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Abstract— Humans have the ability to deviate from their
natural behavior when necessary, which is a cognitive process
called response inhibition. Similar approaches have indepen-
dently received increasing attention in recent years for ensuring
the safety of control. Realized using control barrier functions or
predictive safety filters, these approaches can effectively ensure
the satisfaction of state constraints through an online adaptation
of nominal control laws, e.g., obtained through reinforcement
learning. While the focus of these realizations of inhibitory
control has been on risk-neutral formulations, human studies
have shown a tight link between response inhibition and risk
attitude. Inspired by this insight, we propose a flexible, risk-
sensitive method for inhibitory control. Our method is based
on a risk-aware condition for value functions, which guarantees
the satisfaction of state constraints. We propose a method for
learning these value functions using common techniques from
reinforcement learning and derive sufficient conditions for its
success. By enforcing the derived safety conditions online using
the learned value function, risk-sensitive inhibitory control is
effectively achieved. The effectiveness of the developed control
scheme is demonstrated in simulations.

I. INTRODUCTION

Having a pause before responding is a mental technique
that helps humans perceive, control, and manage our emo-
tions. Human’s ability to think before reacting, especially in
difficult and complex situations, is a cognitive mechanism to
keep our actions in check. This cognitive process is called
inhibitory control, also known as response inhibition [1].
Response inhibition allows an individual to inhibit their
prepotent (natural and habitual) responses in order to select
a more appropriate (e.g. safer) behavior.

Independent from this foundation in psychology, response
inhibition has become increasingly popular in learning-based
control [2] and Reinforcement Learning (RL) [3] in recent
years, where safety is a major concern [4]. The idea is to
decouple optimality and safety by independently determining
safe and optimal control laws. Before applying an optimal,
but potentially unsafe control input to the real system, its
safety is checked, such that a safe control input can be
chosen instead [5]. Thereby, the prepotent optimal response
is inhibited to guarantee the safety of the closed-loop system.
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The challenge of this approach lies in finding safe policies
and efficient methods to determine the safety of a control
input online. When the dynamics of the systems are known
to exhibit a control-affine structure, control barrier functions
(CBF) can be effectively employed to address this chal-
lenge [6]. Since their analytical derivation for more flexible
classes of dynamical systems is difficult at best, techniques
from model predictive control have become popular for
computing safe backup strategies online [7], [8]. While such
predictive safety filters provide a conceptionally flexible ap-
proach for realizing inhibitory control, they generally suffer
from high computational complexity. This limitation can be
mitigated by combining ideas from reachability analysis [9]
or optimal control [10] with reinforcement learning tech-
niques to learn safety conditions and safe control laws offline,
such that resource-demanding computations can be avoided
during the application of the inhibited control law.

While these approaches allow the seemingly
straightforward realization of inhibitory control for ensuring
the safety of real-world systems, they do not consider the risk
of losing safety due to uncertainty arising from approximate
system models and process noise. This is in strong contrast
to humans, for which psychological studies have shown a
critical link between response inhibition and an individual’s
risk attitude (willingness to take risk or not) [11]. When
inhibitory control is implemented in technical systems
through analytically derived safety conditions such as CBFs,
this risk-sensitivity can be easily achieved by reformulating
standard conditions using risk measures [12]. However, the
extension to flexible approaches for constructing safety con-
ditions, e.g., using RL techniques remains an open problem.

We address this problem of realizing inhibitory control
with risk-awareness similar to humans for ensuring the safety
of a wide class of systems via the following contributions:

• Risk-sensitive safety conditions: To ensure the prob-
abilistic satisfaction of state constraints, we introduce
cost functions allowing us to express safety via risk-
sensitive conditions on the cumulative cost along system
trajectories. These conditions reveal an intuitive rela-
tionship between risk-aversion and safety probability.

• Safe policies and value functions through RL: Based
on these results, we develop an approach for deter-
mining safe policies and corresponding safety value
functions using common techniques from reinforcement
learning. The success of the proposed approach is shown
to be guaranteed under weak assumptions relating to the
controllability properties of the system dynamics.

