure 2. We observe that

both dashed lines converge to 7}, with increasing €.

lower bounds o
N

€1

Fig. 2. Lower bounds on o as function of €; computed using (6)
(o* in solid blue) and (7) (¢ in solid red). Corresponding normalized
(multiplication by A* /(1 + €)) lower bounds are represented by the dashed
lines.

Interestingly, when taking the FHN system parameter £ =
0, one can show the existence of a Hopf bifurcation at oy =
W in the network with linear coupling, which
corresponds to the birth of a non-synchronized (unstable)
periodic solution that exists for any o € [0, o] [22]. Note
that oy — &y for kK — 0. For the FHN system, the
obtained ~(+) in (9) is independent of the FHN parameters
&, poand k, and therefore, the computed threshold values
shown in Figure 2 hold true for all (positive) values of &,
w and k. Given that o*\*/(1 + €) = oy, for €1 > 0.2 (see
Figure 2), and oy, ~ opy for the given FHN parameters,
one cannot expect a tighter estimate of o* for values of
€1 > 0.2. (A similar statement can be made for 5.) Note that
by the synchronization Definition 1, for which we developed
our theory, synchrony is not possible if a non-synchronized
(unstable periodic) solution exists.

B. Numerical simulations

We simulated the coupled FHN systems with parameters
w=0.01, K = 0.8 and £ = —0.4 for various ¢ and €;. In
our simulations, we numerically integrated the differential
equations in Matlab 2022b using the ODE23s solver (with
default solver settings). For every simulation, we selected the
initial conditions for the FHN systems uniformly at random.

Figure 3 shows the outputs of the FHN systems. We
remark that synchronization of the outputs of the FHN
systems implies that the states of the FHN systems synchro-
nize, which is easily concluded given that the internal z;-
states have stable, linear and time-invariant dynamics. In the
top panel of that figure, which shows the uncoupled case,
we observe that the outputs of the FHN systems do not
synchronize, which is attributed to the potential shortage of
incremental passivity. In the bottom panel of Figure 3, for
which the coupling parameters o and ¢; are chosen just above
the blue line in Figure 2 such that synchrony is guaranteed,
we see that the outputs of the FHN systems synchronize.

Figure 4 shows the evolution of the coupling gains

Yj
/ A(s)ds
Yi

for two pairs of coupling parameters ¢ and €;, which are
chosen again just above the blue line in Figure 2 such
that synchrony is guaranteed. Looking at these coupling
gains, we observe that, after the transient to synchrony

gij = OW;j /lyi — yjl
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0 500 1000 1500

Fig. 3. Simulation results of the FHN systems coupled via (2) with (10).
Top panel: 0 = 0, i.e. the FHN systems are uncoupled. Within the two
dashed black lines, the FHN system is potentially short on incremental
passivity. Bottom panel: Synchronization for (o, €e1) = (0.72,0.1)

AL
S?OIZOM w0

Fig. 4. Evolution of the realized coupling gains. Top panel: (o,€1) =
(0.72,0.1), Bottom panel: (o,¢1) = (0.37,1)

in the interval 0 < ¢ < 300, the maximal value of the
coupling gains decreases slightly with increasing €;, which
is in correspondence with the normalized results displayed
in Figure 2. However, as also seen in the evolution of the
maximal coupling gains, increasing €; comes at the cost of
increasing the size of the support of A(-), which results in
the coupling being active on longer intervals of time.

To illustrate the benefits of our proposed coupling over
linear coupling, we simulated the coupled FHN neurons with
noise (normally distributed with variance 0.25) added to
the outputs that are used to establish the interactions (i.e.
a example of measurement noise). Our results, as well as
results for linear coupling with ¢ = 0.7236 (for which
synchronization occurs as discussed above), are displayed
in Figure 5. In this figure, y are the synchronization output
errors, which is the vector with entries y; — y; for all
pairs (i,7) (with ¢ # j). We observe from the bottom
panel, which displays the maximum of the absolute values
of the inputs (i.e. couplings), that the nonlinear coupling
transmits (on average) significantly less output noise to the
systems, resulting in smaller synchronization errors as seen
in the top panel. Comparing the low ¢; = 0.1 case with

max ||

max; |u;|

Fig. 5. Noise simulation results of the four FHN systems on the
undirected graph with nonlinear coupling with (o,e1) = (0.72,0.1) in
green, (o,€1) = (0.37,1) in red, and linear coupling with o = 0.7236 in
blue.

