
Maximizing Reachability in Factored MDPs via Near-Optimal
Clustering with Applications to Control of Multi-Agent Systems

Carmel Fiscko1†, Soummya Kar2, and Bruno Sinopoli1

Abstract— We consider cluster-based control of agents mod-
eled as a transition-independent Markov decision process
(MDP), and the objective of assigning agents to clusters to
maximize the size of the reachable state space. This goal is
relevant to applications for which the same MDP model may
be used to compute policies for different reward functions.
The system controller wishes to define clusters to maximize
flexibility within the attainable outcomes. Under the transition-
independent MDP formulation, we first show that the size of
the reachable state space is a submodular function. While
maximizing the reachable state space subject to a desired
number of clusters is a hard problem, properties of submodular
optimization can be leveraged to propose approximate cluster-
ing techniques. We next demonstrate that a greedy clustering
approach is a viable approximate solution and has a bounded
optimality gap. We compare the performance in terms of value
and computation complexity in using the flexibility-optimized
clustering assignment versus a clustering assignment optimized
for a specific reward function; there will be a loss in value at
a savings in complexity. Finally, we demonstrate the utility of
the flexibility-optimized clustering assignment in simulation on
the same MDP model with various reward functions.

I. INTRODUCTION

Finding an optimal control policy by leveraging a system
model is a well-understood goal. An advantage of model-
based techniques is that they enable generalized understand-
ing of a system, as the same model can be re-used to find
policies to achieve different control objectives.

In the context of reinforcement learning (RL), building
models of the state-action to state transition matrix is difficult
due to the large size of the state and action spaces. In
particular, modeling multi-agent systems is a combinatorial
problem, and the “curse of dimensionality” means that it
takes longer and longer to find models and policies as the
number of agents becomes large. It is therefore important to
investigate methods that leveraging systems’ internal struc-
ture to reduce the scale of the problem.

One such method to handle complex state spaces is the
factored or transition-independent MDP [1], in which the
state and/or action spaces are expressed as the Cartesian

1Carmel Fiscko and Bruno Sinopoli are with the Dept. of Electrical
and Systems Engineering at Washington University in St. Louis, MO.
{carmel, bsinopoli}@wustl.edu

2Soummya Kar is with the Dept. of Electrical and Computer
Engineering at Carnegie Mellon University in Pittsburgh, PA.
soummyak@andrew.cmu.edu

†This material is based upon work supported by the National Sci-
ence Foundation Graduate Research Fellowship Program under Grant No.
DGE1745016. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation. Additional support
provided by the Hsu Chang Memorial Fellowship in ECE.

product of some relevant smaller set. This structure extends
into the transition matrix, in which each transition probability
may be expressed as a product. This structure reduces the
scope of the state and policy spaces, therefore accelerating
the learning process and aiding efficient exploration [2].
Factored MDPs in particular have been used to model multi-
agent system applications [3], [4].

The factored MDP formulation may used to find policies
for centralized control of a multi-agent system. We consider
problems where a central planner (CP) transmits signals to
the agents with the purpose of controlling the system to a
desirable set of states. The goals of the CP and the agents are
arbitrary and are not assumed to be necessarily cooperative
or competitive.

Again, the trade-off between control performance and
computation tractability must be discussed, and can be
addressed via structural considerations. One strategy is to
partition agents into disjoint clusters and design the CP’s
policy per-cluster instead of per-agent. In summary, this tech-
nique reduces the problem scope by restricting to a subset
of the action space. For some given number of clusters, the
clustering assignment that maximizes the resulting policy’s
value function can thus be chosen.

While the proposed clustering routine achieves good per-
formance for a specific task, the efficiency breaks down if the
goal of the controller changes. Must the CP re-optimize over
the entire space of clustering assignments before computing
a policy for this new objective? For example, consider a
traffic example where, under normal operation, travelers may
be grouped by category such as car, bus, and pedestrian.
In an emergency scenario, however, it is more natural to
classify these agents as first-responder or non-first-responder.
This shows that depending on the control objective, the best
clustering assignment of the agents can change.