• Inhibitory control through safety filters: By enforcing
the satisfaction of the derived safety conditions with
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the learned value function online, we obtain a risk-
sensitive safety filter. Moreover, we prove it to inherit
probabilistic safety guarantees from the safe policy
obtained through RL.

The remainder of this paper is structured as follows. In
Section II, the problem of rendering a given policy safe with
respect to state constraints using safety filters is formalized.
Our approach for realizing response inhibition in control
using risk-sensitive safety filters is derived in Section III.
In Section IV, the effectiveness of the proposed safety filter
is demonstrated, before the paper is concluded in Section V.

II. PROBLEM STATEMENT

We consider a discrete-time dynamical system1

xk+1 = f(xk,uk,ωk), (1)

where xk ∈ X ⊂ Rdx are states, uk ∈ U ⊂ Rdu are control
inputs, ωk ∈ Ω ⊂ Rdω , ωk ∼ ρ(xk) is independent process
noise drawn from a potentially state-dependent distribution
ρ(xk) with zero mean, and f : X × U × Ω → X denotes
an unknown, continuous transition function. We assume that
a nominal, potentially unsafe policy π∗ : X → U is given,
which can be obtained, e.g., using standard reinforcement
learning techniques [3].

The goal is to render the nominal policy safe using
inhibitory control of the form

π∗
safe(x) = argmin

u∈U
∥π∗(x)− u∥ (2a)

such that u is safe. (2b)

In this response inhibition, our notion of safety follows
the common principle of classifying the state space X into
a safe region Xsafe ⊂ X and an unsafe region Xunsafe =
X \ Xsafe. For example, the safe set Xsafe can represent
the joint angles for which self-collisions of a robotic ma-
nipulator are excluded. Due to the process noise ω with a
potentially unbounded probability distribution, it is generally
not possible to deterministically ensure that the system
never enters the unsafe state space Xunsafe. Therefore, we
define safety probabilistically through the following form of
forward invariance.

Definition 1: A policy π(·) is called δ-safe if there exists
a subset V ⊆ Xsafe such that P(f(x,π(x),ω) ∈ V) ≥ 1−δ
for all x ∈ V.
Since Definition 1 requires a form of forward invariance of
V, it immediately induces guarantees for all states along a
K-step trajectories of the form

P(xk ∈ V, ∀k = 1 . . . ,K) ≥ (1− δ)K , (3)

where xk is defined through iterative application of (1).
Hence, the considered notion of safety in this paper is
stronger than merely requiring the next state to lie in the
safe subset, i.e., P(f(x,π(x),ω) ∈ Xsafe) ≥ 1− δ.

1Notation: Lower/upper case bold symbols denote vectors/matrices,
blackboard bold letters denote sets, R+/R0,+ all real positive/non-negative
numbers, ∥ ·∥ the Euclidean norm, Ex[·] the expectation with respect to the
distribution of x, and P(·) the probability.

Based on the definition of δ-safety, we consider the prob-
lem of deriving a tractable safety condition (2b) for inhibitory
control, which is guaranteed to be feasible for some risk-
aversion as measured through δ. Since we assume the transi-
tion function f is unknown, solving this problem is generally
impossible without any further assumptions. Therefore, we
require the availability of a probabilistic model in the form of
a distribution over functions as formalized in the following.

Assumption 1: A probability distribution F over potential
dynamics f is known, i.e., f ∼ F .
In practice, suitable distributions over functions F can
be straightforwardly obtained using Bayes’ theorem, e.g.,
through Gaussian process regression [13]. Moreover, approx-
imate distributions can be learned using deep ensembles [14].
Therefore, this assumption is not restrictive in practice.

III. RISK-SENSITIVE INHIBITORY CONTROL

Even with the knowledge of F , determining a safety
condition (2b) is a challenging problem since we generally do
not know which subset V is suitable for Definition 1. Here,
we follow the ideas of [10] and employ RL techniques to de-
fine these subsets through a value function. For this purpose,
we first show how state constraints can be expressed through
risk-sensitive cost conditions in Section III-A. After deriving
these safety conditions, in Section III-B, we address the prob-
lem of learning a separate, so-called backup policy whose
pure focus lies on ensuring safety. Based on this policy, a
risk-sensitive safety filter for realizing inhibitory control in
reinforcement learning is finally presented in Section III-C.