the high €¢; = 1 case, we observe that the higher €, the
larger is the amount of noise entering the systems. This
is attributed to the increase of the support of A(-) with
increasing €;. We also computed the average energy of
max ;| as Favg = D 4mpies X |14], Where we used
linear interpolation along the time axis (with fixed step size
of 0.5) to ensure the same number of samples for every
case. The results are: F,,, = 0.1349 for nonlinear coupling
with (o,e1) = (0.72,0.1), Ey, = 0.1559 for nonlinear
coupling with (o,€;) = (0.37,1), and E,, = 0.5034 for
linear coupling with o = 0.7236. This demonstrates that our
nonlinear coupling design outperforms the linear coupling in
terms of required energy.

VII. CONCLUDING REMARKS

We considered networks of nonlinearly coupled incremen-
tally strictly feedback passive (iSFP) systems. We proved
that, by designing a coupling density function A() that com-
pensates for the potential shortage of incremental passivity
characterized by ~(-), synchronization can be achieved on
any connected simple network, provided that the coupling
strength o is sufficiently large. The coupling strength o that
guarantees synchrony can be easily determined by solving
a system of linear matrix inequalities (LMIs). Alternatively,
an explicit equation that specifies a (possibly conservative)
lower bound on ¢ is provided. We demonstrated our results
in a numerical study with a ring of five coupled FitzHugh-
Nagumo (FHN) systems. Interestingly, in this setting, for
larger values of the parameter €; in the nonlinear coupling,
one cannot get better estimates of the threshold value of
o. We demonstrated the benefits of the proposed nonlinear
coupling design over the conventional linear coupling in a
setting in which the outputs used to establish coupling are
corrupted with noise.

APPENDIX A: ALGEBRAIC GRAPH THEORY

Clearly, any Laplacian matrix L is singular by construc-
tion. It is well-known [23] that, under Assumption 1, L has
a simple zero eigenvalue with (left and right) eigenvector
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in span{1}. Let M be the cardinality of £. For any edge
e = (i,4) € € ¢ € {1,2,...,M}, we construct an N-
dimensional vector E, such that its ith is equal to 1, its jth
is identical to —1, and all other entries are 0. (One may
swap the —1 and 1 elements, as (i,7) = (j,%).) The matrix
E = (E1 Es FE M) is the oriented incidence matrix
of G. For any graph with symmetric weights w;; = wj;,
its symmetric Laplacian matrix L can be written as L =
EWET, where W is diagonal matrix whose (M positive)
diagonal entries the weights of the associated edges, i.e., for
the edge e = (4, j), Wy = w;;. Furthermore, any symmetric
Laplacian matrix L is positive semi-definite (which follows,
e.g., from Gershgorin’s Disc theorem [24]). We denote the
eigenvalues of L by \;(L), and we adopt the convention
that A\;(L) = 0 and all other eigenvalues are ranked such
that A\o(L) < A3(L) < ... < An(L). Under Assumption
1, A2(L), which is known is the algebraic connectivity, is
positive.

APPENDIX B: PROOFS OF THEOREMS 2, 3 AND 4

The proof of Theorem 2 is based on the construction of
the network incremental storage function S:

S N-—-1 N S’
_Zi:1 Zj:i—‘rl 179

where S;; := S(x; — x;) is the system incremental storage
function from Assumption 3. Thus this network storage
function is the sum of the system incremental storage func-
tions taken along all pairs of systems in G. Note that, by
construction, S > 0.

The derivative of S along solutions of the coupled systems
(1), (2), given Assumptions 3, satisfies

< (Zz\ill Z;\;H p(lz; — 96j|))

— eyl EETy +4TE (ETu + ’y*ETw(y))

(S0 )

—ay Ly +y Lru+ vy  Lrw(y), (12)

(1)

T T
where y = (y1 yN) , u = (u1 uN) ,
T .
w = w(y) = (w1 wN) with w; =
wi(y;) = [ v(s)/v"ds. Furthermore, with v = v(y) =
(o1 - vN)T, where v; = v;(y;) == [J A(s)/A*ds, we
can write (2) as
u=—0oA\"Lvu(y). (13)
In addition, by Assumption 4, for all y;,y; € R,
(yi —yj)(vi —vj) = (yi — y;)(wi — wy),
which leads to
y ' Lgv > y? Lgw. (14)

Combining (12), (14) and (13) yields

§<- (zf_j D Pl %’)

— eyl Ly —yT (AN NL —~*Lg)o(y). (15)

Let us now first present a supporting lemma.

