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Abstract— Emerging cyber-physical systems impel the devel-
opment of advanced network scheduling schemes to utilize
communication and computation resources efficiently. This
paper investigates the event-based schedule for remote state
estimation in networked control systems (NCSs) subject to delay
and packet dropouts. The scheduler decides whether or not to
send out a local estimate according to the Value of Information
(VoI) metric, which measures the relative importance of an
information update. In addition, we model the triggering
intervals as a Markov chain and analyze the tradeoff between
the estimation performance and communication cost under the
proposed VoI-based scheduling for the first-order system.

I. INTRODUCTION

In networked control systems (NCSs), the concept of
remote state estimation over a communication network has
been widely utilized in fields such as robotics [1], bio-
inspired Vision [2] and autonomous driving [3]. With the
increasing number of wireless sensors and estimators in
cyber-physical systems, communication resource usage has
become a significant issue. Meanwhile, due to the limited
communication bandwidth, the data transmission collision
leads to network-induced delay and packet dropouts. Thus,
reducing unnecessary transmission or prioritizing more valu-
able packets in NCSs subject to network effects becomes
relevant in remote estimation.

It is widely known that event trigger achieves better per-
formance than periodic sampling while consuming the same
resources [4]. A classic problem of event-based estimation is
to find the optimal scheduling approach to maximize the es-
timation performance with limited communication resources
[5]. For example, [6] restricts the signal to be a Wiener
process or an Ornstein-Uhlenbeck process and demonstrates
that the level-triggered sampling is almost optimal with the
stable signal. Moreover, compared with the widely used
emulation-based approach, which designs the event trigger
and the remote estimator separately, [7] formulates the design
of event-triggered estimation as a team-optimal decision
problem by regarding the event trigger and estimator as two
individual distributed decision makers. Generally, the dual
effect exists in event-triggered control or estimation prob-
lems due to the potential non-classical information pattern
between the event trigger and the remote estimator [8]. To
address this issue, [9] identifies a dominating policy pair
in which the scheduling policy depends only on primitive
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random variables. In this case, the design of the event trigger
and estimator has no dual effect, and therefore the original
optimal co-design becomes separable.

The concept of VoI is first proposed in [10], which denotes
a metric encoding our knowledge within the considered
problem context. On the basis of separation techniques, [11]
decomposes the optimal co-design of control and commu-
nication in a feedback control system into two subprob-
lems, which are optimal control and optimal scheduling,
respectively. When designing the optimal scheduling, the VoI
metric is utilized to quantify the importance of transmitting
certain information. More spcifically, the information will be
transmitted to the controller only if the benefit of this infor-
mation update surpasses its transmission cost. Furthermore,
the optimal scheduling policy based on the VoI is further
proved to be globally optimal in [12].

In addition, network-induced delay and packet dropouts
widely exist in wireless NCSs due to network coupling
and data collisions [13]. The existing papers on event-
triggered estimation subject to networked effects, such as
[14], mainly focus on finding the maximum sampling interval
guaranteeing the system stability within the emulation-based
approach framework. When speaking of maximizing remote
estimation performance with limited information updates, it
turns out to be an optimization problem, where the scheduler
is required to determine which packet is more valuable for
remote estimation. This is generally difficult, especially in
the presence of network effects such as delay and random
packet dropouts. With only a few exceptions, for example, in
[15], the authors investigate the suboptimal scheduling con-
sidering the effects of delay and packet dropouts while does
not provide an explicit solution. In [16], the authors design
the optimization-oriented event-triggered control for NCSs
subject to delay. To author’s knowledge, there is no study
taking both communication delay and packet dropouts into
consideration when designing the optimal event triggering
and it lacks the performance analysis of network-effect-aware
VoI-based scheduling.

Based on the above observation, we propose a VoI-based
optimal scheduling scheme for the remote state estimation
subject to delay and packet dropouts. In this study, the
transmission delay is assumed to be known and constant,
and the dropouts are assumed to be Bernoulli-distributed.
The design objective is to minimize the long-term cost
penalizing the communication rate and the estimation per-
formance measured by the estimation error mean square.
We employ the dynamic programming approach to solve
the formulated sequential decision optimization problem and
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obtain the metric representing the importance of the remote
information update. As the resulting VoI metric is computa-
tionally expensive, a rollout algorithm is utilized to obtain
its approximation. To further simplify the tradeoff analysis
between estimation performance and communication rate, we
employ the waiting strategy, which enables the scheduler to
be aware of the remote status after a one-step delay. Then,
by formulating the triggering intervals as an ergodic Markov
chain on the finite space, the theoretical communication rate
is calculated from their probability mass function. Finally,
we provide the upper bound of the estimation performance
under the designed VoI-based scheduling.