A. State Constraints as Risk-Sensitive Cost Conditions

In order to express state constraints through risk-sensitive
cost conditions, we define the expected cumulative cost for
a policy π(·) as

Vπ(x) = Ef ,ω

[ ∞∑
k=0

γkc(xk)

]
, (4)

where c : Rdx → R0,+ denotes an immediate cost, γ ∈ (0, 1)
is a discount factor, and xk is defined through the iterative
application of (1) with x0 = x and uk = π(xk). If the
immediate cost c(·) can be used as an indicator of the unsafe
subset Xunsafe, there exists a sub-level set of Vπ(·) contained
in Xsafe, as guaranteed by the following lemma.

Lemma 1 ([10]): Assume there exists a constant ĉ ∈ R+,
such that the cost c : Rdx → R0,+ satisfies

c(x) ≥ ĉ ∀x ∈ Xunsafe. (5)

Then, there exists a constant ξ̄ ∈ R+, such that the intersec-
tion between the sub-level set Vξ̄

π = {x ∈ X : Vπ(x) ≤ ξ̄}
and Xunssafe is empty, i.e., Vξ̄

π ∩ Xunsafe = ∅.
Based on this lemma, we can choose any sub-level set Vξ

π

with ξ ≤ ξ̄ for showing δ-safety as introduced in Defini-
tion 1. As discussed in [10], the immediate cost c(·) for defin-
ing sub-level sets Vξ

π can be selected relatively freely, such
that simple choices as the indicator function are applicable in
principle. However, this choice does not provide informative
gradients, which complicates the learning process. Therefore,
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other cost functions such as rectified linear unit functions
generally need to be considered, even though they can
potentially lead to more conservative approximations of the
safe set Xsafe. To obtain suitable values for ξ̄, different ap-
proaches can be used. For example, potentially conservative
closed-form expressions can be employed as shown in [10].
Moreover, optimal solutions can be found by formulating
the search for ξ̄ as a robust optimization problem, which can
be solved numerically. Therefore, it only remains to derive
conditions that ensure the state stays in Vξ

π after a transition.
While this could be achieved using a probabilistic ”worst
case” consideration as shown in [10], this approach yields a
computationally challenging min-max problem for unknown
system dynamics. Therefore, we follow a fully probabilistic
approach by introducing the risk operator [15]

Rβ [C] =
1

β
log (E [exp (βC)]) (6)

for an arbitrary random variable C and risk parameter
β ∈ R+. This operator allows the derivation of a
computationally efficient condition for ensuring δ-safety as
shown in the following proposition.

Proposition 1: Consider a cost function c(·) satisfying (5).
If there exist constants ξ, β∈R+ with ξ<ξ̄ such that

Rβ [Vπ(x
+)] ≤ ξ, ∀x ∈ Vξ̄

π (7)

holds for x+=f(x,π(x),ω), then, π(·) is δ-safe on Vξ
π with

δ = exp
(
β
(
ξ − ξ̄

))
. (8)

Proof: Due to Lemma 1, we can bound the probability
of leaving Xsafe by the probability of leaving Vξ̄

π . Therefore,
it is sufficient to derive an upper bound for the probability

P
(
Vπ(x

+) ≥ ξ̄
)
= Ex+

[
Iξ̄(Vπ(x

+)
]
, (9)

where the indicator function Iξ̄ : R → {0, 1} is defined as

Iξ̄(V ) =

{
0 if V ≤ ξ̄

1 if V > ξ̄.
(10)

Note that Vπ(·) is a deterministic function, such that the
expectation affects only the random variable x+ in (9). More-
over, β is positive, exp(0) = 1 and the exponential function
is strictly increasing and positive. Therefore, we can bound
the indicator function through the exponential expression

Iξ̄(Vπ(x
+)) ≤ exp

(
β
(
Vπ(x

+)− ξ̄
))

(11)

due to the positivity of β. By taking the expectation of both
sides, this inequality immediately leads to

P
(
Vπ(x

+) ≥ ξ̄
)
≤ Ex+

[
exp

(
βVπ(x

+)
)]

exp(−βξ̄). (12)

Due to the definition of the risk operator in (6), we can
simplify the right side of this inequality to obtain

P
(
Vπ(x

+) ≥ ξ̄
)
≤ exp

(
β
(
Rβ [Vπ(x

+)]− ξ̄
))

. (13)

Since Rβ [Vπ(x
+)] ≤ ξ is ensured by (7), we have

P
(
Vπ(x

+) ≥ ξ̄
)
≤ δ with δ defined in (8).

