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Abstract— In this paper, we analyze the controllability of the
Koopman bilinear surrogate model of a controllable control
affine system. The Koopman operator is a linear operator that
can describe the evolution of an original (nonlinear) system
by lifting the state using an observable. However, it has been
proven that the lifted system may not necessarily be full-
state controllable even if the original system is. Moreover, the
infinite-dimensional nature of the Koopman operator means
that a finite-dimensional approximation is often required in
practice and thus, one cannot simply guarantee the lifted
system to preserve the same controllability property of the
original system. Motivated by this, we investigate how the
controllability property of the original system affects that of the
lifted system. We specifically focus on control affine systems,
where one can construct a Koopman bilinear surrogate model
using the infinitesimal generator of the Koopman operator. We
assume there exists an admissible controller that can drive
the state of the original control affine system to a desired
state. Then, we present the controllability property of the
corresponding Koopman bilinear surrogate model, constructed
by the data-driven infinitesimal generator using generator
extended dynamic mode decomposition (gEDMD). A numerical
simulation example using a quadrotor model is presented to
demonstrate the proposed results.

I. INTRODUCTION

The Koopman operator is a linear but infinite-dimensional
operator that can describe the evolution of the original (non-
linear) system state using an observable, the function defined
on the state space [1]. The Koopman operator can provide
benefits in analyzing the characteristics of complex systems
by spectral analysis [2]; or can significantly alleviate the
effort of designing a controller by describing the nonlinear
dynamics in a linear framework [3]. As an extreme example,
a nonlinear dynamics might be represented as a finite-
dimensional linear time-invariant (LTI) system. Furthermore,
the Koopman operator can be approximated using a data-
driven method called extended dynamic mode decomposition
(EDMD), without knowing the original system [1]. Thanks
to these benefits, the Koopman operator has been widely
utilized for various applications, such as fluid flow [4], [5]
or estimation of human motion [6].

Along with active applications of the Koopman operator
on the control and robotics applications, there have been
several attempts to analyze the controllability property using
the lifted system. For instance, the relationship between a
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Koopman bilinearization and a control affine system was
investigated in [7] to check the controllability of the original
system through the lifted system. In [8], the Koopman
controllability gramian was introduced to check the control-
lability of the lifted system. The observability, the dual of
the controllability, has been also investigated in [9].

On the other hand, there have been relatively few re-
searches on the existence of a controllable lifted system when
the original system is controllable. Many existing works sim-
ply assume the lifted system is controllable (or stabilizable)
and design controllers accordingly. However, as shown in
[2], the lifted system might not be completely controllable,
i.e., full-state controllable, even if the original system is
completely controllable. In [10], the authors proposed the
infinite-dimensional extension of the Lie algebra rank con-
dition (LARC) to verify the controllable submanifold of the
lifted system, and showed the lifted system is unlikely to be
completely controllable unless some restrictive conditions are
satisfied.

In addition to the aforementioned findings, the Koopman
operator might require approximations in practice due to its
infinite-dimensional nature. To address this issue, the Koop-
man operator is often projected onto a finite-dimensional
space using the Galerkin projection [1] and EDMD is known
to converge to the result of the Galerkin projection with a
sufficient amount of data [11]–[13]. Nevertheless, in real-
world applications where one only has a finite amount of
data, EDMD and its variations suffer from both projection
error and finite-data error. Accordingly, one cannot always
guarantee that the controllability property of the original
system is preserved in the lifted system.

Motivated by this, we aim to investigate if the lifted
system generated in a data-driven manner, such as EDMD
or generator EDMD (gEDMD), is controllable if the original
system is controllable. More specifically, given the knowl-
edge that the original system is controllable in the domain
of interest, we analyze if the lifted system can preserve such
controllability. We specifically focus on the continuous-time
control affine system and its Koopman bilinear surrogate
model which describes the evolution of the observables using
an infinitesimal generator [11], [12]. Then, we prove the
corresponding Koopman bilinear surrogate model is output
controllable, if there is no finite-data error, and output
ϵ−controllable in probability, if the infinitesimal generator
is approximated from finite data.

