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Abstract— Switched Reluctance Motors (SRMs) enable
power-efficient actuation with mechanically simple designs.
This paper aims to identify the nonlinear relationship between
torque, rotor angle, and currents, to design commutation
functions that minimize torque ripple in SRMs. This is achieved
by conducting specific closed-loop experiments using purposely
imperfect commutation functions and identifying the nonlinear
dynamics via Bayesian estimation. A simulation example shows
that the presented method is robust to position-dependent
disturbances, and experiments suggest that the identification
method enables the design of commutation functions that signif-
icantly increase performance. The developed approach enables
accurate identification of the torque-current-angle relationship
in SRMs, without the need for torque sensors, an accurate
linear model, or an accurate model of position-dependent
disturbances, making it easy to implement in production.

I. INTRODUCTION

Switched Reluctance Motors (SRMs) are electric actuators
that have gained increased attention in the past decade due
to their power efficiency, mechanical simplicity, and lack
of permanent magnets [1]. Since the power is applied to
the stator instead of the rotor, no commutator is required,
simplifying the mechanical design but complicating control,
as current needs division among the coils, see Figure 1.

Linear feedback control is a powerful tool in a wide
range of applications since it enables a convenient assessment
of stability and performance [2]. Hence, it is desirable to
design a so-called commutation function [3] that inverts
the nonlinear torque-current-angle relationship by computing
coil currents for a certain desired torque and rotor posi-
tion, effectively linearizing the system and enabling linear
feedback control, see Figure 2. For a given SRM, infinitely
many possible commutation functions exist that invert the
nonlinear torque-current-angle relationship, and this design
freedom can be exploited to enforce a trade-off on desired
properties such as peak currents or power consumption
through heuristic [4] or optimization-based methods [5].

Imperfect commutation functions result in torque ripple,
a position-dependent mismatch between desired and true
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torque. Several methods exist to mitigate torque ripple, e.g.,
using linear feedback [6] or using spatial repetitive control
[7, Chapter 5]. Such methods typically sacrifice the design
freedom in commutation design by merely requesting more
torque from an imperfect commutation function. If instead,
an underlying model of the torque-current-angle relationship
is available, then torque ripple can be reduced while also
enforcing desired properties on the current waveforms.

The identification of the torque-current-angle relationship
in SRMs is highly complicated in the absence of torque
sensors. Indeed, many applications that favor the use of
SRMs because of their cost-effectiveness may not equip
additional sensors that increase cost and complexity, e.g.,
in satellite communication terminals [6].

Numerous nonlinear system identification techniques [8]
exist to identify nonlinear systems. These approaches can
be distinguished into two categories: (i) methods that yield
physical models and (ii) methods that yield black-box mod-
els. Identification methods yielding physical models rely on
a priory knowledge of the nonlinear structure of the system
to identify system parameters. Black-box approaches do not
require knowledge of the nonlinear structure to obtain an
accurate model, at the cost of high model order and low inter-
pretability. The highly complex structure of nonlinear SRM
dynamics, influenced by position-dependent disturbances like
friction and magnetic saturation, makes specifying a suitable
model structure exceedingly difficult. At the same time, an
interpretable model of the SRM dynamics is desired, since
a commutation function only inverts the nonlinear torque-
current-angle relationship. When the full SRM model is a
black box, the commutation function design is complicated,
if not impossible. Indeed, when a black box model simulates
only the relation between input (currents) and output (rotor
angle), the unmeasured generated torque is a hidden state
that is not accessible for commutation function design.

Although existing nonlinear system identification methods
are effective in various applications, they are limited in
identifying SRMs. Physical model identification requires
intricate model structure knowledge, and black-box methods
complicate commutation function design. Therefore, this
paper aims to obtain a physical model of only the nonlinear
torque-current-angle relationship of SRMs in the absence of
torque sensors, while being robust to unmodeled nonlinear
disturbances. This is achieved through specific choices in
the experiment design, that enable the posing of a Bayesian
estimation problem. The contributions of this paper are:
C1: An identification method for SRMs in the absence of

torque sensors is developed. By performing several
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Fig. 1. Working principle of an SRM with three coils. By applying a
current to one of the three coils, a magnetic field is created, attracting the
closest rotor tooth. The direction and magnitude of the resulting torque on
the rotor depend on the applied current and the rotor position.
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Fig. 2. Control scheme for an SRM P . The nonlinear system P is linearized
by designing an f satisfying gf ≈ 1, which enables the use of a linear
feedback controller C(s). Recall that d is assumed small compared to gf .

closed-loop experiments with commutation functions
that are imperfect by design, a physical model of the
torque-current-angle relationship is obtained.