This result provides a straightforward condition, which
merely requires the evaluation of the risk operator and the

computation of the cumulative cost, which is a problem
commonly encountered in reinforcement learning. Moreover,
it offers a simple expression for the probability of safety,
such that it can easily be computed in practice.

Remark 1: Since the probability of a safety violation δ
guaranteed by Proposition 1 only depends on three parame-
ters, it allows an intuitive interpretation:

• The difference between ξ and ξ̄ can be interpreted as
a safety margin since it requires the dynamics to be
contractive on the set Vξ̄

π \Vξ
π towards Vξ

π . The larger
this safety margin, the more contractive is the behavior
at the boundary of Vξ̄

π and consequently, it becomes
more unlikely that the state reaches X \ Vξ̄

π .
• The parameter β reflects the risk-sensitivity of the safety

condition (7). A large value of β corresponds to a
high risk-aversion since it causes the tails of the noise
distribution ρ and the function distribution F to have a
larger effect on the left side of (7). In the extreme case
of β → ∞, this leads to (7) corresponding to a condition
on the worst case realization of ωk and f(·) [15]. This
increasing risk-aversion with growing β is intuitively
accompanied by an increase in the probability of safety.

B. Safe backup Policies via Reinforcement Learning

While Section III-A describes an approach for obtaining
the probability of safety for a given policy, it does not address
the problem of determining a safe policy. In this section,
we show that this problem can be solved using standard
reinforcement learning techniques through the following
minimization problem

πsafe = argmin
π∈Π

Ex [Vπ(x)] . (14)

Even though this optimization problem does not involve the
risk operator Rβ [·], its solution πsafe is guaranteed to satisfy
the conditions of Proposition 1 under weak assumptions.
This is demonstrated by the subsequent theorem. The proof
follows after a discussion of the assumptions.

Theorem 1: Consider a cost function c(·) satisfying (5)
and assume that there exist a policy π̃(·) and constants
θ1, θ2 ∈ R+ with θ1 < 1/(1−γ) such that

Vπ(x) ≤ θ1c(x) + θ2, ∀x ∈ X (15)

is satisfied. Moreover, assume there exist constants θ3, θ4 ∈
R0,+ such that

Vπ(x) ≥ θ3c(x) + θ4, ∀x ∈ X (16)

holds for all policies π(·). If

ĉ >
θ2

θ3(θ1(γ − 1) + 1)
− θ4

θ3
(17)

holds, then, the policy (14) is δ∗-safe on Vξ∗ with δ∗ =
exp

(
β∗ (ξ∗ − ξ̄

))
, where

β∗, ξ∗ = argmin
β∈R+,ξ∈R+

exp
(
β
(
ξ − ξ̄

))
(18a)

s.t. ξ < ξ̄ (18b)
(7) holds. (18c)
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Discussion: While large values for θ3 and θ4 in (16) are
generally beneficial for admitting larger values of ĉ in (17),
it is always possible to trivially choose θ3 = 1, θ4 = 0 due to
non-negativity of c(·). Condition (15) essentially requires a
sufficiently fast decay of the immediate costs c(xk) along tra-
jectories for some policy π̃(·). This decay can be achieved if,
e.g., variants of exponential controllability hold [16]. Since
merely the existence of a policy π̃(·) satisfying (15) is neces-
sary, this admits the derivation of the constants θ1 and θ2 via
properties such as exponential controllability [16]. Therefore,
the assumptions of Theorem 1 are not restrictive in practice.