Our contributions in this paper are as follows: 1) We
analyze the controllability of the Koopman bilinear surrogate
model generated from a control-affine system. Assuming
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there exists an admissible controller that drives the original
system to a desired state, we show how the controllability
property changes according to the conditions on the infinites-
imal generators; and 2) we present numerical simulation re-
sults using a quadrotor model constructed by the infinitesimal
generator to validate the proposed controllability properties.

The rest of the paper is organized as follows: In Section II,
the preliminaries on the Koopman operator for control affine
systems are presented. Section III provides a detailed analysis
of the controllability property of the Koopman bilinear
surrogate models. In Section IV, the numerical simulation
results are presented and discussed. Lastly, the conclusion is
given in Section V.

II. PRELIMINARIES

To begin with, we consider a continuous-time autonomous
system which is defined as:

ẋ(t) = g0(x(t)) (1)

where x(t) ∈ X is the state at time t and X ⊂ Rn is a
compact set. Let observable φ(x(t)) be a square-integrable
function, i.e., φ(x(t)) ∈ L2(X). Then, the Koopman semi-
group or continuous time Koopman operator Kt satisfies the
following equation [1]:

Ktφ(x(t0)) = φ(x(t)). (2)

The corresponding infinitesimal generator of the Koopman
operator, L : D(L) ⊂ L2(X) → L2(X) is defined as

L = lim
t→0

Kt − I

t
(3)

where D(L) is the domain of L and I is the identity
matrix. As a result, one can represent the state evolution
of the system (1) using the time-varying observable z(t) =
Ktφ(x(t0)) ∈ L2(X) which is the solution of ż(t) = Lz(t)
[11].

However, equation (3) is difficult to be directly ap-
plied in practice because it is infinite-dimensional. To
address this issue, one can project L onto a finite-
dimensional space spanned by a finite number of bases.
Let V be a finite-dimensional space spanned by bases
ψ1(x), ψ2(x), · · · , ψN (x) ∈ D(L),

V := span{ψi(x), i = 1, · · · , N}, (4)

where x = x(t) and time t is omitted for brevity. Then, the
Galerkin projection of L onto V, LV, can be computed as
LT
V = AC−1. The (i, j) element of C,A ∈ RN×N is defined

as [1], [14]

Cij = ⟨ψi(x), ψj(x)⟩ρ, Aij = ⟨Lψi(x), ψj(x)⟩ρ (5)

where ⟨·, ·⟩ρ represents the inner product using a probability
density ρ on X, where one can draw samples with respect to
ρ for the data-driven approach introduced later part of this
section. In other words,

Cij =

∫
X
ψi(x)

∗ψj(x)ρ(x)dx, (6)

Aij =

∫
X
Lψi(x)

∗ψj(x)ρ(x)dx. (7)

Accordingly, one can represent the propagation of the state
using the finite-dimensional generator LV instead of L.

However, the integration (6) and (7) are typically impos-
sible to compute analytically [14]. Instead, one can use the
generator extended dynamic mode decomposition (gEDMD)
to approximate LV using the given data, i.e., a pure data-
driven approach [11]–[13]. Let the m number of samples of
the state, x1,x2, · · · ,xm, are given, thereby consisting the
following matrices:

Ψ = [ψ(x1), ψ(x2), · · · , ψ(xm)] (8)
LΨ = [Lψ(x1),Lψ(x2), · · · ,Lψ(xm)] (9)

where ψ(xi) = [ψ1(xi), ψ2(xi), · · · , ψN (xi)]
T and

Lψ(xi) = [Lψ1(xi),Lψ2(xi), · · · ,LψN (xi)]
T . Then, the

approximation of LV using m samples, L̃m, can be obtained
as L̃m = ÃmC̃

−1
m , where C̃m ∈ Rn×n = ΨΨT and

Ãm ∈ Rn×n = (LΨ)ΨT [13].
The infinitesimal generator L can be extended to the

Koopman bilinear surrogate model to handle a control-affine
system. Let the dynamics of the control affine system be
given as

