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Abstract— This paper aims to design a distributed algo-
rithm based on Doppler effect that allows multiple robots to
achieve a consensus on their velocities. Instead of relying on
a direct measurement of robots’ exact or relative velocities,
which are usually challenging under denied environments (i.e.,
underwater), the novelty of our approach stems from utilizing
the sound frequency as a medium to coordinate velocities
among robots. Such a mechanism is achieved by exploiting
the Doppler effect and establishing an equivalence between the
velocity consensus of the robots and the frequency consensus
of the sound they broadcast/receive. To address scalability
and interference issues for large-scale systems, our use of
the Doppler effect is broadcast-based, unlike most traditional
Doppler devices that are reflection-based. Building on this, we
develop a fully distributed algorithm for multi-robot flocking
for the one-dimensional case, where the only control input for
each robot is the sound frequencies it locally receives. The
designed controller leads to highly nonlinear system dynamics.
We employ a linearization method to theoretically prove the
local convergence of the system to the desired equilibrium for
velocity consensus. Simulations demonstrate the effectiveness of
the proposed approach.

I. INTRODUCTION

In recent years, distributed control of multi-agent systems
has attracted increasing attention for its potential and various
applications in mobile robots [1], sensor networks [2], [3],
spacecraft systems [4], and so on. Compared with conven-
tional centralized control schemes, distributed algorithms are
more suitable for coordinating large-scale systems, due to
their significant benefits in scalability, efficiency [5], [6]
and robustness [7], [8]. Among the wide range of appli-
cations where distributed algorithms have been developed,
one key problem is state consensus [9], which enables all
the agents to asymptotically agree upon a common value
through local information exchange and computation. In
the existing literature, most distributed consensus algorithms
rely on direct measurements of robots’ states. However, in
certain environments (underwater, indoor, etc.), obtaining
such measurements is challenging owing to the limitations
of communication and perception [10]. Motivated by this,
we propose an alternative approach for multi-robot systems
to achieve velocity consensus based on the Doppler effect.
The approach is fully distributed and only relies on the
broadcasted and received sound frequencies by robots.

Literature review: A large body of research on distributed
flocking control of multi-agent systems has been established
in the past years [11], [12]. The goal is to control the ve-
locities of the robots, through local coordination, to achieve
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a synchronized quantity. Towards this end, algorithms have
been developed based on a consensus mechanism, the key
idea of which is to let each robot repeatedly update its
own velocity towards the average of its neighbor’s velocities.
If the communication topology of the robot is spanned by
a rooted directed tree, it is guaranteed that the velocities
converge asymptotically [5], [13]. Besides, in the case that
exact velocity cannot be measured, the robots can also make
use of their relative velocities, then collectively drive such
difference to zero [14].

While distributed consensus provides an elegant approach
for solving flocking control of large-scale mobile robots, it
requires robots to take direct/relative measurements of their
states then share such information through local communi-
cation. However, such a requirement faces challenges under
denied environments, e.g., underwater, high-rise buildings,
indoor scenarios, when stable inter-robot communication
and state measurement are mostly prohibited. Many existing
communication approaches are not directly applicable for
denied environments. For instance, optical communication
can be used for high bandwidth and secure data transmission
[15], but their performance can be easily affected by obsta-
cles such as suspended particles in the water [16]. Electro-
communication is not efficient underwater due to high
attenuation [17]. Acoustic communication is a commonly
used method [18] in the environments where wireless com-
munications are denied, because sound can travel through
obstacles or penetrate water more easily than electromagnetic
waves. However, traditional acoustic-based approaches are
limited by their narrow bandwidth for data transmission and
poor signal-to-noise ratio (SNR) tolerance [19]. For state
measurement, we consider environments that GPS are denial.
The robots then cannot accurately acquire their positions and
velocities due to the lack of ways to eliminate the cumulative
error on IMUs [20]. When using relative position/velocity to
control the robots, radars and optical localization methods are
prohibited. One may use sonars for underwater localization,
but they suffer from slow response time and their mechanism
based on sound reflection can cause strong interference when
the number of robots grows large [21].