C2: A simulation example demonstrates that the method is
robust to unmodeled position-dependent disturbances.

C3: Experimental results show that the identification method
leads to superior tracking performance in a case study.

The paper is organized as follows: Section II describes
the problem; Sections III and IV detail the method and
implementation; Sections V and VI present simulation and
experimental results; and Section VII concludes.

II. PROBLEM DESCRIPTION

In this section, the considered problem is defined. First,
the actuation principle of Switched Reluctance Motors is
explained. Next, the control of SRMs is described, and
finally, the problem formulation of identifying the torque-
current-angle relationship is presented.

A. Switched Reluctance Motor dynamics

Switched Reluctance Motors, as illustrated schematically
in Figure 1, exhibit a nonlinear relationship between torque,
current, and rotor angle. An SRM with nt teeth and nc coils,
without magnetic saturation, is modeled as

Tc(ϕ, ic) =
1

2

dLc(ϕ)

dϕ
i2c , (1)

where Tc is a torque applied to the rotor by magnetizing coil
c ∈ {1, . . . , nc} with a current ic, and Lc(ϕ) is the phase
inductance, which varies periodically with the rotor position
ϕ, with spatial period 2π

nt
. Hence, the total torque applied to

the rotor at time t is given by
T (t) = g(ϕ(t))u(t) + d(ϕ, t), (2)

g(ϕ) :=
1

2

d
dϕ

[L1(ϕ), . . . , Lnc
(ϕ)], (3)

u(t) := [i1(t)
2, . . . , inc

(t)2]⊤, (4)

where d(ϕ, t) is an unmeasured torque disturbance that
depends on time and position, i.e.,

d(ϕ, t) := d1(t) + d2(ϕ). (5)
Neither the torque T nor the coil inductances Lc are mea-
sured. It is explained next how the torque T of SRMs is
controlled, given a model of ĝ.

B. Control of Switched Reluctance Motors

The nonlinear torque-current-angle relationship (2) is in-
verted as follows. Given a model ĝ(ϕ) of g(ϕ), a commuta-
tion function f(ϕ, T ∗) is designed with

f(ϕ, T ∗) :=

{
f+(ϕ)T ∗ T ∗ ≥ 0,

−f−(ϕ)T ∗ T ∗ < 0,
(6)

where T ∗ is the desired torque and f+(ϕ), f−(ϕ) : R→ Rnc .
The functions f− and f+ are designed to satisfy

ĝ(ϕ)f+(ϕ) = 1, ĝ(ϕ)f−(ϕ) = −1, (7)
f+(ϕ) ≥ 0, f−(ϕ) ≥ 0. (8)

Infinitely many functions f exist that satisfy these require-
ments, since g and f are vector functions. The control law
u(t) = f(ϕ(t), T ∗(t)) then provides squared currents for
every coil, given a certain desired torque T ∗, see Figure 2.
Combining this control law with (2) yields

T (ϕ(t)) = g(ϕ(t))f(ϕ(t), T ∗(t)) + d(ϕ, t). (9)
If the model is exact, with ĝ(ϕ) = g(ϕ) and f meeting
Requirement (7), then without disturbances, T (ϕ) = T ∗(ϕ)
for all ϕ. If not, the realized torque differs from the desired
torque, leading to a problem known as torque ripple [9], im-
pairing tracking performance. This underlines the importance
of identifying ĝ(ϕ) ≈ g(ϕ), as detailed next.

C. Problem formulation

The aim is to develop a method for identifying the
nonlinear torque-current-angle relationship ĝ(ϕ) in SRMs,
given measurements of the rotor position ϕ and squared
currents u, see Figure 2. Key challenges include unmeasured
produced torque T , unknown phase inductances Lc, and
unknown linear dynamics G(s) and disturbances d(ϕ, t).