ẋ(t) = g0(x(t)) +

nc∑
i=1

gi(x(t))ui(t), (10)

where ui(t) is the i−th component of the control input
u(t) = [u1(t), u2(t), · · · , unc

(t)]T ∈ U ⊂ Rnc and U
is bounded. g1, · · · , gnc : Rn → Rn are non-drift terms.
Furthermore, we assume (10) is controllable, i.e., for a given
initial state at time t0, x(t0), and desired state at tf , xd(tf ),
there exists an admissible controller u(t) that drives x(t0) to
xd(tf ). It is worth noting that we do not specify a particular
type of nonlinear system controllability, such as the small-
time local controllability. The objective of this paper is to
investigate the existence of a controller that can drive the
lifted system to a desired lifted state, aided by the existence
of u(t) for the original system.

The corresponding Koopman bilinear surrogate model can
be described using a set of infinitesimal generators as

ż(t) = Lu(t)z(t) = Le0z(t) +

nc∑
i=1

(Lei − Le0)z(t)ui(t),

(11)
by setting Lu(t) = Le0 +

∑nc

i=1(Lei − Le0)ui(t), where
Lei represents the infinitesimal generator for the autonomous
system corresponding to a constant input ui(t) = ei, the
i−th basis of Rnc . In other words, (11) can be obtained as a
combination of nc + 1 autonomous systems, where each of
them corresponds to a constant input ei, ∀i = 0, 1, · · · , nc,
assuming e0 = 0. The corresponding projected generator
Lu
V(t) and approximated generator L̃u

m(t) can be obtained
using the same method in (5)-(9) [11], [12].

In the following section, we investigate how the control-
lability of the original control affine system (10) is affected
by the Koopman bilinear surrogate model corresponding to
each generator, Lu, Lu

V, and L̃u
m, respectively.
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III. CONTROLLABILITY PRESERVATION OF KOOPMAN
BILINEAR SURROGATE MODEL

For the sake of simplicity, we assume the state x can be
expressed using the dictionary ψ(x); and the same for the
observable φ(x).

Assumption 1: The state x can be represented using the
dictionary ψ(x) or observable φ(x), i.e., there exist h(·) and
HN such that x = HNψ(x) =

∑∞
i=1 hiφi(x).

Note that Assumption 1 has been widely applied in various
applications using the Koopman operator, particularly in
the robotics field. For instance, Assumption 1 automatically
holds if the full-state dictionary is available [15], [16].

A. Infinite dimensional generator Lu

In this subsection, we investigate the controllability of the
Koopman bilinear surrogate model (11), where the Koop-
man generator is given as the infinite-dimensional generator
Lu(t). Although we assume the original system (10) can
drive an initial state to a desired state xd(tf ), it does
not guarantee the bilinear surrogate model (11) is also
completely controllable. Nevertheless, from Assumption 1,
x(t) =

∑∞
i=1 hiφ(x(t)) and thus, one can at least guarantee

(11) delivers the subset of the observable that corresponds
to the state.

Proposition 1: If Assumption 1 holds, there exists an
output controllable infinite-dimensional Koopman bilinear
surrogate model (11) corresponding to the control affine
system (10).
Proof Let the initial state x(t0) and desired state xd(tf )
are given. Since there exists an admissible controller u(t)
that drives the system (10) from x(t0) to xd(tf ); and there
exists h(·) s.t.