In this paper, instead of optimizing clusters for a specific
task, we find the clustering configuration that maximizes the
size of the model’s reachable space. This method enables
the CP to solve for the clustering assignment once, then re-
use the MDP model and the fixed clusters with new reward
functions. The logic is as follows: if a state is reachable, then
there will exist a policy that will take the system to that state
at some time with non-zero probability. If the CP’s objective
is based on controlling the system to specific states, then
designing clusters based on this reachability criterion thus
maximizes the CP’s flexibility to change their defined reward
function. While this method does not optimize for the value
of a specific task, it may be used as a starting point to find
valid policies without having to re-optimize over the space

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 7964

of clusters when the reward function is changed.
In contrast, re-using the clustering assignment found for

a particular goal as the starting point for a new goal may
not always be a valid strategy. The clusters designed for
objective A may have no relation to the rewarded states
for a new objective B. This means that under the clustering
structure of A, there are no guarantees that a policy can be
found that takes the system to a rewarded state for B. As
computation is a particular concern, it is not desirable to
pose a reward function for which no policy may exist. We
note that designing clusters for the purpose of reachability
is only relevant for applications with highly sparse transition
matrices, as dense transitions naturally imply that all pair-
wise combinations of states are reachable.

Reachability has been studied within the context of general
RL problems as it can influence decisions on which algorithm
to implement and the resulting performance and guarantees
[5], [6]. For example, ideas stemming from reachability have
been used to propose stopping methods for value iteration [7]
and as guidance for exploration in learning [8].

The problem of clustering agents (factors) for control in
a MDP model has been studied in the context of sensor
placement [9], autonomous vehicles [10], and event detection
[11]. These works share the common method of posing the
problem as optimization of a submodular objective function
subject to some constraint set. In particular, submodularity
is a useful property to establish for set-valued optimization
functions as it provides useful properties to quantify iterative
improvement [12], [13]. Useful submodular functions for
reinforcement learning include the value function of factored
MDPs [14][15] and random walk times [16].

The main contribution in this paper is proving that the
size of the reachable state space is submodular with respect
to clustering assignments of the agents, and thus a cluster-
ing assignment can be found by adapting techniques from
submodular optimization. We are not aware of another work
that proposes clustering agents explicitly for the purpose of
maximizing reachable sets.

Section II discusses the preliminaries of the multi-agent
MDP model and defines reachability. Section III describes
the optimization problem. Section IV introduces the defini-
tion of submodularity and establishes the main theorem. An
algorithm to approximately solve the presented optimization
problem is shown in Section V, and simulations are shown
in Section VI.

II. PROBLEM SETUP

A. Preliminaries

Consider a set of agents (factors) N = {1, . . . , N}. Let
there be a factored MDP described by the tuple M =
(S,A, r, T, γ); each element will be defined in this section.
The state space factors across the agents as S = S1×· · ·×SN

where one state describes one combination of substates
across all agents s = [s1, . . . , sN]. Any state with a set
subscript as in sX references the elements of the state s
indexed by the set X ; for example, sn means the substate of
agent n within the greater state.

The controller can assign an action α ∈ A1 to each
agent where A1 is a finite set of choices. This yields the
overall joint action space A =

⊗N
n=1A1. (Unique action

spaces for each agent may be considered, but this paper will
consider identical agent action spaces.) While best control
performance of the MDP can be achieved by assigning each
agent a possibly unique action at any moment in time,
computing controls at that fine granularity can be expensive
in terms of computation and storage. For these reasons, the
controller may instead wish to group agents by common
characteristics and assign controls per cluster instead of per
agent.

Definition 1: A clustering or a partition of a set N is a
collection of subsets C = {c1, . . . , cC} such that c1 ∪ · · · ∪
cC = N and ci ∩ cj = ∅ for all i, j. Let Ω denote the set of
all possible clusterings.

Definition 2: The size of a clustering is the number of
clusters, i.e. the number of subsets |C|.

Given a clustering assignment C, let C(n) denote cluster
assignment of agent n. Let αC(n) denote the action assigned
to agent n’s cluster and thus to agent n. The action space
given a particular C is thus,

AC = {{αC(1), . . . , αC(N)} | αc(n) ∈ A1, n ∈ N}. (1)

The size of the action space is |A1||C|. If unique controls
were given to each agent, the size would be |A1||N |.