III. IDENTIFICATION OF SWITCHED
RELUCTANCE MOTORS

This section outlines the identification of SRM dynamics
g(ϕ), including the necessary assumptions, experimental
design method, and posing of the estimation problem.

A. System and model assumptions

The nonlinear relationship g(ϕ) involving rotor torque T ,
squared currents u, and rotor angle ϕ is identified using u
and ϕ, with the challenge being the unmeasured torque T ,
see (2). The key idea is to obtain a data set in which the
torque T is known to be approximately constant, i.e.,

T (t) ≈ Tconst. (10)
To satisfy this requirement, we assume the following.

Assumption 1: The sub-system G(s), see Figure 2, is
linear and time-invariant, and contains exactly one integrator.
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Assumption 1 implies that constant rotor velocity leads to
constant true torque T (t). Consequently, if experiments can
be designed in which the rotor velocity is constant, then the
true torque acting on the rotor is equal to a certain Tconst.

To achieve a constant rotor velocity for data collection,
closed-loop experiments are performed using a fixed feed-
back controller C(s) and a by-design imperfect commutation
function fimp. Observe from (9) that the relationship

g(ϕ(t))fimp(ϕ(t), T
∗(t)) = Tconst − d(ϕ, t), (11)

has g and d as unknowns. While Tconst is not exactly known
because G(s) is unknown, it is known to be constant. As
explained later, its exact value is irrelevant. Expression (11)
can be interpreted as having a disturbed observation of Tconst,
following from the product of g(ϕ), which is to be identified,
and the user-defined fimp(ϕ, T

∗). Moreover, the following
assumptions are imposed.

Assumption 2: Disturbances d(t, ϕ) are not spatially peri-
odic with period p = 2π

knt
, k ∈ N.

Assumption 3: The rotor position ϕ is measured exactly.
Finally, ĝ is parametrized linearly in parameters θ ∈ Rnθ as

ĝ⊤(ϕ,θ) = ψg(ϕ)θ, (12)
with basis ψg : R→ Rnc×nθ . Example parametrizations are
a Fourier basis or periodic radial basis functions [10]. In this
paper, the focus is restricted to a Fourier basis of the form
β(ϕ)= [1, sin(ntϕ), cos(ntϕ), . . . , sin(nhntϕ), cos(nhntϕ)],

where nh is the number of harmonics, such that
ψg(ϕ) = Inc

⊗ β(ϕ), (13)
where ⊗ denotes the Kronecker product. This leads to a
parametrization of ĝ with nθ = nc(1 + 2nh) parameters, in
which all rotor teeth of the SRM are assumed to be identical.

Next, experiment design in view of requirements (7) and
(10) is investigated.

B. Experiment design

This subsection covers obtaining constant rotor velocity
samples through closed-loop experiments, explaining the
choice of feedback controller C, and detailing commutation
functions fimp. In contrast to the standard experiment design
framework in closed-loop [11], the goal here is to manip-
ulate the commutation functions fimp to generate sufficient
excitation for learning the parameters of g.

1) Feedback control design: Feedback control is applied
to satisfy Requirement (10) during experiments. When only
an imperfect commutation function fimp is available such that
T ̸= T ∗, then a ramp reference ϕr with dϕr/dt = ωr ∈ R is
still accurately tracked using a stabilizing feedback controller
C(s). Practical considerations of the choice of C(s) and
ωr that leads to accurate tracking of a ramp reference are
addressed in Section IV.

2) Commutation function design: Nexp experiments are
designed, each with a different commutation function f

(i)
imp,

balancing the following requirements:

1) f
(i)
imp should invert g sufficiently well (see (7)) so as not

to destabilize the closed loop.

2) f
(i)
imp should not invert g perfectly, i.e., equality should

not hold in (7), since then g(ϕ)f
(i)
imp(ϕ, T

∗) in (11) is
approximately constant for a constant feedback control
effort T ∗(t). This leads to a problem of persistence of
excitation, as is detailed in Section IV-B.

Neither requirement can be verified for a given f
(i)
imp a priori

because the true g is not available. Hence, an iterative
approach is taken to design f

(i)
imp.