The remainder of this paper is structured as follows:
Section II introduces the system model and problem state-
ment. Section III presents the VoI-based scheduling policy
and analyzes its performance. Section IV demonstrates the
efficacy of the proposed scheduling policy by numerical sim-
ulations. Section V draws conclusions. Section VI provides
supplementary proof.

Notations: In this study, let R and Rn denote the one-
dimension and n-dimension real value sets, respectively. Let
E[·] and E[·|·] denote the expected value and the conditional
expectation, respectively. Let x ∼ N (µ,Cx) denote Gaussian
random variable x with mean µ and covariance matrix Cx.
Let dae denote the ceiling function on a ∈ R. Let w.p.
denote the abbreviation of with probability.

II. PRELIMINARIES

We consider a resource-constrained system closed over
the communication network as illustrated in Fig. 1. The
event-based scheduler determines whether or not to send out
the estimate produced by a local Kalman filter. Transmitted
packets experience a τ -step delay and might be dropped with
some probability. In addition, we assume that the remote
receiver’s status will be feedbacked to the scheduler side
with a unit delay.

A. System model

Consider a discrete-time stochastic dynamical system:

xk+1 = Axk + wk

yk = Cxk + vk, (1)

where xk ∈ Rn, yk ∈ Rp are the state vector and the
measurement, respectively. The system matrices are given
by A ∈ Rn×n, C ∈ Rp×n, in which the pair (A,C) is
observable. The process noise wk ∈ Rn ∼ N (0,W ) and
the measurement noise vk ∈ Rp ∼ N (0, V ) are assumed
to be independent identically distributed (i.i.d.) Gaussian
noises with zero mean and positive semi-definite variances
W ∈ Rn and V ∈ Rp. The initial state x0 ∼ N (x̄0, R0) is a
random vector with the initial mean value x̄0 and the semi-
definite covariance R0, which is assumed to be statistically
independent of the process noise wk for all k.

Plant

Scheduler

(KF)

Estimator

Fig. 1. NCS architecture

B. Network model

Generally, sending the estimate rather than the measure-
ment enables the remote estimator encode more informa-
tion [17]. Therefore, we assume that the local scheduler
periodically accesses the local estimate generated by the
Kalman filter and raw measurements (see Fig 1). The event-
based scheduler decides whether or not to transmit the state
estimate x̂sk through the communication network. Denote δk,
µk ∈ {0, 1} as the transmission decision variable and the
packet dropouts index at time k, respectively. To simplify
notations, we denote the packet arrival index as γk = δkµk,
which takes value from {0, 1}. Let γk = 1 denote that
the packet triggered at time k will arrive after τ -step delay
successfully, otherwise γk = 0.

The scheduler makes transmission decisions according to
the locally available information as follows:

δk = π(Isk) =

{
1 transmission occurs
0 otherwise,

(2)

where Isk = Isk−1

⋃
{yk, x̂sk, δk−1, γk−τ−1} denotes the local

information set with the initial value Is0 = {y0, x̂
s
0, δ0}.

Specifically, at time k, the Kalman filter accesses to the
transmission decision by time k and the packet arrival status
by time k − τ − 1 due to the round trip time τ + 1. The
function π is the scheduling law. The local Kalman filter
processes as follows:
i) prediction step:

x̂sk|k−1 = AE[xk−1|Isk−1]

êsk|k−1 = xk − x̂sk|k−1 = Aêsk−1 + wk−1

P sk|k−1 = cov[êsk|k−1|I
s
k−1] = A>P sk−1A+W

with the initial value x̂0|−1, P0|−1 = X0 ∈ Rn×n,
ii) update step:

x̂sk = E[xk|Isk] = x̂sk|k−1 +Kk(yk − Cx̂sk|k−1)