Note that the required lower bound (16) for all possible
cost functions Vπ(·) is only necessary because of the offset
θ2, which leads to a lower bound for the admissible values
of ξ̄. Since the admissible value ξ̄ depends directly on the
cost function Vπ(·), it indirectly depends on the policy π(·).
Therefore, Vπ̃(·) and Vπsafe

(·) potentially admit different
values for ξ̄, such that general constraints cannot be posed
on ξ̄. This issue is resolved by (16), which establishes a direct
relationship between ĉ and ξ̄ for all possible cost functions
Vπ(·) and thereby leads to the lower bound (17). If no offset
exists, i.e., θ2 = θ4 = 0, it can be easily seen that ĉ > 0
must be satisfied. This is the trivial lower bound for ĉ due to
the assumed non-negativity of immediate cost functions c(·).
Therefore, the offset θ2 is the only reason for the restriction
of the admissible threshold ĉ.

Proof: In order to prove Theorem 1, we first show
that a risk-neutral variant of condition (7) guarantees the
existence of parameters ξ and β satisfying the requirements
of Proposition 1.

Lemma 2: Assume that

Ex+ [Vπ(x
+)] ≤ ξ̃, ∀x ∈ Vξ̄ (19)

holds for some constant ξ̃ < ξ̄. Then, there exist constants
β ∈ R+ and ξ < ξ̄ such that (7) is satisfied.

Proof: By the Taylor series expansion of the exponen-
tial function, we have

Rβ [Vπ(x
+)] = (20)

1

β
log

(
1+βEx+

[
Vπ(x

+)
]
+
β2

2
Ex+

[
V 2
π (x

+)
]
+. . .

)
.

From the premise of the lemma, it follows that

Rβ [Vπ(x
+)] ≤ (21)

1

β
log

(
1+βξ̃+

β2

2
Ex+

[
V 2
π (x

+)
]
+. . .

)
.

Since log(1+a) < a for a ∈ R+ and by noting the positivity
of Vπ(x

+) and the risk-aversion parameter β, we have

Rβ [Vπ(x
+)] < ξ̃ + β

(
1

2
Ex+

[
V 2
π (x

+)
]
+ . . .

)
. (22)

Since the second summand can be brought arbitrarily close
to 0 by choosing a sufficiently small β, there exists a β such
that the right side of (22) is smaller than ξ̄, which concludes
the proof.
The key idea behind this result is that (7) converges to (19)

for β → 0. Therefore, it is sufficient to determine a
policy π, which satisfies the risk-neutral condition (19), for
ensuring (7) with a suitably small value of β ∈ R+.

Although (19) is a risk-neutral condition, it exhibits an
expectation with respect to the next state x+. Therefore,
it does not directly enable the applicability of standard RL
techniques and consequently, it does not coincide with the
acquisition function considered in the definition of the safe
policy (14). In order to overcome this issue, we exploit (15)
to relate Ex+ [Vπ(x

+)] to Vπ(x). This is achieved using the
following lemma.

Lemma 3: Assume that there exist θ1, θ2 ∈ R+ with θ1 <
1/(1−γ) such that (15) is satisfied. Then, it holds that

Ex+[Vπ(x
+)]−Vπ(x) ≤

θ1 − θ1γ − 1

θ1γ
Vπ(x) +

θ2
γθ1

. (23)

Proof: By solving Bellman’s identity

Vπ(x) = c(x) + γEx+ [Vπ(x
′)] , (24)

for Ex+ [Vπ(x
′)], we can express ∆Vπ(x) =

Ex+ [Vπ(x
+)]− Vπ(x) as

∆Vπ(x) =
1

γ
(−c(x) + (1− γ)Vπ(x)). (25)

Due to (15), we have

c(x) ≥ Vπ(x)− θ2
θ1

, (26)

which allows us to bound (25) by

∆Vπ(x) ≤
1

γ

(
−Vπ(x)− θ2

θ1
+ (1− γ)Vπ(x)

)
. (27)

Rearranging the terms on the right side finally yields

∆Vπ ≤ θ1 − θ1γ − 1

θ1γ
Vπ(x) +

θ2
γθ1

, (28)

where (θ1−θ1γ−1)/θ1γ is guaranteed to be negative since θ1 <
1/(1−γ) is assumed.

Lemma 3 ensures that the minimization of Vπ(x) also re-
duces Ex+ [Vπ(x

+)]. This directly allows proving Theorem 1
in combination with Lemma 2 as shown in the following.