First, assume that some imperfect, simple model ĝs is
available, i.e., a sinusoid per coil in the form of

ĝs,c(ϕ, ϕo) = sin

(
Ntϕ+

2π(c− 1)

nc
+ ϕ(i)

o

)
. (14)

This model assumes a sinusoidal relationship between the
torque-current ratio and the rotor angle. The coils are as-
sumed to be equidistantly distributed along the rotor teeth
and the offset ϕ(i)

o is a parameter chosen differently for each
experiment i, as detailed later. The commutation functions
f
(i)
imp that invert ĝs are then chosen as

f
(i)
imp,c

(
ϕ, T ∗, ϕ(i)

o

)
=fTSF,c

(
ϕ+

2π(c− 1)

nc
+ ϕ(i)

o , T ∗
)

· sat
(
1/ĝs,c

(
ϕ, ϕ(i)

o

))
T ∗, (15)

sat(x) :=


xmin x < xmin,

x xmin ≤ x ≤ xmax,

xmax x > xmax,

(16)

where f
(i)
imp,c refers to the cth element of f

(i)
imp. Moreover,

fTSF(ϕ, T
∗) : R × R → Rnc is a torque sharing function

that divides a desired torque to different coils [3], satisfying
nc∑
c=1

fTSF,c(ϕ, T
∗) =

{
1 T ∗ ≥ 0,

−1 T ∗ < 0.
(17)

Note that at values of ϕ where gc(ϕ) = 0, fTSF,c(ϕ, T
∗) = 0

by design, and hence, (15) is well defined for all ϕ.
The full data collection procedure is described in Pro-

cedure 1. Experiments utilize various model offsets ϕo,
discarding any with error |e| surpassing the threshold esafety,
which could indicate instability. If the closed-loop is stable
but |e| exceeds a user-defined maximum emax < esafety, then
Requirement (10) is violated so the procedure is restarted
for a slower reference velocity. Finally, the experiments are
repeated in the other direction.

C. Bayesian identification

A linear model is considered in the form
b = Xθ − d. (18)

Here, d = d1 + d2 represents a vector that contains all
(unmeasured) values of d(ϕ(tk), tk), see (5), and b and X
are defined below to represent a matrix-vector reformulation
of (11), with ĝ = ĝ(ϕ,θ).

First, observe from (11) that b should contain the samples
Tconst with the appropriate sign. For ease of notation, but
without loss of generality, we assume that an equal number
of forward experiments Nexp and backward experiments are
successfully carried out, each with N samples, such that
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Procedure 1 Closed-loop data collection
Require: Step size δ, limit ϕr,N.

1: Define ωr > 0, initialize ϕ
(1)
o ← ϕo,min, i← 1.

2: while ϕ
(i)
o < ϕo,max do

3: Perform experiment with r = ϕr and ϕ
(i)
o , see (15).

4: if |e|> emax then
5: Decrease |ωr|, return to Step 2.
6: else if |e|> esafety then
7: Skip to Step 10.
8: end if
9: Store samples {T ∗(tj),u(tj), ϕ(tj)}Nj=1.

10: ϕ
(i+1)
o ← ϕ

(i)
o + δ, i← i+ 1.

11: end while
12: Set ϕr ← −ϕr and repeat Steps 2-11.

Ntot = 2NexpN . This results in
b = Tconst[1

⊤
NexpN

− 1⊤
NexpN

]⊤. (19)

Note that the exact value of Tconst is irrelevant since ĝ is
linear in θ: if it deviates by a constant factor, then the
resulting ĝ deviates by the same factor. This is no problem
since it is effectively a different loop gain of the linearized
system, which can be compensated for by re-scaling C(s).
Hence, Tconst is chosen as

Tconst =
1

Ntot

Ntot∑
k=1

|T ∗(tk)|. (20)

Next, the design matrix X in (18) is constructed. Observe
from (11) that one element of Xθ must describe a sample
ĝ(ϕ(t),θ)fimp(ϕ(t), T

∗(t)). To obtain X, first define

Ψg = [ψ⊤
g (ϕ1), . . . ,ψ

⊤
g (ϕNtot)]