êsk = xk − x̂sk = (I −KkC)(Aêsk−1 + wk−1)−Kkvk (3)
P sk = cov[êsk|Isk−1] = (I −KkC)P sk|k−1 (4)

with Kk = P sk|k−1C
>(CP sk|k−1C

> + V )−1. As the pair
(A,C) is assumed to be observable, the covariance matrices
P sk|k−1, P sk and Kk will converge to constant values P̃ s, P s

and K, respectively.
When δk = 1, the packet dropouts is modeled as a

Bernoulli process {µk}k with the dropout probability β =
P [µk = 0|δk = 1]. It implies that a transmitted packet
will be dropped with a probability of β. To facilitate further
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analysis, define the elapsed time of the information update at
the remote estimator by time k as ηk = k−max{l−τ |γl−τ =
1, l ≤ k}. It evolves as

ηk+τ = (1− γk)(ηk+τ−1 + 1) + γkτ

with ηk = 0 for k ∈ [0, τ − 1].
At the remote side, a linear estimator predicts the state xk

based on the received information as follows:

x̂εk = E[xk|Iεk] =

{
Aτ x̂sk−τ if γk−τ = 1
Ax̂εk−1 otherwise,

(5)

where Iεk = Iεk−1

⋃
{x̂εk−1, x̂

s
k−ηk , γk−τ} is the information

set at the remote side, with the initial value {x̂ε0|−1}. Accord-
ingly, we denote the remote estimation error as êεk = xk−x̂εk,
which is utilized to describe the estimation performance in
the following sections.

C. Problem statement

In this study, we are interested in searching for the
optimal scheduling policy π∗ for the resource-aware remote
estimation subject to delay and packet dropouts, which is
mathematically described as

min
π

Ψ(π) = J(π) +R(π), (6)

where J(π) is the estimation performance measured by

J(π) = lim sup
N→∞

1

N + 1
E
[ N∑
k=0

(êεk)>Γêεk
]

(7)

with Γ being a positive definite matrix. The function R(π)
penalizes the average communication cost, is described by
R(π) = lim supN→∞

1
N+1E

[∑N
k=0 θδk

]
with the positive

scalar θ being the unit transmission cost.

III. MAIN RESULTS

In this section, we are going to construct a VoI metric to ef-
ficiently schedule the data transmission for remote estimation
subject to delay and packet dropouts. To reduce the compu-
tation burden when using dynamic programming approach
to solve the sequential decision problem, a rollout algorithm
will be used to obtain the VoI proxy (VoIP) function. In
addition, we analytically characterize the performance of the
VoIP-based scheduling policy with the waiting strategy.

A. VoI-based optimal scheduling

As the transmitted packets drop off with probability β,
the packet arrival status {γk−τ , . . . , γk−1} are unknown for
the local Kalman filter by time k. Therefore, we provide the
expected value of ηk+τ−1 from the perspective of the local
estimator in the following lemma.

Lemma 1: Incorporating with the triggering decisions
{δk−τ , . . . , δk−1}, the value of ηk+τ−1 is given as

ηk+τ−1 =


ηk−1 + τ w.p. Fτ
τ + i w.p. δk−i−1(1− β)Fi,

i ∈ {1, . . . , τ − 1}
τ w.p. δk−1(1− β)

(8)

with Fi = β
∑i
r=1 δk−r denoting the probability that no

packet arrived at the remote side during t ∈ [k − i, k − 1].
Proof: The potential value set of ηk+τ−1 is categorized

into the following three classes. For the third line of (8), it
occurs only when δk−1 = 1, and this transmitted packet
arrives at the remote side with the probability of 1 − β.
Therefore, we have P(γk = 1|δk = 1) = δk−1(1 − β).
Second, for the case of ηk+τ−1 = τ + i, it occurs only when
γk−i−1 = 1 and γk−i = · · · = γk−1 = 0. Incorporate the
transmission decisions {δk−i−1, . . . , δk−1} to represent the
information freshness at the remote estimator by time k− 1,
we obtain the second line of (8). Taking i = 1 as an example,
in this case, F1 = βδk−1 . According to (8), the occurrence
probability of ηk+τ−1 = τ + 1 is

P(ηk+τ−1 = τ + 1) =

 0 if δk−2 = 0
(1− β)β if δk−1 = δk−2 = 1
β2 otherwise.