The rest of the factored MDP definition is quite stan-
dard. The reward function is defined to give a bounded
deterministic scalar reward for each state-action pair. We
assume the reward function satisfies the separable structure
r(s,α) =

∑
n∈N rn(sn, αC(n)), which corresponds to a

summation across agent-specific rewards.
Next, the transition kernel T : S × AC → ∆(S) defines

the state-action to state transition probabilities, where ∆(S)
refers to the probability simplex over S. The transition
assumed to be stationary and satisfy the factored Markovian
form P (s′|s,α) =

∏
n∈N P (s′n|s, αC(n)). This factorization

structure means that each agent has an independent transition
when conditioned on the current state and action, and each
agent is only dependent on the action assigned to it from the
central controller. The final component γ ∈ (0, 1) is a scalar
discount factor that diminishes future rewards.

The goal of an MDP is to solve for a control policy π :
S → ∆(AC). The value of a policy π is the expected reward,

V π
H(s) ≜ E

[
H∑
t=0

γtr(st,αt)

∣∣∣s0 = s,αt ∼ π(st), st+1|st,αt ∼ T

]
,

(2)

where H is a time horizon. The value for an infinite time
horizon is attained by V π(s) ≜ limH→∞ V π

H(s). An optimal
policy for an infinite time horizon, therefore, is a maximizer
π∗ ∈ argmaxπV

π(s). As we consider a factored MDP, the
policy can be independently factored across the agents given
a state [17].

7965

B. Reachability

Given a MDP model M, the feasibility of control objec-
tives may be assessed by considering their reachability.

Definition 3: We say that a state j ∈ S is reachable from
state i ∈ S if there exists an integer t and some {αt}t≥0

such that P (st = j|s0 = i,α0, . . . ,αt) > 0.
The pair-wise reachability between any two states can be

determined according to the following criterion.
Definition 4: Define the composite adjacency matrix T̃ as,

T̃ = B (T (α)) , (3)

where T (α) is the |S| × |S| matrix where the element
[T (α)]ij = P (s′ = j|s = i,α), and the operation B is
defined element-wise as [B(X)]ij = 1 if Xij > 0 and zero
otherwise.

Let the matrix R(AC) be defined as,

R(AC) = B

[|S|−1∑
t=1

(∑
α∈AC

T̃ (α)
)t
]
. (4)

According to [18], a state j is reachable from i if and only
if [R(AC)]ij > 0. Furthermore if a state is reachable, then a
policy exists such that the system can be controlled to go to
that state in finite time.

The overall size of the reachable set given a clustering
configuration |R(AC)| can thus be calculated as,

|R(AC)| = 1⊤R(AC)1, (5)

where 1 is a vector of 1s of the appropriate dimension.

III. OBJECTIVE

The goal in this paper is to find a clustering assignment
C that satisfies,

max
C

f(C), (6)

s.t. |C| ≤ C,

where f(C) ≜ |R(AC)| and C is a maximal number of
clusters. Intuitively, this objective corresponds to designing
internal structure of the action space to achieve generalization
within the transition matrices.

Unfortunately, (6) is difficult in general and within the
class of NP-hard problems [19]. For submodular objective
functions, however, this problem can be made tractable by
leveraging useful results of submodularity to find approxi-
mate solutions [12]. The general version of this problem can
be posed as optimization of a submodular function subject
to a partition matroid constraint [13].

In this paper, we will establish that the desired objective
function, the size of the reachable state space, is submodular
with respect to the clustering assignment of the agents, and
use this fact to formulate approximate solutions to (6).

IV. SUBMODULARITY

In this section, we will introduce the concept of sub-
modularity and show that size of the reachable state space
is a submodular function with respect to the clustering
assignment of the agents.

Submodularity is a property of set-valued functions, re-
lated to convexity, where the marginal benefit to evaluating
the function on more elements decreases as the base set
grows larger. This notion is formalized in the following
definition.

Definition 5: A function f : 2Ω → R is submodular if for
every A ⊆ B ⊆ V and e ∈ V \B it holds that,

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B). (7)

Equation (7) displays the “diminishing returns” property of
submodular functions.

The submodularity property can be used to help approxi-
mate optimal solutions to (6). The performance gap between
two potential guesses, A and B as in Definition 5, may be
bounded, and thus a sequence of monotonically improving
approximate solutions may be constructed.