⊤, (21)

U =

Ntot∑
i=1

Eii ⊗ u⊤
i , (22)

where ui ∈ Rnc is the ith vector of squared currents in the
data set and Eii is a matrix unit, i.e., a matrix with only one
nonzero entry with value 1 at the ith row and column. The
design matrix X is then obtained as

X = UΨg. (23)
Having defined the linear model, we now pose the estimation
problem and apply a Bayesian framework to take into
account the uncertain prior knowledge of d(ϕ, t). First, a
Gaussian prior is posed on θ:

θ ∼ N (0, I). (24)
In addition to this, we pose Gaussian priors on the distur-
bances d1 and d2 as defined in (5), namely,

d1 ∼ N (0, σ2I),

d2 ∼ N (0,Σ).
(25)

These priors state that the temporal disturbances are assumed
i.i.d. white noise, and the spatial disturbances are a priori
expected to be described by some covariance matrix Σ. The
prior variance on the spatial disturbances is defined as

cov(d2(ϕ), d2(ϕ′)) = k(ϕ, ϕ′), (26)

where k is a kernel function that can be chosen in such a
way as to encode prior information of d2(ϕ), e.g., periodicity
with a known spatial frequency, see [10] for details.

Recall from Assumption 3 that for all samples in the data
set at time tk, a noiseless measurement of ϕ(tk) is available.
Hence, the covariance matrix Σ can be constructed as

Σij = k(ϕ(ti), ϕ(tj)), (27)
where i, j ∈ {1, . . . , Ntot}.

With these priors, the estimate θ̂ and model variance are
given [12, Section 4.2] by
θ̂ = E[θ|X,b] = X⊤(XX⊤ +Σ+ σ2I)−1b,

Var(θ|X,b) = I−X⊤(XX⊤ +Σ+ σ2I)−1X.
(28)

Finally, the model ĝ(ϕ,θ) is obtained from (12). The next
section addresses the implementation aspects of the devel-
oped identification method.

IV. IMPLEMENTATION ASPECTS

This section details the design of the feedback controller,
persistence of excitation, and choice of reference. W

A. Design of the linear feedback controller

When C(s) is designed with an integrator, a ramp refer-
ence can be accurately tracked. This is explained as follows.
First, ignoring the nonlinear feedback interconnection of d,
the tracking error is given by

E(s) =
R(s)

1 + C(s)G(s)
=

ωr

s2(1 + C(s)G(s))
, (29)

where we have considered the constant velocity reference
R(s) = ωr/s

2. For ease of analysis, it is assumed that the
feedback controller is designed in continuous time before it
is discretized for implementation. By Assumption 1, and the
fact that C(s) has one integrator, it follows that

E(s) =
ωr

s2 + L0(s)
, (30)

where L0(s) := s2C(s)G(s) has no integrators. From the
final value theorem, it follows that the steady-state tracking
error in the absence of disturbances is

lim
t→∞

e(t) = lim
s→0

sE(s)

= lim
s→0

ωrs

s2 + L0(s)
= 0,

(31)

i.e., a ramp reference is tracked accurately when C(s)
contains an integrator.

B. Persistence of excitation

The offsets ϕo in Procedure 1 are the tuning parameters for
the by-design imperfect commutation functions fimp during
experiment design, and these are related to persistence of
excitation as follows. When d(ϕ, t) = 0 and this is incor-
porated as prior knowledge through σ = 0,Σ = 0, (28)
reduces to an ordinary least squares estimate. It follows
that X must have rank nθ for persistence of excitation.
When insufficient values of ϕo are used, X can have linearly
dependent rows through (23). Hence, a sufficient number of
different experiments is required.
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C. Reference design

The design of the reference consists of 1) the chosen
velocity ωr, and 2) the total stroke ϕr,N .

1) Choosing the reference velocity: The tracking error as
a result of d(ϕ, t), again ignoring the nonlinear feedback
interconnection, is given by the process sensitivity

E(s)

D(s)
=

G(s)

1 + C(s)G(s)
. (32)

As the frequency tends to zero, using the fact that C(s) and
G(s) each have one integrator, we have

lim
s→0

E(s)

D(s)
= C−1(0) = 0. (33)

By choosing ωr to be small, the position-dependent compo-
nent of d(ϕ, t) will evolve slowly in time, and consequently,
from (33) it follows that the tracking error as a result of these
disturbances is small.