Proof of Theorem 1: It is straightforward to see that
optimizing with respect to the expectation over x yields iden-
tical policies πsafe(·) as the point-wise optimum πx(x) =
argminπ∈Π Vπ(x) for a given x and a continuous transition
function f(·, ·, ·). Due to optimality of πx(·), we additionally
have the inequality Vx(x) ≤ Vπ̃(x) for all x ∈ X. Therefore,
it follows from Lemma 3 that

E[Vπsafe
(x+)] ≤ 1

γ

(
1− 1

θ1

)
Vπsafe

(x) +
θ2
γθ1

. (29)

Since the right side of (29) is linear in Vπsafe
(x), the maxi-

mum inside Vξ̄ is achieved for Vπsafe
(x) = ξ̄. Therefore, we

obtain the inequality

ξ̄ >
1

γ

(
1− 1

θ1

)
ξ̄ +

θ2
γθ1

(30)

since Lemma 2 requires E[Vπsafe
(x+)] ≤ ξ < ξ̄. Solving
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Algorithm 1: Safe RL using Risk-Sensitive Filters
/* Solve (32) */

1 while optimization not converged do
2 Sample function f̂(·) ∼ F
3 Roll-out policy π∗(·) on f̂(·)
4 Update π∗(·) using gathered system data
/* Solve (14) */

5 while optimization not converged do
6 Sample function f̂(·) ∼ F
7 Roll-out policy πsafe(·) on f̂(·)
8 Update πsafe(·) using gathered system data
/* Safe roll-out via online optimization (33) */

9 Apply π∗
safe(·) to unknown system f(·)

for ξ̄ and noting that ξ̄ = θ3ĉ+ θ4 due to (16) yields

θ3ĉ+ θ4 >
θ2

θ1(γ − 1) + 1
. (31)

It is straightforward to see that (17) guarantees the satisfac-
tion of this inequality, such that Lemma 2 and Proposition 1
ensure that (18) is feasible and results in a probability δ∗ < 1.
This immediately implies δ∗-safety of πsafe(·) and thereby
concludes the proof.

C. Risk-Sensitive Inhibitory Control for Safe Roll-outs
Based on the safe policy πsafe(·) obtained using (14),

we propose a risk-sensitive inhibitory control strategy for
enabling safe RL as outlined in Alg. 1. For this purpose, we
first obtain an optimal, potentially unsafe policy by solving
the optimization problem

π∗ = argmax
π∈Π

Ef ,ω,x0

[ ∞∑
k=0

γkr(xk,π(xk))

]
, (32)

where r : X × U → R0,+ denotes a reward function and
xk is defined through the iterative application of (1) with
x0 = x and uk = π(xk). This problem can be solved using
standard off-policy reinforcement learning algorithms such
as soft actor-critic reinforcement learning [17]. Afterward,
a safe backup policy πsafe(·) is computed by solving (14),
which can be straightforwardly achieved using standard off-
policy reinforcement learning techniques. Finally, we apply
the policy to the true system (1). For this roll-out, we employ
the risk-sensitive filter

π∗
safe(x) = argmin

u∈U
∥π∗(x)− u∥ (33a)

s.t. Rβ [Vπsafe
(f(x,u,ω))] ≤ ξ∗ (33b)

which makes use of the safe backup policy πsafe(·) through
the cost function Vπsafe

and minimally adjusts the policy
π∗(·) such that the safety condition (7) is satisfied.

Due to the safety filter (33), the state constraints Xsafe can
straightforwardly be considered in Alg. 1. In fact, δ-safety
of π∗

safe(·) is directly inherited from the safe backup policy
πsafe(·) as shown in the following theorem.