A. Submodularity of Reachable Space

In this section, we will lay out the necessary definitions
and notation to establish submodularity of the size of the
reachable state space.

Definition 6: A clustering C1 is a subset of C2 if for every
c ∈ C1, there exists a set of clusters {c′1, . . . , c′c} ⊆ C2 such
that c = {c′1, . . . , c′c}.

Example 1: For N = {1, 2, 3, 4}, the clustering C1 =
{{1, 2}, {3, 4}} is a subset of C2 = {{1, 2}, {3}, {4}}, but
not a subset of C3 = {{1}, {2, 3, 4}}.

Definition 7: We define the union of two clustering as-
signments C1 and C2 to be,

C1 ∪ C2 = {c1 ∩ c2| ∀ c1 ∈ C1, c2 ∈ C2}. (8)

Example 2: For N = {1, 2, 3, 4}, C1 = {{1, 2}, {3, 4}},
and C3 = {{1}, {2, 3, 4}}, the union C1 ∪ C3 =
{{1}, {2}, {3, 4}}.

Lemma 1: If C1 ⊆ C2 then C1 ∪ C3 = C2 ∪ C3.
Proof: In the definition of the union C1 ∪ C3 = {c1 ∩

c3|∀ c1 ∈ C1, c3 ∈ C3}, substitute the definition of cluster
subset {{c′1, . . . , c′c}1 ∩ c3}. Then note this set of sets is
equal to {c2 ∩ c3|∀ c2 ∈ C2, c3 ∈ C3} = C2 ∪ C3 as there
exists c2 = {c′1, . . . , c′c}1 across all possible c2 ∈ C2.

Lemma 2: If C1 ⊆ C2, then |R(AC1
)| ≤ |R(AC2

)|.
Proof: As C1 ⊆ C2, k ≤ C. Recall that T̃ (α) ≥ 0

for all entries. Then according to the definition of clustering
subsets and (1), the action space of C1 will be a subset of
the action space of C2. Thus,∑

α∈AC2

T̃ (α) =
∑

α∈AC2
\AC1

T̃ (α) +
∑

α∈AC1

T̃ (α),

≥
∑

α∈AC1

T̃ (α).

7966

With substitution,

R(AC2) = B

[|S|−1∑
t=1

(∑
α∈AC2

T̃ (α)
)t
]
,

≥ B

[|S|−1∑
t=1

(∑
α∈AC1

T̃ (α)
)t
]
= R(AC1

),

where again the ≥ operator is evaluated element-wise. Thus,

1⊤R(AC2
)1 ≥ 1⊤R(AC1

)1, (9)
⇒ |R(AC2

)| ≥ |R(AC1
)|. (10)

The combination of these lemmas and properties leads to
the main theorem.

Theorem 1: (Submodularity) The size of the reachable
state space |R(C)| is submodular with respect to C.

Proof: Note that a particular clustering assignment
maps to a particular action space, which in turn maps to
a reachable set. Thus, |R(C)| : 2Ω → R.

Next, consider two clusterings C1 ⊆ C2 and a third
clustering C3 ∈ Ω \ (C2 ∪ C0) where |C3| ≥ |C2| and C0
is the set of all possible subsets of C2. Let C4 = C1 ∪ C3. It
holds that |C1| ≤ |C2| ≤ |C3| ≤ |C4|. Then,

|R(AC1∪C3
)| − |R(AC1

)| = |R(AC4
)| − |R(AC1

)|. (11)

Then by Lemma 1,

|R(AC2∪C3
)| − |R(AC2

)| = |R(AC4
)| − |R(AC2

)|. (12)

By Lemma 2, (11) will be greater than (12), thus satisfying
(7) and completing the proof.

Corollary 1: The size of the reachable set from an initial
state i is submodular with respect to C.

Proof: This result follows from (9) by replacing the
1 vectors with vectors of the form [0, . . . , 0, 1, 0, . . . , 0]⊤

where the entry with 1 entry is the index i.

V. ALGORITHM

We can find an approximate solution to (6) in an efficient
manner by leveraging the established submodularity property
of the objective function. It is well known in submodular
optimization that a greedy method can yield good results
and is simple to evaluate. To implement the approximate
reachability maximization routine, the following algorithm
can be proposed.