∑∞
i=1 hiφ(x(t)) = x(t) from Assumption

1, based on xd(tf ) =
∑∞

i=1 hiφ(x(tf )) and x(t0) =∑∞
i=1 hiφ(x(t0)), u(t) also drives the subset of the observ-

able corresponding to the state as desired. Accordingly, since
there exists an admissible controller u(t) for given x(t0) and
xd(tf ), the Koopman bilinear surrogate model (11) is output
controllable. ■

Proposition 1 aligns with the findings in [2] that the
lifted system does not always guarantee the complete global
controllability, even if the original system is globally control-
lable. It also agrees with [10], where the authors rigorously
extend the Lie algebra rank condition (LARC) to an infinite-
dimensional system to specify the controllable submanifold
of the Koopman bilinear surrogate model (11).

B. Projected generator Lu
V

Although the Koopman bilinear surrogate model (11)
preserves its controllability on the state x, one might need
to project Lu(t) onto a finite-dimensional space to be useful
for real-world applications. The projected Koopman bilinear
surrogate model using the projected Koopman generator
Lu
V(t) can be defined as follows [11]:

żV(t) =Lu
V(t)zV(t)

=Le0
V zV(t) +

nc∑
i=1

(Lei
V − Le0

V )zV(t)ui(t) (12)

where zV(t0) = PVφ(x(t0)) and PV is the projection onto
V.

The projected generator Lu
V(t) suffers from projection

errors depending on the choice of the dictionary ψ(x) [11],
[12], [17] and thus, might not preserve the exact propagation
of the state in Proposition 1. Nevertheless, if ψ(x) spans
the invariant space of Lei

V , ∀i = 0, 1, · · · , nc, the projected
model (12) can describe the propagation of the dictionary in
V using the finite-dimensional ψ(x) [18].

Assumption 2: The dictionary forms an invariant space
of infinitesimal generators Lei

V ∀i = 0, 1, · · · , nc, i.e.,
span{ψ1, ψ2, · · · , ψN} is invariant under Lu

V(t).
Accordingly, from Assumption 2, one can expect that the

Koopman bilinear surrogate model (12) preserves the exact
propagation of ψ(x) without the projection error.

Corollary 1: If Assumptions 1 and 2 hold, there exists an
output controllable Koopman bilinear surrogate model (12)
corresponding to the control affine system (10).

Proof The proof is identical to that of Proposition 1 and
thus omitted here. ■

Remark 1: If Assumption 2 does not hold, the projection
error can be alleviated by properly increasing the size of
the dictionary N . For instance, the conditions that make
Lei
V converge to Lei as N → ∞ was presented in [13],

while the error between the infinite-dimensional generator
and projected generator was explicitly introduced in [17].
Accordingly, although the exact output controllability might
be lost, the projection error can be gradually eliminated by
increasing N . The rigorous analysis on the Koopman bilinear
surrogate model with the projection error will remain as
future work.

In the following section, we investigate the controllability
property of the Koopman bilinear surrogate model using the
generator extended dynamic mode decomposition (gEDMD)
and corresponding infinitesimal generator L̃u

m.

C. Finite-data approximated generator L̃u
m

The gEDMD (8)-(9) is a variation of the standard EDMD
that can approximate the infinitesimal generator in a data-
driven manner. The Koopman bilinear surrogate model using
the gEDMD can be represented as [11]

˙̃zm(t) = L̃u
m(t)z̃m(t)

= L̃0
mz̃m(t) +

nc∑
i=1

(L̃ei
m − L̃0

m)z̃m(t)ui(t), (13)

where z̃m(t0) = PVφ(x(t0)).
In [11], [12], it has been proven that the infinitesimal

generator computed by gEDMD, L̃u
m(t), converges to the

Lu
V(t) if the number of the samples m is sufficiently large and

the samples are collected following the probability density ρ
from X.

Assumption 3: The independent and identically dis-
tributed (i.i.d.) samples x1,x2, · · · ,xm are drwan from X
with respect to ρ.

Nevertheless, the convergence of gEDMD is an asymptotic
property as m → ∞ and thus, L̃u

m(t) still suffers from
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the finite data error in practice. Accordingly, the Koopman
bilinear surrogate model (13) might not preserve the exact
propagation of observable even though Assumption 2 holds.