A smaller ωr requires more experimental time for the same
stroke. When ωr is too high, Requirement (10) ceases to
hold. A heuristic that has proven effective in simulations is
to choose ωr such that ∥e∥∞≪ 2π

nt
, e.g., ∥e∥∞< 10−4 2π

nt
.

2) Choosing the reference stroke: When the magnitude
of d2(ϕ) is large or it varies slowly with position, it is
recommended to choose a larger stroke ϕr,N . Indeed, by
Assumption 2 and the fact that ĝ is spatially periodic with
period 2π

nt
, disturbances d2(ϕ) leak to all relative angles

mod(ϕ, 2π
nt
). This facilitates the choice of an accurate prior

k in (26), as illustrated in Section V-B. Moreover, when
the rotor teeth vary significantly, it is also recommended to
choose a larger stroke, since it is desired to obtain a ĝ that
describes the average tooth.

V. SIMULATION RESULTS
In this section, a simulation example is presented. First, the

setting is explained, and subsequently, the results are shown.

A. Setting

An SRM model with nt = 131, nc = 3, and linear
dynamics G(s) = 1/(s2 + s) is considered, sampled at 1
kHz. The true g consists of a sum of five sines and cosines
per coil. A PID controller is given with a 20 Hz bandwidth
and a position-dependent mechanical disturbance is present:

d(ϕ, t) = d1(t) + 5 · 10−4 sin
( nt

1.4
ϕ
)
, (34)

with d1(t) ∼ N (0, 7 · 10−9). The spatial frequency nt

1.4
is unknown. The initial model ĝs is defined as in (14).
Procedure 1 is followed for ϕo ∈ {−0.2, 0.2} and a reference
velocity of ωr = 10 mrad/s. The total reference stroke in
each experiment is approximately 12 teeth. The data during
the first two teeth are removed to exclude the transient and
the rest of the data is downsampled to leave a total of
N = 1000 samples per experiment.

B. Results

During the experiments, the maximum error is ∥e∥∞≈
5 · 10−7 rad. Since the spatial period of a tooth is 2π

131 ≈
5 · 10−2 which is five orders of magnitude larger than the
error, this suggests that Requirement (10) is satisfied. Figure

0 π 2π

−1

0

1

·10−2

Relative angle mod(ϕ, 2π
nt
) · nt [rad]

T
∗

[N
m

]

Fig. 3. Desired torque samples T ∗ plotted along one tooth for various
simulations, each using a different fimp. The feedback controller adjusts T ∗

to minimize tracking error for each fimp, influenced by d(ϕ, t).

0 2π
nt

−1

0

1

Rotor angle ϕ [rad]

g
(ϕ
)

[N
m

/A
2
]

0 2π
nt

−1

0

1

Rotor angle ϕ [rad]

g
(ϕ
)

[N
m

/A
2
]

Fig. 4. True g ( ) in simulation, estimate ĝ ( ) and 95% uncertainty
bounds ( ). An accurate model is obtained with a small variance.

3 shows the desired torque during experiments, with each
commutation function fimp introducing torque ripple, mostly
compensated by T ∗(t) computed by C(s).

If known, the spatial frequency of the disturbances can
be included in the prior through k(ϕ, ϕ′), see (26). Instead,
realize that ĝ is spatially periodic with the period of a tooth,
but the disturbances are not (see Assumption 2). This means
that when sufficient teeth are observed, d2(mod(ϕ, 2π/nt))
can be approximated as i.i.d. white noise. This is also visible
from Figure 3, where T ∗(t) is compensating for d(t). Hence,
the prior on d2(ϕ) is simply chosen as i.i.d. white noise using
k(ϕ, ϕ′) = 10−6δϕϕ′ with

δϕϕ′ :=

{
1 ϕ = ϕ′,

0 otherwise.
(35)

This leads to a diagonal Σ, so d2 is lumped together with
d1, and we choose σ = 0.