In general, C will refer to the desired final number of
clusters and k will be the number clusters at an intermediate
step. The initialization defines one cluster of all the agents.
At each subsequent query, the algorithm searches for an
existing cluster of agents U and a split of U into two new
clusters {U \ X,X} that provides maximum improvement
to |R|. This is repeated until C clusters are achieved and
the final size |R| is returned. The entire process is shown in
Algorithm 1.

Using known properties of submodularity, it is possible to
evaluate the resulting performance of this solution technique.

Algorithm 1: Greedy Splitting Algorithm

1 C1 = {N};
2 f1 = f(C1);
3 for k ∈ {2, . . . , C} do
4 (Xk, Uk−1)← argmax{f(X) + f(U \X)−

f(U) | ∅ ⊂ X ⊂ U, U ∈ Ck−1};
5 Ck ← {Ck−1 \ Uk−1} ∪ {Xk, Uk−1 \Xk};
6 fk = f(Ck);
7 end

Theorem 2: (Optimality gap) The clustering assignment
Ĉ found via greedy splitting in Algorithm 1 satisfies,

|R(Ĉ)| ≥ 1

2
|R(C∗)|, (13)

where C∗ is a solution to (6).
Proof: Given Theorem 1, see [20].

It is known for problems of the form (6), a (1 − 1/e)
approximation is optimal. The authors of [13] propose an
algorithm to find solution that satisfies this optimal ap-
proximation (in expectation); however, the implementation’s
running time is costly (the authors estimate Õ(n8)). For this
reason, we instead use the greedy implementation with the
(1− 1/2) approximation.

A. Complexity

To evaluate the computation complexity of Algorithm 1,
we separate analysis of the outer loop iterations, specifically
the number of times the argmax step must be evaluated in
4, and inner looop oracle queries to f .

As a comparison method, the same procedure Algorithm
1 can be used to compute clusters for specific factored
MDPs with submodular reward functions by defining f ≜ V .
This holds because submodular reward functions yield sub-
modular value functions [17]. Clearly, the number of outer
loop iterations will be on the same order when computing
clusters for reachability or for V . In addition, if k value
functions can be considered, then the savings in terms of
outer loop complexity will on the order of 1/k because
the reachability-optimized clusters will only need to be
computed one time. The main difference in computation time
will thus be from oracle calls to the chosen f . In terms of
inner loop complexity, evaluating |R(C)| will be faster than
computing V ∗(C). The composite adjacency matrix T̃ can be
pre-computed, so the product of |S| − 1 square matrices of
size |S| will need to be evaluated to calculate the reachability
criterion in equation (4). As it is assumed these matrices are
highly sparse, libraries optimized for operations on sparse
matrices can further speed computation time. In particular,
the multiplication of sparse matrices with at most d nonzero
elements can be achieved with a complexity of O(d|S|) [21].

In comparison, computation of the optimal value function
requires solving the entire MDP for each proposed clus-
ter assignment. To name two standard techniques, policy
iteration has a per-iteration complexity of O(|A1|C |S|2 +
|S|3) and value iteration has a per-iteration complexity of

7967

Fig. 1. Size of the reachable state space as a result of Algorithm 1 as a
function of the average sparsity of the transition matrices. Note that adding
clusters leads to submodular improvement, and the sparseness correlates
with worse reachability.

O(|A1|C |S|2) which can be improved to O(|A1||S|2) for
factored MDPs [14]. Both of these methods are contractions
and theoretically need an infinite number of iterations to
converge. In practice, the number of iterations will be a
function of the approved error tolerance of the application.

VI. EXPERIMENTS

In this section, simulations will demonstrate how reacha-
bility of the MDP model changes with respect to clustering
assignments and how the proposed reachability-optimized
clusters perform for specific tasks.

A. Submodularity of Reachable Space

This first experiment demonstrates how the agents may be
clustered to maximize the size of the reachable state space
via Algorithm 1. Consider a system with N = 5 agents,
where each agent has a subspace of size |Sn| = 3 and the CP
can, at most, select between |A1| = 3 actions to transmit to
each agent/cluster. The transition factors for each agent were
randomly generated but where biased to be highly sparse.