To address the controllability of the approximated Koop-
man bilinear surrogate model (13), we first introduce the term
ϵ−controllable in probability. The system is ϵ−controllable
in probability 1 − δ at x(t0) if there exists an admissible
controller u(t) that drives the initial state toward the desired
state xd(tf ) satisfying P (∥xd(tf )− x(tf )∥2 ≤ ϵ) ≥ 1− δ,
where δ ∈ (0, 1) [19]–[21]. In (13), we further focus on
the subset of z̃m, defining the output ϵ−controllable in
probability as follows:

Definition 1: (Output ϵ−controllable in probability) The
system is output ϵ−controllable in probability 1 − δ at
x(t0) if there exists an admissible controller u(t) such that
steering the output y(t) to a desired output yd(tf ) satisfying
P (∥yd(tf )− y(tf )∥2 ≤ ϵ) ≥ 1− δ.

Proposition 2: If Assumptions 1-3 hold, for arbitrary δ ∈
(0, 1) and ϵ > 0, the Koopman bilinear surrogate model
(13) corresponding to the control affine system (10) is output
ϵ−controllable in probability 1− δ if m is sufficiently large.

Proof From [11], [12], for arbitrary δ and ϵ̄, given
zV(t0) = z̃m(t0), there exists the minimum number of
samples m <∞ such that the following inequality holds:

P (∥zV(t)− z̃m(t)|| ≤ ϵ̄) > 1− δ, (14)

if m ≥ m = O( N
ϵ̄2δ ), where ∥·∥ is 2-norm; and zV(t) and

z̃m(t) are propagated according to (12) and (13), respec-
tively, but using the same controller u(t). For the details on
computing m can be found in [11], [12]. Meanwhile, the
error between the true state and the prediction from (13)
satisfies the following inequality:

∥x(t)−HN z̃m(t)∥
≤ ∥x(t)−HNzV(t)∥+ ∥HNzV(t)−HN z̃m(t)∥ (15)

Since ∥x(t) −HNzV(t)∥ = 0 from Assumption 2, i.e., the
projection error term diminishes,

∥x(t)−HN z̃m(t)∥ ≤ ∥HNzV(t)−HN z̃m(t)∥
≤ ∥HN∥∥zV(t)− z̃m(t)∥. (16)

Thus, by setting
√
ϵ = ∥HN∥ϵ̄,

P (∥x(t)−HN z̃m(t)∥2 ≤ ϵ)

= P (∥x(t)−HN z̃m(t)∥ ≤
√
ϵ)

≥ P (∥HN∥∥zV(t)− z̃m(t)∥ ≤
√
ϵ)

= P (∥zV(t)− z̃m(t)∥ ≤ ϵ̄) ≥ 1− δ.

(17)

Accordingly, there exists a finite m ≥ m such that ∥x(tf )−
HN z̃m(tf )∥2 ≤ ϵ with probability 1−δ for any given ϵ > 0
and δ. ■

Corollary 2: If Assumption 2 does not hold but the
projection error can be bounded by ēr ∈ R > 0, i.e.,
0 < ∥x(t) − HNzV(t)∥ ≤ ēr, for arbitrary δ ∈ (0, 1) and
ϵ > ē2r , the Koopman bilinear surrogate model (13) is output
ϵ−controllable in probability 1− δ if m is sufficiently large.

Proof In (15), since 0 < ∥x(t)−HNzV(t)∥ ≤ ēr, by setting√
ϵ = ∥HN∥ϵ̄+ ēr,

P (∥x(t)−HN z̃m(t)∥2 ≤ ϵ)

= P (∥x(t)−HN z̃m(t)∥ ≤
√
ϵ)

≥ P (∥HN∥∥zV(t)− z̃m(t)∥ ≤
√
ϵ− ēr)

= P (∥zV(t)− z̃m(t)∥ ≤ ϵ̄) ≥ 1− δ.