Statement of Contributions: This paper describes a novel
approach for multi-robot flocking (velocity consensus) by
exploiting a broadcast-based Doppler effect. We first for-
mulate a multi-robot flocking control problem by assuming
the robots cannot measure their velocities, but can only
broadcast a sound at a certain frequency and receive the
sound broadcasted by others. Then, through the Doppler
effect, we establish an equivalence between sound frequency
consensus and velocity consensus. Such a mechanism also
distinguishes the proposed broadcast-based Doppler effect
with traditional Doppler applications that relies on sound
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reflection. Building on the equivalence, we propose a fully
distributed control algorithm for one-dimensional case where
the robots adjust their velocity and achieve consensus solely
based on the sound they broadcast/receive. The developed
system dynamics are highly nonlinear, and we theoretically
prove its local stability. The effectiveness of the proposed
approach is verified by simulations.

Notation: Let R, C denote the sets of real and com-
plex numbers; R` denote the set of positive real numbers.
Let 1r denote the vector in Rr with all entries equal
to 1. Let Ir denote the r ˆ r identity matrix. We let
col tA1, A2, ¨ ¨ ¨ , Aru “

“

AJ
1 AJ

2 ¨ ¨ ¨ AJ
r

‰J
be a verti-

cal stack of matrices A1, ¨ ¨ ¨ , Ar possessing the same num-
ber of columns. Let diag tA1, A2, ¨ ¨ ¨ , Aru be a diagonal
stack of matrices A1, ¨ ¨ ¨ , Ar. Let xris P R be the ith entry
of vector x; correspondingly, let M ri, js P R be the entry of
matrix M on its ith row and jth column. We denote by MJ

the transpose of M .

II. MULTI-ROBOT FLOCKING BASED ON ACOUSTIC
DOPPLER’S EFFECT

Consider a network of m mobile robots where each robot i
moves at a velocity vi P R3. The goal of multi-robot flocking
control is to achieve a consensus on the velocities of all
robots, such that

v‹ “ v‹
1 “ v‹

2 “ ¨ ¨ ¨ “ v‹
m. (1)

If the velocities of the robots can be measured and exchanged
among robots, efficient distributed algorithms have been
developed to achieve the consensus in (1) [11]. However,
in this paper, we assume vi are unknown, and employ only
a sound broadcasting and receiving mechanism to ensure the
hold of (1). This is enabled by establishing an equivalence
between sound frequency consensus and velocity consensus
based on Doppler’s effect, as we introduce next.

Suppose each robot is equipped with a sound-emitting
device that can broadcast a sound signal at frequency fiptq P

R`. Depending on sound strength and physical distance,
each robot can receive the sound from robots j P Ni, with Ni

being the neighbor set of i. We assume there is no self-loop,
i.e., i R Ni. The robots then identify the frequency of the
received sound as rijptq. When the velocities of the vehicles
are different, the frequency rijptq received by robot i may
not equal to the sending frequency fjptq. Such phenomenon
is characterized by the Doppler’s effect, which reads

rij “

ˆ

c ´ |vi| cospθijq

c ` |vj | cospθjiq

˙

fj j P Ni (2)

where c P R` is speed of sound in the medium; θijptq and
θjiptq (rad) are the angles between the receiver/send’s for-
ward velocity and the line connecting them, as demonstrated
in Fig. 11. The receiving frequency rijptq depends on the
radial velocity of the two vehicles. For simplicity, the time
indicator t is omitted from equations.

We assume robot i only has access to receiving frequencies
rijptq, j P Ni, and its own sending frequency fiptq, without

1While the figure is given in 2-D, the definition can be easily generalized
to 3-D angles.

𝜽𝒊𝒋

𝜽𝒋𝒊 robot 𝑖

robot 𝑗

Fig. 1. Two robots that define angles θij and θji. The black dotted line is
defined by the current positions of the two robots. The blue line is defined
by the positions of the two robots after a certain time period.

any knowledge of vi and θi. Furthermore, we assume the
following assumption holds:

Assumption 1: For all t, i P t1, . . . ,mu, |viptq| ă c, and
fiptq ą 0.