The results of this experiment are shown in Figure 1. The
different lines on the plot show the results for transition
matrices of varying sparseness, where average sparsity is
defined as the number of non-zero elements in the transition
matrix divided by the matrix size and averaged across the
action space. Note that the graph clearly displays the “dimin-
ishing returns” property; as more clusters are added to the
definition of the action space, the marginal improvement to
the size of the reachable state space decreases. This suggests
that the greedy splitting approach can be used as a structured
method for designing the action space for the purpose of
maximal reachabilit. In addition, these results confirm that
as the transition matrices become more sparse, it becomes
harder to guarantee that all pair-wise combinations of states
will be reachable.

B. Performance of Reachability-Optimized Clusters

The next experiment investigates how the reachability-
optimized clustering configurations perform for general tasks
and can out-perform clusters optimized for a specific task.

We simulate a system of N = 5 agents, where each agent
has a subspace of size |Sn| = 3 and the CP can, at
most, select between |A1| = 3 actions to transmit to each
agent/cluster. We consider two different reward functions,
rA(s) =

∑
n∈N 1(sn = 1) and rB(s) =

∑
n∈N 1(sn =

2). Note that rA(s) and rB(s) are identically distributed,
so differences in the value function will arise due to the
policy and transitions. Higher values will be correlated with
reachability of more highly rewarded states. Again, sparse
transition factors for each agent were randomly generated.

Next, the clustering assignment was found according to
three different metrics: maximizing reachability, maximizing
the value function of system MA defined with submodular
reward function rA, and maximizing the value function of
system MB defined with submodular reward function rB
where rB ̸= rA. As submodular reward functions yield
submodular value functions [17], Algorithm 1 was used
to find clustering assignments that optimize for the value
function.

The results of this experiment are shown in Figures 2 and
3. Each chart shows the value of the corresponding system
as produced by the different clustering assignments. Note
that the values for C = 1 and C = N are equal as there
is only one possible clustering assignment for these number
of clusters. As expected, the best performance is found by
the clusters optimized for the specific value functions of
the system. In second place is the reachability-optimized
clustering assignment, and the worst performance is found by
clusters for the opposite system. These results are logical, as
the clusters optimized for MA should have arbitrary perfor-
mance for systemMB because rA and rB are not related. In
comparison, good value can be attained via the reachability-
optimized clusters for both MA and MB because this
criteria ensures that policies that control the system to
reachable states will exist. It is not guaranteed, however, for
the reachability-optimized clusters to yield higher value. In
terms of computation complexity, only two reward functions
were considered so the outer-loop complexity savings was
a factor of 1/2. If k reward functions were considered, this
factor would be further reduced to 1/k.

This example shows that if the CP’s objective can change
from rA to rB , they would achieve better performance both
terms of value and in terms of computation complexity by
using the reachability-optimized clusters.

VII. CONCLUSION

In this work we consider control of a multi-agent system
modeled as a factored MDPs where scale is addressed by
partitioning agents into disjoint clusters and exerting controls
per-cluster instead of per-agent. Instead of optimizing the
cluster assignments for a particular reward function, we
instead propose designing clusters to maximize the size
of the reachable state space. The resulting clusters ensure
that valid policies can be found across the state space; this
allows the controller to use the same cluster assignment while
generalizing to different goals. Solving for the reachability-
optimized clusters one time is a more efficient strategy than

7968

Fig. 2. Comparison on system MA of clustering assignments optimized
for V ∗

A , |R(C)|, and V ∗
B . Note that as rA ̸= rB , the clusters designed for

system MB do not have meaning for MA, leading to worse performance.
The reachability-optimized clusters help ensure that policies exist that attain
rewarded states for both MA and MB .

Fig. 3. Comparison on system MB of clustering assignments optimized
for V ∗

B , |R(C)|, and V ∗
A . Note that as rA ̸= rB , the clusters designed for

system MA do not have meaning for MB , leading to worse performance.
The reachability-optimized clusters help ensure that policies exist that attain
rewarded states for both MA and MB .

re-computing clusters for each possible reward function.
We show that the size of the reachable state space is

submodular with respect to the clusters of the agents. Thus,
ideas from submodular optimization may be applied to this
problem to analyze how the reachable space evolves with the
cluster definition. We demonstrate that the greedy method
can be used to find (1 − 1/2) approximate solutions that
are easy to evaluate. Future work will be done to quantify
performance of the reachability-optimized clusters and to
expand these conceptual clustering ideas to the model-free
setting via exploration.