Lemma 1. Consider N systems (1) on a graph G that
satisfies Assumption 1. Suppose that these systems satisfy
Assumptions 3. Let the systems interact via (2) with a
coupling density function \(-) satisfying Assumption 4. Then
if Assumption 2 holds true, and if

—e1y" Ly —y" (0A"NL —~"Li)v(y) <0 Vy e RY,
(16)
then the coupled systems on G synchronize.

Proof of Lemma 1. Clearly, if (16) holds true, then we ob-
tain from (15) that S < — (Zf\:l E;‘V:iJrl |z — a:j\)) <

0 with S = 0 if and only if x1 = x9 = --- = xy, because
p is positive definite. This implies that S > 0 has a finite
limit for ¢ — oco. Because S € C? by Assumption 3, and the
solutions of the coupled systems are bounded (Assumption
2), Sis uniformly continuous in ¢. Then Barbalat’s Lemma
[25] implies that any solution of the coupled systems con-
verge to the set at which S =0, ie. the coupled systems
synchronize. O

The difficulty in Lemma 1 is the verification of (16) due to
the presence of the nonlinearity v(y). The following property
is key in deriving a verifiable alternative for (16) .

Property 1. For all y;,y; € R,
(vi = ;) (i — y3) — (v —v5)) 2 0.

Proof of Property 1. For less cluttered notation, we use v; =
’U,(y7) Since )\() Z 0 and thus (’Ui 7Uj)(yz' 7yj) Z 0, |U1' -
v;| < |yi —y;| and y; = y; implies v; = v; by the definition
of v;,vj, we have 0 < (v; —v;)? < (v; —v;)(y; —y;). O

a7

From this property, using the S-Lemma [26], we derive
the that LMIs (6) imply (16).

Lemma 2. The LMIs (6) imply (16).

Proof of Lemma 2. For less cluttered notation, we use v =
v(y). Inequality (16) reads in matrix form as

(y>T (€1LK %(OA*NL—V*L@) (y) >0, (18)
v * 0 v) =

=:H

Using Property 1, we observe that for any pair (4,j) with
1 # j, there exists £ € {1,2,..., M} such that (17) can be

written as
T
Ely\ (0 3\ (Ely
Efv x —1) \Elv

T
(N (0 SEETY (W) -,
v x —EE)\v) =

=:Gy
where FE, denotes the
S-Lemma, if there exist real constants ¢y

/" column of E. Invoking the

> 0, 0 €
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{1,2,..., M} such that
N(N—1)

(0) m ()= w(l) o (l)

then (18) holds true for all y € RY and v € RY,
whose components are relate via (17). Denoting & =
diag(¢1, P2, ..., Par), we obtain (6). O

Combining Lemma 1 and Lemma 2 proves Theorem 2.

Proof of Theorem 3. Because L is symmetric, there exist a
unitary matrix U such that
T 0 0 T 0 o
U LU—(0 A)’ U LKU—<0 NI)’

where A is a diagonal matrix with the positive eigenvalues
of L as entries. (Recall that L has a simple zero eigenvalue
under Assumption 1, with an eigenvector (first column of
U) in span{1}.) Next, for any £ € {1,2,..., M}, set ¢, =
o\*Nw;; if Ey corresponds to the edge (4, j) in the graph G,
or set ¢y = 0 otherwise. Then ® > 0 and c\*NL = E®ET.
For this choice of ®, (6) becomes

(elLK ‘*;LK) 20 o (61[ §I> >0,
N > >
O > 0, which is

oN*NL *  OAN*A
which is true if and only if cA*A — e
true if and only if 0 > ¢ with & in (7). ]

Proof of Theorem 4. Consider the network storage function
S = S(x1) + S(x2) + ...+ S(xn). Clearly, S is positive
definite and radially unbounded. By the SP property, the
derivative of S along solutions of (1), (2) satisfies S <
SN yius = —oN*yT Lu(y), with v(y) as in the proof of
Theorem 2. Writing L = EgWEZ, with Eg the oriented
incidence matrix of the graph (network) G corresponding to
L, we conclude that

N
> i = —oXyT Lu(y) = —oA"y" EgW Ev(y)
Yi
— s — s <0.
7D pyee M=) [ Ms)ds <0

Thus S < 0 outside the ball of radius R* = Rv/N in the
coupled systems’ state-space. Standard results, cf. Theorem
4.18 of [25], then imply that solutions of the coupled systems
are (uniformly) bounded. O
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