Remark 2.1: Note that c is the speed of sound in the
medium. For underwater applications c “ 1500m{s which
is significantly larger than common underwater vehicles with
|vi| ă 10m{s. For aerial applications, c “ 340m{s is still
larger than most small-size mobile robots. For frequency, the
common acoustic frequencies used in underwater application
are between 5kHz-20kHz [22]. Although not analyzed in this
paper, one way to ensure these conditions hold for all t is
by applying thresholds to variables viptq and fiptq. In the
extreme cases, when |vi| ą c or fiptq “ 0, the robots may
no longer receive sounds from each other. ˝

Equivalence between frequency and velocity consensus.

To characterize the collective behavior of the overall multi-
robot systems, we first introduce a graph GpV, Eq based on
the neighboring relation Ni. Here, V is the node set of G with
|V| “ m and each node represents one robot in the system;
E is the edge set, where pi, jq P E if and only if j P Ni.
We assume the edge relation is fixed and bi-directional, i.e.
pi, jq P E ô pj, iq P E , thus G is fixed and undirected.

Under network G, we use the following lemma to present
the equivalence between frequency and velocity consensus
of the multi-robot system.

Lemma 2.2: (Equivalence between two consensus con-
ditions.): Suppose Assumption 1 holds. If all robots i P

t1, ¨ ¨ ¨ ,mu maintain constant velocity v‹
i ; broadcast constant

frequency f‹
i ; and receive constant frequency r‹

ij from other
robots j P Ni, then the following conditions are equivalent

(i) Velocity consensus among connected robots: v‹
i “ v‹

j ,
for all pi, jq P E ;

(ii) Frequency consensus among connected robots: r‹
ij “

f‹
i , for all pi, jq P E .

Proof: The derivation of (i)Ñ(ii) is trivial. v‹
i “ v‹

j

implies cospθijq “ ´cospθjiq (cf. Fig. 1), i.e., robot i and
robot j must move towards the same direction. Thus, v‹

i “ v‹
j

yields r‹
ij “ f‹

j from equation (2). In the following, we focus
on (ii) Ñ (i). Bringing r‹

ij “ f‹
i into (2), one has

`

c ` |v‹
j | cospθjiq

˘

f‹
i “ pc ´ |v‹

i | cospθijqq f‹
j (3a)

pc ` |v‹
i | cospθijqq f‹

j “
`

c ´ |v‹
j | cospθjiq

˘

f‹
i (3b)
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where the first equation considers i as the receiver, and the
second equation considers j as the receiver. As a conse-
quence of (3), for any two neighboring robots,

c ´ |v‹
i | cospθijq

c ` |v‹
i | cospθijq

“
c ` |v‹

j | cospθjiq

c ´ |v‹
j | cospθjiq

. (4)

Given Assumption 1 that |vi| ă c, |vj | ă c, one has

|v‹
i | cospθijq “ ´|v‹

j | cospθjiq (5)

To make sure the frequency consensus r‹
ij “ f‹

i is reached
for all pi, jq P E , equation (5) must holds. Recall that v‹

i , v‹
j

and f‹
j have constant values. Thus, one can obtain θij and

θji also being constants from (2). This, as visualized in Fig.
1, implies

|v‹
i | sinpθijq “ |v‹

j | sinpθjiq. (6)

Note that (6) means that the tangent speeds of the robots
are the same, so the dash lines (blue and black) defined by
the two robots are parallel. Finally, bringing equations (5)-
(6) together, when |v‹

i | ‰ 0, i P t1, ¨ ¨ ¨ ,mu (otherwise the
problem is trivial), there holds:

|v‹
i | “ |v‹

j |, θ‹
ij ` θ‹

ji “ π (7)

this further yields

v‹
i “ v‹

j (8)

This completes the proof.
Remark 2.3: While Lemma 2.2 introduces equivalence

among neighboring agents, if the underlying network G is
connected, (8) leads to (1). This implies the velocity consen-
sus across the whole multi-robot system can be achieved by
their frequency consensus.