The resulting estimate ĝ from (28) is depicted in Figure
4. The model ĝ closely resembles the true g, even with
significant position-dependent disturbances d, in just four
one-minute experiments.

VI. EXPERIMENTAL RESULTS

In this section, experimental results are presented. The
setting is described first, and the results are shown afterward.
Finally, the validation of the results is addressed.

A. Setting

A real SRM from TNO [6] is considered with nt = 131
and nc = 3. The frequency response of G(s) is measured
using an imperfect commutation function, leading to a linear
model sufficient for the design of a PID controller with 20 Hz
bandwidth. The models ĝs for Procedure 1 are given by (14)
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0 π 2π

−1

0

1

·10−2

Relative angle mod(ϕ, 2π
nt
) · nt [rad]

T
∗

[N
m

]

Fig. 5. Experimental data. The desired torque T ∗(t) is plotted for one
tooth, with colors representing different experiments and commutation func-
tions fimp. The pattern illustrates how T ∗(t) compensates for imperfections
in each fimp, with noticeable tooth-by-tooth variations.

0 2π
nt

−1

0

1

Rotor angle ϕ [rad]

g
(ϕ
)

[N
m

/A
2
]

Fig. 6. Resulting model ĝ from the experimental data for each coil
( , , ) with 95% uncertainty bounds ( ). As expected, the three
functions are shifted approximately 120◦ in phase. The blue coil produces
more torque than the other coils, possibly because of a smaller air gap.

using ϕo ∈ {−0.7,−0.65,−0.23, 0}. Six experiments were
conducted at ωr = 7.5·10−4 rad/s, each with a total stroke of
roughly 10 teeth. It is emphasized that in this experimental
setting, the disturbances d(ϕ, t) are unknown and the true
function g(ϕ) is not exactly periodic, since the rotor teeth
slightly differ due to manufacturing tolerances. The transient
is removed from the data, and the dataset is downsampled
to obtain a total of N = 1157 samples per experiment.

B. Results

With a peak error of ∥e∥∞≈ 9 µrad during data ac-
quisition, four orders of magnitude smaller than the rotor
teeth, Requirement (10) appears satisfied. Figure 5 depicts
the resulting T ∗, showing that a large T ∗ is required to
offset the underestimated current generated by fimp. Despite
the model assuming identical teeth, there are noticeable vari-
ations between individual teeth. However, since the objective
is to design a commutation function for the average tooth,
the model structure is retained, and the increased variance in
the estimate is accepted.

Similarly to Section V, no prior information on the dis-
turbances is used, and the choice k(ϕ, ϕ′) = 3 · 10−6δϕϕ′ is
made. The resulting model is shown in Figure 6. There are no
torque sensors in the experimental setup, which means that
validation is not trivial, as is explained in the next section.

C. Validation

The model ĝ appears accurate for two reasons. Firstly,
the first blue coil in Figure 6 provides more torque than
the others. This is consistent with the observation that the

feedback controller C(s) decreases the desired torque T ∗

whenever a current is sent to this coil, to achieve low tracking
error. This suggests that this coil truly does produce more
torque than the others, possibly because the air gap is smaller.

Second, when ĝ is used to design an inverting commuta-
tion function f , the error is reduced significantly with respect
to an f designed using a ĝ in which only the first harmonic
is non-zero. For tasks with ωr < 0.5, ∥e∥2 is reduced by an
order of magnitude. Note that unless ĝ = g holds exactly,
the tracking error is highly dependent on the specific shape
of f , even though ĝf = 1 holds. Therefore, the identification
method should be applied to an SRM equipped with torque
sensors, to better quantify the achieved performance increase.

VII. CONCLUSIONS
An identification method for Switched Reluctance Motors

is developed that accurately captures the relationship between
rotor torque, rotor angle, and currents. The approach does
not rely on torque measurements or complex models and is
therefore easily deployed in a production context, without the
need for a dedicated calibration setup. A simulation example
has shown that the method is robust to position-dependent
disturbances, and experimental results from a real SRM
confirm that the identification method enables commutation
designs that lead to significantly better tracking performance.

Further research will be aimed at further experimental val-
idation. Moreover, the application of linear learning control
techniques for experiment design will be explored, to over-
come the need for slow movements during data collection.
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