Theorem 2: Consider a cost function c(·) satisfying (5)
and a threshold ĉ, for which (17) holds. Moreover, assume
that there exists a policy π̃(·) satisfying (15) with θ1 <

1/(1−γ) for all x ∈ Xsafe. Then, the safety filtered policy (33)
is δ∗-safe on Vξ∗

πsafe
with δ∗ = exp

(
β∗ (ξ∗ − ξ̄

))
, where β∗

and ξ∗ are defined in (18).
Proof: Due to Theorem 1, πsafe(·) defined in (14)

satisfies (33b). Thus, the optimization problem (33) is guar-
anteed to be feasible for all states x ∈ Vξ∗

πsafe
with the trivial

solution u = πsafe(x). Finally, δ∗-safety directly follows
from Proposition 1.
While this theorem employs the optimal parameters β∗ and
ξ∗, it immediately follows from the proof of Theorem 1 that
for every value ξ with ξ∗ ≤ ξ < ξ̄, there exists a β ∈ R+

satisfying (18b). Therefore, δ-safety on Vξ ⊃ Vξ∗ with δ >
δ∗ can be straightforwardly ensured in practice by choosing
a sufficiently large value ξ < ξ̄ and a suitably small value
β ∈ R+.

Remark 2: When β becomes larger, the control becomes
more pessimistic, and therefore, the probability of safety
generally increases. However, there exists a critical value at
which the safety constraint (33b) becomes infeasible for all
ξ < ξ̄. That is, the control becomes too phobic to act. This
resembles a well-known behavior in risk-sensitive control
and RL commonly referred to as neurotic breakdown [18].

IV. SIMULATIONS

In this section, we evaluate the proposed risk-sensitive
inhibitory control approach, described in Alg. 1, using the
popular Mujoco Half-Cheetah environment [19]. The Half-
Cheetah is a planar model of a large, cat-like robot with 6
actuated joints. The main goal is to maximize the robot’s
walking velocity with the least control effort possible, which
is encoded in the default reward function. We consider
the default model parameters for the Cheetah robot, but
assume a body mass perturbed by a Gaussian distributed
random variable with 0 mean and standard deviation 0.1.
In order to obtain a challenging safety condition, we set
optimality and safety in a direct conflict similar as in [10]
by constraining the velocity to v ≤ vcrit, vcrit = 2. As
cost function for the computation of the safe policy (14),
c(x) = v − v is employed with threshold ĉ = 2− v, where
v = −10 denotes the considered minimum velocity of the
Half-Cheetah robot. This cost function encourages the robot
to run with a negative velocity, such that the distance to the
safety threshold velocity vcrit is maximized. Note that the
subtraction of v is necessary to ensure the non-negativity of
the cost c(·) assumed in our derivations, but it merely causes
a constant off-set in the cumulative cost Vπ(·).

The optimal and safe policies are obtained using the Soft-
Actor Critic (SAC) algorithm [17] with 400 training itera-
tions each with 1000 time steps and the hyper-parameters
provided by [20]. For computing the expectations over dy-
namics f(·) in (4) and (32), we randomly sample 10 body
masses, such that we can use the corresponding sample envi-
ronments to empirically approximate all necessary expected
values. The risk-sensitive safety filter (33) is implemented
using the cross-entropy method [21] with 5 iterations per
time step and 10 particles. The safety constraints are consid-
ered in an augmented objective function using fixed Lagrange
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Fig. 1. Number of constraint violations and average rewards in dependency
on the safety constraint threshold ξ = 521 + ∆ξ and the risk-sensitivity
β. Reducing β and increasing ξ have a similar effect of admitting more
risky behavior in the response inhibition, such that the number of constraint
violations and the average reward increase.

multipliers, such that they are effectively enforced using
soft constraints to allow recovery after constraint violations.
The risk operator Rβ [·] is approximated through 100 sample
environments. For each parameter combination (ξ, β), 100
time steps are simulated and 3 random seeds are averaged.

The resulting numbers of constraint violations and the
average reward for different values of β and ξ are depicted
in Fig. 1. We can observe that increasing ξ has exactly the
expected effect of loosening the safety constraint by admit-
ting higher velocities v, such that the probability of safety
decreases and more constraint violations can be observed. At
the same time, this allows a higher robot velocity, which in
turn causes an increasing average reward. A similar effect can
be observed with the risk parameter β due to the considered
state-independent model uncertainty. When β is increased,
the conservatism of the safety filter increases. This leads to a
lower number of constraint violations, but the average reward
also reduces. Therefore, the parameters ξ and β exhibit the
impact on the probability of safety as discussed in Remark 1.
Note that the risk-inhibition with the considered soft con-
straint formulation has a clearly visible effect on the average
robot velocity, even when it does not manage to enforce
the safety constraints. This can be observed in a comparison
with the optimal policy π∗(·), which achieves a significantly
higher reward with a similar number of constraint violations
for large values of ξ and small β. Therefore, the proposed
risk-sensitive inhibitory control not only allows to reduce
the number of constraint violations, but also the amount by
which the constraint is violated.