III. DISTRIBUTED CONTROL FOR 1-D VELOCITY
CONSENSUS

Designing a distributed algorithm for achieving (2) is very
challenging, due to the limited information (only fiptq and
rijptq) each robot can access. In this paper, we study a
simplified version of problem (1), which aims to design
a distributed control algorithm for the 1-D case, where
all robots move over a line and vi P R is a scalar.
The potential applications of this include underwater line
(pipelines, fiber-optic cables, etc) following and flocking, or
highway traffic speed consensus. Under 1-D condition, for
all i, j P t1, ¨ ¨ ¨ ,mu, one has cospθijq “ ˘1. We assume
the robots are far away from each other and reorder their
indexes sequentially depending on their relative position, as
shown in Fig. 2. We also set vi ą 0 when the robot i moves
towards a lower indexed robot, and vi ă 0 otherwise. Based
on these definitions, the relative velocities used in (2) can be
rewritten as

|vi| cospθijq “ sijvi, sij “

#

1 for i ď j

´1 for i ą j
(9)

123𝑚− 1𝑚

Fig. 2. 1-D robot flocking.

By substituting (9) into Doppler’s effect equation (2), and
using the property sij “ ´sji, one has

rij “

ˆ

c ´ sijvi
c ´ sijvj

˙

fj j P Ni (10)

To explain equation (10), when a former robot i moves faster
than a latter robot j, (i ă j), the robots are further apart from
each other and the received frequency rij is lower than the
sending frequency fj , and vice versa.

A. A distributed algorithm for velocity consensus.

To achieve the velocity consensus (1) based solely on com-
paring rijptq and fiptq, we design the following dynamics:

9vi “ k1
ÿ

jPNi

psijprij ´ fiqq (11a)

9fi “ k2
ÿ

jPNi

prij ´ fiq (11b)

where k1, k2 P R` are constant control gains.
Remark 3.1: (Algorithm explained.): The intuition behind

dynamics (11) is to simultaneously manipulate the velocity
and sending frequency of robot i in order to minimize the
difference between fiptq and rijptq, j P Ni. Driven by
this, the dynamics (11b) is straight forward since it drives
fiptq towards the average of rijptq. The computation of such
average does not require robot i to identify the indexes
of robots j P Ni. The dynamics (11a) is an inverse use
of Doppler’s effect, which drives robot i to increase its
speed towards robot j if the receiving frequency rijptq is
lower than its fiptq so that rijptq will increase. Note that
the implementation of (11a) requires the identification of
sij “ ˘1. This can be addressed (i) by the sender, through
encoding the index information into the sound broadcasting
process; (ii) by the receiver, through identifying the direction
of the sound source; (iii) by the receiver, through a simple
first order approximation of (10) that observes how rijptq
changes with the change of viptq. Since sij only takes binary
values (˘1), an robust approximation can be achieved. ˝

From (11), it can be observed that the coordination among
two connected robots pi, jq P E is asymmetric because
sij ‰ sji. For the convenience of analyzing such relation,
we introduce two graphs G1pV, E1q and G2pV, E2q as edge-
reduced graphs of G, such that pi, jq P E1 if pi, jq P E and
i ă j; pi, jq P E2 if pi, jq P E and i ą j. Specifically , G1

takes the edges of G directing from lower indexed nodes to
larger indexed nodes; while G2 takes the edges of G directing
from larger indexed nodes to lower indexed nodes.

Assumption 2: The edge-reduced graphs G1pV, E1q and
G2pV, E2q of G are both spanned by directed rooted trees.

The simplest graph G satisfying Assumption 2 is an
undetected path graph connecting from robots 1 to m.
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Theorem 3.2: (Local convergence around equilibrium
points): Suppose Assumption 2 holds. Consider an equilib-
rium of dynamics (11) such that @i P t1, ¨ ¨ ¨ ,mu, v‹

i “ v‹

and f‹
i “ f‹. Suppose f‹ ą 0 and |v‹| ă c. Then, within the

neighborhood of this equilibrium, dynamics (11) is locally
asymptotically convergent to the invariant set defined by
v1 “ ¨ ¨ ¨ “ vm and f1 “ ¨ ¨ ¨ “ fm.