REFERENCES

[1] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman, “Efficient solu-
tion algorithms for factored mdps,” Journal of Artificial Intelligence
Research, vol. 19, pp. 399–468, 2003.

[2] I. Osband and B. Van Roy, “Near-optimal reinforcement learning in
factored mdps,” Advances in Neural Information Processing Systems,
vol. 27, 2014.

[3] C. Guestrin, D. Koller, and R. Parr, “Multiagent planning with factored
mdps,” Advances in neural information processing systems, vol. 14,
2001.

[4] Y. Yang and J. Wang, “An overview of multi-agent reinforce-
ment learning from game theoretical perspective,” arXiv preprint
arXiv:2011.00583, 2020.

[5] P. Auer, T. Jaksch, and R. Ortner, “Near-optimal regret bounds for
reinforcement learning,” Advances in neural information processing
systems, vol. 21, 2008.

[6] Y. Bai, C. Jin, and T. Yu, “Near-optimal reinforcement learning with
self-play,” Advances in neural information processing systems, vol. 33,
pp. 2159–2170, 2020.

[7] S. Haddad and B. Monmege, “Reachability in mdps: Refining conver-
gence of value iteration,” in Reachability Problems: 8th International
Workshop, RP 2014, Oxford, UK, September 22-24, 2014. Proceedings
8. Springer, 2014, pp. 125–137.

[8] K. Kawaguchi, “Bounded optimal exploration in mdp,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1, 2016.

[9] A. Krause, R. Rajagopal, A. Gupta, and C. Guestrin, “Simultaneous
placement and scheduling of sensors,” in 2009 International Confer-
ence on Information Processing in Sensor Networks. IEEE, 2009,
pp. 181–192.

[10] A. Ma, M. Ouimet, and J. Cortés, “Hierarchical reinforcement learning
via dynamic subspace search for multi-agent planning,” Autonomous
Robots, vol. 44, no. 3-4, pp. 485–503, 2020.

[11] A. Kumar and S. Zilberstein, “Event-detecting multi-agent mdps:
Complexity and constant-factor approximation,” 2009.

[12] A. Krause and D. Golovin, “Submodular function maximization.”
Tractability, vol. 3, pp. 71–104, 2014.

[13] G. Calinescu, C. Chekuri, M. Pal, and J. Vondrák, “Maximizing a
monotone submodular function subject to a matroid constraint,” SIAM
Journal on Computing, vol. 40, no. 6, pp. 1740–1766, 2011.

[14] C. Fiscko, S. Kar, and B. Sinopoli, “Efficient solutions for targeted
control of multi-agent mdps,” in 2021 American Control Conference
(ACC). IEEE, 2021, pp. 690–696.

[15] R. Kumar, P. Varakantham, and A. Kumar, “Decentralized planning in
stochastic environments with submodular rewards,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017.

[16] A. Clark, B. Alomair, L. Bushnell, and R. Poovendran, “On the
structure and computation of random walk times in finite graphs,”
IEEE Transactions on Automatic Control, vol. 64, no. 11, pp. 4470–
4483, 2019.

[17] C. Fiscko, S. Kar, and B. Sinopoli, “Cluster-based control of transition-
independent mdps,” arXiv preprint arXiv:2207.05224, 2022.

[18] C. Fiscko, B. Swenson, S. Kar, and B. Sinopoli, “Control of parametric
games,” in 2019 18th European Control Conference (ECC). IEEE,
2019, pp. 1036–1042.

[19] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions—i,” Mathe-
matical programming, vol. 14, pp. 265–294, 1978.

[20] G. L. Nemhauser and L. A. Wolsey, “Best algorithms for approxi-
mating the maximum of a submodular set function,” Mathematics of
operations research, vol. 3, no. 3, pp. 177–188, 1978.

[21] R. Yuster and U. Zwick, “Fast sparse matrix multiplication,” ACM
Transactions On Algorithms (TALG), vol. 1, no. 1, pp. 2–13, 2005.

7969