(18)

Accordingly, same as Proposition 2, there exists m ≥ m
such that ∥x(tf )−HN z̃m(tf )∥2 ≤ ϵ with probability 1− δ.
■

In summary, the Koopman bilinear surrogate model ob-
tained from a controllable control affine system becomes
ϵ−controllable in probability and thus, the Koopman bilinear
surrogate model using the gEDMD (13) is not exactly
output controllable but moves toward the given desired state
arbitrarily closely if Assumption 2 holds; and up to a certain
closeness proportional to ē2r if there exists the projection
error.

IV. NUMERICAL SIMULATION

A. SO(2) qaudrotor model

We provide numerical simulation results using a planar
3DOF quadrotor model. The nonlinear dynamics of the
quadrotor can be written as

ṗ = v,

v̇ = −ge2 + (1/ms)R
TΣ2

i=1Tie2

θ̇ = ω,

ω̇ = (l/Jy)Σ
2
i=1(−1)iTp,

(19)

where R ∈ R2 is the rotation matrix in SO(2) with angle
θ, p is the position, v is the velocity, ω is the angular
velocity, Jy is the rotational inertia, ms is the mass of the
quadrotor, l is the arm length from the center of gravity
to the rotors, g is the gravitational acceleration, Ti is the
thrust from each rotor i, and e2 = [0, 1]T is the unit vector
in z−direction of the global frame. The parameters of the
quadrotor model are borrowed from Holybro X5001 with
some minor modifications.

We substitute Ti = 1
2mg + ∆Ti, where ∆Ti denotes the

thrust deviation from the trim thrust 1
2mg for i = 1, 2.

The dictionary up to k−th order is defined as ψ(x) =
[ψ̄1(x), ψ̄2(x)]

T where

ψ̄1(x) =
[
pT , vT , θ, ω, 1

]
,

ψ̄2(x) =
[
sin θ, cos θ, · · · , ωk sin θ, ωk cos θ

]
.

(20)

Then, from the recursive relation of the observables in ψ̄2(x)

Lψ2,2j+1 = ψ2,2j+4 + (jl/Jy)ψ2,2j−1Σ(−1)i∆Ti,

Lψ2,2j+2 = −ψ2,2j+3 + (jl/Jy)ψ2,2jΣ(−1)i∆Ti, (21)

for ∀j < k, where ψq,p means the p-th element in ψ̄q .
Facilitating the results in [22], where the three-dimensional

quadrotor analysis was conducted, one can verify that the
lifted function space of the planar quadrotor dynamics (19)

1https://github.com/PX4/PX4-gazebo-models
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Fig. 1: Semi-log plot of the mean projection error computed
from 100 trajectories with each distinct dictionary size N =
9, 11, 13, 15, 17
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Fig. 2: Trajectories generated by the projected infinitesimal
generator Lu

V

can be spanned by the countably infinite size of dictionary
ψ(x), i.e., if k → ∞. In other words, one can exactly
represent the dynamics of the quadrotor using ψ(x) as
N → ∞; and the projection error converges to 0 accordingly.
Based on this, we first generate the projected Koopman
bilinear surrogate models (12) by increasing k from 1 to
5, where N = 2k + 7. Then, the relative error is computed
as

∆x(t) =
||x(t)−HNzV(t)||2

||x(t)||2
(22)

which shows the accuracy of the projected Koopman bilinear
surrogate model with respect to the true system. The log
mean error is obtained by computing the mean of the
relative error, log((1/mI)Σ

mI
i=1∆xi(tf )), from 100 randomly

generated trajectories, i.e., mI = 100, where ∆xi(tf ) is
computed at the i−th simulation. The initial states of random
trajectories are sampled from a polytope P =

{
x ∈ R6|

p ∈ [−1.5, 1.5]2, v ∈ [−1.0, 1.0]2, θ ∈ [−π/9, π/9],
ω ∈ [−π/18, π/18]} following the uniform distribution.

The trajectories are generated under the same control input
u = Kx(t) where the cascade controller and its gain K are
designed by following [23].