Remark 3.3: (Local v.s. global convergence): Given dy-
namics (11), it is clear that any point in the consensus
invariant set, i.e., v1 “ ¨ ¨ ¨ “ vm and f1 “ ¨ ¨ ¨ “ fm is
an equilibrium of dynamics (14). Theorem 3.2 states that
within the neighborhood of this invariant set, the algorithm
converges asymptotically back to this set. Here, we only
analyze the local stability due to the difficulty in determining
the global stability of dynamics (11). Specifically, note that
(i) rij is highly nonlinear. As shown in (10), fi and vi are
coupled on the nominator and vj appears on the denominator
of the equation. (ii) the graph information embedded in sij is
asymmetric among connected agents. The two reasons make
it difficult to employ existing techniques such as Lyapunov
stability theorem to prove global convergence.

Nevertheless, building on our results on local convergence,
later in Remark 3.5, we will briefly quantify the convergence
region and discuss possible ways to enlarge this region. ˝

B. Proof of the main theorem

Linearization: For the convenience of presentation, let

gip¨q “ ´
ÿ

jPNi

ˆ

sij

ˆ

c ´ sijvi
c ´ sijvj

fj ´ fi

˙˙

hip¨q “ ´
ÿ

jPNi

ˆ

c ´ sijvi
c ´ sijvj

fj ´ fi

˙

.

To analyze the local stability, we linearize the dynamics
around equilibriums vi “ vj “ v‹ and fi “ fj “ f‹ as:

9vi “ ´k1
ÿ

jPNi

¨

˝

Bgi
Bvj

ˇ

ˇ

ˇ

ˇvi“vj“v‹

fi“fj“f‹

vj `
Bgi
Bfj

ˇ

ˇ

ˇ

ˇvi“vj“v‹

fi“fj“f‹

fj

˛

‚ (12a)

9fi “ ´k2
ÿ

jPNi

¨

˝

Bhi

Bvj

ˇ

ˇ

ˇ

ˇvi“vj“v‹

fi“fj“f‹

vj `
Bhi

Bfj

ˇ

ˇ

ˇ

ˇvi“vj“v‹

fi“fj“f‹

fj

˛

‚ (12b)

where, for j P Ni and j “ i, one has

Bgi
Bvj

ˇ

ˇ

ˇ

ˇvi“vj“v‹

fi“fj“f‹

“

#

´
f‹

c´sijv‹ for i ‰ j
ř

kPNi

f‹

c´sikv‹ for i “ j
(13a)

Bgi
Bfj

ˇ

ˇ

ˇ

ˇvi“vj“v‹

fi“fj“f‹

“

#

´ sij for i ‰ j
ř

kPNi
sik for i “ j

(13b)

Bhi

Bvj

ˇ

ˇ

ˇ

ˇvi“vj“v‹

fi“fj“f‹

“

#

´
sijf

‹

c´sijv‹ for i ‰ j
ř

kPNi

sikf
‹

c´sikv‹ for i “ j
(13c)

Bhi

Bfj

ˇ

ˇ

ˇ

ˇvi“vj“v‹

fi“fj“f‹

“

#

´ 1 for i ‰ j
ř

kPNi
1 for i “ j

(13d)

Following equation (13), we define Laplacian-like matrices
LF , LS , LSF , LG P Rmˆm whose entries are LF ri, js “
Bgi
Bvj

, LSri, js “
Bgi
Bfj

, LSF ri, js “ Bhi

Bvj
, and LGri, js “

Bhi

Bfj
. Here, LG is the exact Laplacian matrix of G, the

other matrices are called Laplacian-like because they are
re-weighted variants of LG still preserving the property of
row sum being zero. Based on the defined matrices, we
can rewrite the linearized dynamics (12) into the following
compact form:

9v “ ´k1pLFv ` LSfq (14a)
9f “ ´k2pLSFv ` LGfq (14b)

where v “ col tv1ptq, ¨ ¨ ¨ vmptqu P Rm, and f “

col tf1ptq, ¨ ¨ ¨ fmptqu P Rm.