V. CONCLUSION

Inspired by the psychological concept of inhibitory con-
trol, this paper proposes a risk-sensitive method for rendering
arbitrary policies safe. This method is based on the intro-
duction of cost functions, such that state constraints can
be expressed in terms of value functions. We show that
this formulation allows us to employ standard reinforcement
learning techniques for obtaining policies that their only goal
is to ensure safety. Based on the determined safe policies and
corresponding value functions, a risk-sensitive safety con-
straint is employed to enforce the satisfaction of state con-

straints online. Thereby, risk-sensitive inhibitory control is
realized and its effectiveness is demonstrated in simulations.

REFERENCES

[1] J. T. Nigg, “On Inhibition/Disinhibition in Developmental Psy-
chopathology: Views from Cognitive and Personality Psychology and
a Working Inhibition Taxonomy,” Psychological Bulletin, vol. 126,
no. 2, pp. 220–246, 2000.

[2] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and
A. P. Schoellig, “Safe Learning in Robotics: From Learning-Based
Control to Safe Reinforcement Learning,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 5, pp. 411–444, 2022.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion, 2nd ed. The MIT Press, 2017.

[4] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges
of Real-World Reinforcement Learning,” in ICML Workshop
on Real-Life Reinforcement Learning, 2019. [Online]. Available:
http://arxiv.org/abs/1904.12901

[5] M. Alshiekh, R. Bloem, R. Ehlers, B. Königshofer, S. Niekum, and
U. Topcu, “Safe Reinforcement Learning via Shielding,” in AAAI
Conference on Artificial Intelligence, 2018, pp. 2669–2678.

[6] A. Taylor, A. Singletary, Y. Yue, and A. Ames, “Learning for Safety-
Critical Control with Control Barrier Functions,” in Learning for
Dynamics & Control, 2019, pp. 708–717.

[7] O. Bastani, “Safe Reinforcement Learning with Nonlinear Dynamics
via Model Predictive Shielding,” in American Control Conference,
2021, pp. 3488–3494.

[8] K. P. Wabersich, L. Hewing, A. Carron, and M. N. Zeilinger, “Prob-
abilistic Model Predictive Safety Certification for Learning-Based
Control,” IEEE Transactions on Automatic Control, vol. 76, no. 1,
pp. 176–188, 2021.

[9] K. C. Hsu, V. Rubies-Royo, C. J. Tomlin, and J. F. Fisac, “Safety and
Liveness Guarantees through Reach-Avoid Reinforcement Learning,”
in Robotics: Science and Systems, 2021.

[10] S. Curi, A. Lederer, S. Hirche, and A. Krause, “Safe Reinforcement
Learning via Confidence-Based Filters,” in IEEE Conference on De-
cision and Control, 2022.

[11] L. Sherman, L. Steinberg, and J. Chein, “Connecting Brain Responsiv-
ity and Real-World Risk Taking: Strengths and Limitations of Current
Methodological Approaches,” Developmental Cognitive Neuroscience,
vol. 33, pp. 27–41, 2018.

[12] M. Ahmadi, X. Xiong, and A. D. Ames, “Risk-Averse Control via
CVaR Barrier Functions: Application to Bipedal Robot Locomotion,”
IEEE Control Systems Letters, vol. 6, pp. 878–883, 2022.

[13] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. Cambridge, MA: The MIT Press, 2006.

[14] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and
Scalable Predictive Uncertainty Estimation using Deep Ensembles,” in
Advances in Neural Information Processing Systems, 2017, pp. 6405–
6416.

[15] M. James, J. Baras, and R. Elliott, “Risk-Sensitive Control and
Dynamic Games for Partially Observed Discrete-Time Nonlinear Sys-
tems,” IEEE Transactions on Automatic Control, vol. 39, no. 4, pp.
780–792, 1994.
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