Figure 1 shows the relative approximation error of the
projected Koopman bilinear model as N increases. The final
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Fig. 3: Box plot of the sampled relative error between the true
system state x(t) and the state of approximated Koopman
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m

time for the projection error computation is set as tf = 0.1
seconds. As one can easily observe, the error exponentially
reduces as N increases which agrees with our expectation
that the projection error will be reduced as the size of ψ(x)
is increased. Meanwhile, Figure 2 describes the predicted
trajectories generated for 1.5 seconds. In the figure, the
circle represents the shared initial position, the blue line
is the true trajectory, and the other colored lines represent
the trajectory using the different Koopman bilinear surrogate
models corresponding to distinct N = 9, 11, 13, 15, and
17, respectively. It is noticeable that the trajectory generated
from the Koopman bilinear surrogate model almost coincides
with the true trajectory if N is sufficiently large, i.e., N = 17,
thereby proving the projection error diminishes as k → ∞.

B. Simulation results using gEDMD and Approximated
Koopman bilinear surrogate model

We constructed the approximated infinitesimal generator
L̃u
m using the samples generated from (19), but without

knowing the model. In other words, we computed the approx-
imated Koopman bilinear surrogate model in a purely data-
driven manner using the gEDMD. To this end, we collected
uniformly distributed samples from the same polytope P as
the previous analysis. Note that the samples are collected
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for each autonomous system, respectively. In other words,
the samples are collected from three autonomous systems
corresponding to (∆T1,∆T2) ∈ {(0, 0), (1, 0), (0, 1)}, and
then the infinitesimal generators L̃e0

m , L̃e1
m , and L̃e2

m are
computed, respectively. The value of k is set to be 17 in
this simulation.

Figure 3 is the results of the Monte Carlo simulation
showing the relative error between the true system and the
approximated Koopman bilinear surrogate model obtained
from the distinct number of samples, m, at tf = 0.1.
The relative error computation follows (22), but substituting
HN z̃m(t) instead of HNzV(t). We performed 100 Monte
Carlo simulations per each m to compute the statistics. In
the figure, the box represents 0.25 to 0.75 quantiles of the
data, while the middle line is the median. It is clear that the
relative error and its variance tend to decrease as m increases.
However, there exists the non-zero error, i.e., ∆x ̸= 0, due to
the both projection and finite-data error. This also aligns with
Proposition 2 and Corollary 2 where arbitrary error bound
ϵ and confidence 1 − δ can be obtained if the number of
samples m is sufficient.

Such a tendency is more clearly observed in Fig. 4 which
presents the 1.5 seconds trajectory prediction results using
gEDMD with different numbers of samples. In the figure, the
circle represents the initial position of the quadrotor and the
blue trajectory represents the true trajectory. Meanwhile, the
other colored trajectories describe the trajectories generated
from different L̃u

m for each distinct number of samples, m.
As one can easily notice, the trajectory tends to get closer
to the true trajectory as m increases, as shown in Fig. 3.
These results prove that one can represent the behavior of
the system only using the given data, even if the original
system is unknown. Furthermore, the generated Koopman
bilinear surrogate model gradually retrieves the controllabil-
ity property of the original system as the number of data
increases according to Proposition 2 and Corollary 2. Thus,
one can justify the existence of the controllable lifted system,
given the knowledge that the original control affine system
is controllable, if a sufficient amount of data is provided.

V. CONCLUSION

In this paper, we investigated the controllability prop-
erty of the Koopman bilinear surrogate model, which is
constructed from the data sampled from a controllable
continuous-time control affine system. Assuming the dictio-
nary can describe the state of the system, we analyzed that
the Koopman bilinear surrogate models using the exact and
projected infinitesimal generator become output controllable,
and that of the approximated generator using the generator
extended dynamic mode decomposition (gEDMD) becomes
output ϵ−controllable in probability, respectively. As future
works, a more rigorous analysis on the effect of the projec-
tion error will be performed.
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