Transformation: For the convenience of studying the
convergence of (14), recall the two edge-reduced graphs
G1pV, E1q and G2pV, E2q defined above Assumption 2. Let
LG1 and LG2 be the Laplacian matrices corresponding to the
two graphs. By definition, LG1

is an upper triangular matrix,
and LG2

is a lower triangular matrix. Furthermore, based on
(13) and the definitions of LF , LS , LSF , LG, one has

LG ` LS “ 2LG1
, LG ´ LS “ 2LG2

, (15a)
LF ` LSF “ 2β1LG1

, LF ´ LSF “ 2β2LG2
. (15b)

where β1 “
f‹

c´v‹ , β2 “
f‹

c`v‹ . Here (15b) is derived from
(13a,c) where sij “ 1 for i ă j and sij “ ´1 for i ą j.

To continue, we show the local convergence of (14) by
studying the eigenvalues of

Q “

„

k1LF k1LS

k2LSF k2LG

ȷ

.

Define the following transformation matrices

T “

„

k1Im ´k1Im
k2Im k2Im

ȷ

, T´1 “
1

2k1k2

„

k2Im k1Im
´k2Im k1Im

ȷ

Then based on (15), the similarity transformation of Q yields:

T´1QT “

„

pk2 ` k1β1qLG1
pk2 ´ k1β1qLG1

pk2 ´ k1β2qLG2 pk2 ` k1β2qLG2

ȷ

(16)

Lemma 3.4: Given Assumption 2, suppose f‹ ą 0 and
|v‹| ă c. The following statements hold

(i) λ “ 0 is the eigenvalue of T´1QT with geometric mul-
tiplicity equals to two. The corresponding eigenvectors
can be chosen as col t1m,0mu and col t0m,1mu.

(ii) Except for λ “ 0, all other eigenvalues of T´1QT have
positive real parts.

The proof of this lemma is given in appendix (Arxiv).

Convergence: We make use of Lemma 3.4 to prove the
convergence of dynamics (14). Define a new state variable

x P R2m such that
„

v
f

ȷ

“ Tx. Then (14) is equivalent to

9x “ ´T´1QTx. (17)

where T´1QT is defined in (16). From Lemma 3.4, and
the LaSalle’s invariance principle [23] for linear systems,
we know x converges asymptotically to x:, which lies in
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the invariant set spanned by the eigenvectors of T´1QT
corresponding to its zero eigenvalues, i.e.,

x: P image

ˆ„

1m

0m

ȷ˙

ď

image

ˆ„

0m

1m

ȷ˙

.

Consequently, the v and f in update (14) converge to
„

v:

f :

ȷ

P image

ˆ

T

„

1m

0m

ȷ˙

ď

image

ˆ

T

„

0m

1m

ȷ˙

“ image

ˆ„

1m

0m

ȷ˙

ď

image

ˆ„

0m

1m

ȷ˙

, (18)

where the subspace is invariant under transformation matrix
T . Clearly, (18) indicates the consensus condition v1 “ ¨ ¨ ¨ “

vm and f1 “ ¨ ¨ ¨ “ fm. This completes the proof.
Remark 3.5: (Local convergence and convergence re-

gion.): Theorem 3.2 proves only the local convergence of
(11). The convergence region is impacted by the approxi-
mation error of linearization (12). To quantify this, subtract
the linearized dynamics (12) and the original dynamics (11).
The approximation error on fj is proportional to |

vj´vi
c´sijvj

|. To

reduce this term, one can assume that |vi|

c is sufficiently small
for all robots. The approximation error on vj is proportional
to |

fj´f‹

c |. To reduce this term, a possible approach is to
set k1

k2
being sufficiently small. Then dynamics (11) forms

a two-time scale system [24], with (11b) being the fast
system and (11a) being the slow system. Consequently,
when the algorithm starts, dynamics (11b) will converge
quickly to a neighborhood of frequency consensus, where
|
fj´f‹

c | is small enough to make sure the linearized system
closely approximates the nonlinear dynamics. To conclude,
assuming small |vi|

c and k1

k2
is beneficial for expanding the

local convergence to a larger region. As will be validated
in the simulation section, with |vip0q|

c ă 0.01 and k1

k2
“

0.01, nonlinear dynamics (11) converge asymptotically to
consensus condition even if the initial states are far away
from any equilibrium.

IV. SIMULATIONS RESULTS

In this section, we apply the proposed distributed algo-
rithm by Matlab Simulink to achieve the velocity consensus
of multi-robot systems in 1-D environments. In the simula-
tion, we conduct tests with 10 robots and the dynamics of the
algorithm in the simulation is given by equation (11) as a
continuous-time model. The corresponding communication
topology is characterized by an undirected Erdős–Rónyi
graph, where the probability of any two nodes in the graph
being connected is 60%. We verify that the obtained graph
is connected which satisfies Assumption 1.

Following Remark 3.5, the parameters k1 and k2 of the
algorithm in the simulation are selected as:

k1 “ 0.1, k2 “ 10 (19)

so that k1

k2
“ 0.01 (cf. Remark 3.5).

We validate the effectiveness of the proposed algorithm.
The initial conditions of frequencies fip0q (Hz) and velocities
vip0q (m/s) of each robot in the simulation is given as:

fip0q „ Up4500, 7500q, vip0q „ Up1, 9q,@i P V. (20)

Fig. 3. Results of the consensus algorithm without noise.

Fig. 4. Results of the consensus algorithm when noise ωij „ Np0, 502q.

where Upa, bq represents uniform distribution, and a,b define
the lower and upper bounds. Here, c “ 1500m{s and we
have |vip0q|

c ă 0.01. To further validate the performances of
the proposed algorithm, we consider the situation when the
received frequency rij of each robot is subject to a noise
ωijptq. All ωijptq are assumed to be discrete Gaussian white
noise with zero mean Epωijq “ 0. Then the dynamics of the
system (c.f. equation (11)) becomes

9vi “ k1
ÿ

jPNi

psijprij ` ωij ´ fiqq (21a)

9fi “ k2
ÿ

jPNi

prij ` ωij ´ fiq (21b)

Fig. 3 illustrates the dynamics of the system when the noise
of received frequency is equal to 0, i.e., no noise. The result
shows that the velocity consensus and frequency consensus
are perfectly achieved based on the proposed algorithm. As
shown in fig. 4, when noise ωij „ Np0, 502q, the velocities
robots will converge to the steady state with small variations.
We quantify the variation by R “ maxipv

s
i q ´ minjpvsj q
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Fig. 5. Results of the leader-follower consensus algorithm when noise
ωij „ Np0, 502q.

with vsi being the robots’ velocities in steady states. We can
see all the velocities reaches steady states from 9.32 second,
and range R “ 0.04 m{s, which shows the effectiveness
of the algorithm when measurements are subject to noises.

Finally, we extend to a leader-follower scenario to test the
performance of the algorithm. Here we assign robot 1 as the
leader of the system. Then the dynamic model of the system
becomes:

9vi “

#

0 for i “ 1

k1
ř

jPNi
psijprij ` ωij ´ fiqq for i ‰ 1

(22a)

9fi “ k2
ÿ

jPNi

prij ` ωij ´ fiq (22b)

The initial conditions of frequencies fip0q and velocities
vip0q of each robot is given as equation (20), and the
measurement noise ωij „ Np0, 502q. As shown in Fig. 5,
robots’ velocities will converge towards the leader’s velocity
with variations R “ 0.04m{s.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a new distributed
algorithm for multi-robot systems to achieve the velocity
consensus under denied environments based on the Doppler
effect. The proposed algorithm is fully distributed which
only uses its local information and is robust to the time-
varying communication graph. Moreover, the algorithm only
requires measurements of sound frequency as a medium
for multi-robot coordination, instead of depending on any
direct or relative measurements of the velocity. Thus, our
algorithm is beneficial for solving the issue of interference
and scalability in large-scale networks. Future works include
global convergence analysis and will extend to 2-D and 3-D
cases, which are applicable to more complicated application
scenarios. In addition, we will test the proposed algorithm
under real robot platforms.
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