Finally, for the case of ηk+τ−1 = ηk−1 + τ , it implies that
no information update arrives during time [k, k+ τ −1], and
the remote side keeps the previous data packet. As a result,
we obtain Fτ as its occurrence probability.
In the following, we are going to parameterize the error func-
tion under the network-induced delay and packet dropouts.
The innovation êsk in (3) evolves as

êsk + ξk−1 = Aêsk−1 + wk−1 (9)

with the random variable ξk = KC(Aêsk + wk) +Kvk+1 ∈
Rn. Note that the estimate x̂εk−τ is available for the scheduler
with the feedback signal γk−τ−1, thus we can obtain ξk with-
out the access to process and measurement noise realizations
wk and vk. The remote estimation error depending on the
transmission arrival status γk−τ is written as

êεk = (1− γk−τ )(Aêεk−1 + wk−1)

+ γk−τ (Aτ êsk−τ +

τ∑
r=1

Ar−1wk−r). (10)

Denote ek as the mismatch between the local estimate x̂sk
and the remote estimate x̂εk, i.e.,

ek = x̂sk − x̂εk = êεk − êsk (11)

Substituting the local (9) and remote estimation error (10)
into the the random process ek, we have

ek = (1− γk−τ )Aek−1 + γk−τ

τ∑
r=2

Ar−1ξk−r + ξk−1

=

ηk+τ∑
r=1

Ar−1ξk+τ−r (12)

We are going to present the main result on the network-
effect-aware VoI-based scheduling for the remote estimation.

Theorem 1: Consider the optimization problem (6) for
system dynamics (1). The optimal scheduling policy min-
imizing the optimization problem (6) is given by

δ∗k = π∗(Isk) =

{
1 if VoIk > 0
0 otherwise,

(13)
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where VoIk is the VoI at time k, expressed as

VoIk = −θ + (1− β)ε>k Γεk + ρk (14)

with εk =
∑ηk+τ−1+1
r=τ+1 Ar−1ξk+τ−r and the residual term

ρk = E[Vk+1|Isk, δk = 0] − E[Vk+1|Isk, δk = 1], where the
expression of the cost-to-go function Vk+1 is

Vk+1 = E[

N−τ∑
t=k+1

g(et+τ , δt)|Ist ] (15)

with the stage cost g(et+τ , δt) = θδt + e>t+τΓet+τ , for t ∈
[0, N − τ ].

Proof: By the tower property of the conditional expec-
tation, we have

E[(êεk+d)
>Γêεk+d] = E[E[(êεk+d)

>Γêεk+d|Isk]]

= E[e>k+dΓek+d] + tr(ΓP sk+d).

The second equality establishes as E[êεk+d|Isk] = ek+d and
cov[êεk+d|Isk] = P sk+d. Note that the term tr(ΓP sk+d) are
independent of decision variables δk, for k ∈ [0, N − τ ].
Moreover, for k ∈ [0, τ), the error ek is independent of the
triggering policy as no packet arrives at the remote estimator
before time instant τ due to the transmission delay. Thus, the
original optimization objective (6) is reduced to (15).

Expand (15) and apply the minimization operator to it, we
have

V ∗k = min
δk,δk+1,...

{θδk + e>k+τΓek+τ + E[Vk+1|Isk] | Isk]}

= min
δk
{θδk + e>k+τΓek+τ + E[V ∗k+1|Isk] | Isk]}. (16)

Invoking of the error mismatch expression (12),
E[e>k+τΓek+τ |Isk, δk] is further written as

E[e>k+τΓek+τ |Isk, δk]

= E[(1− δk(1− β))(Aek+τ−1 + ξk+τ−1)>Γ

(Aek+τ−1 + ξk+τ−1)

+ δk(1− β)
( τ∑
r=1

Ar−1ξk+τ−r
)>

Γ

τ∑
r=1

Ar−1ξk+τ−r]

= E[(Aek+τ−1 + ξk+τ−1)>Γ(Aek+τ−1 + ξk+τ−1)

− δk(1− β)ε>k Γεk] (17)

with εk defined in (14). The first equality establishes as the
packet dropout status is independent of the random variable
ξk. Inserting (17) into (16), the cost-to-go function (16) under
the minimizer δ∗k is obtained as (13).

Remark 1: The classic VoI expression is VoIk = e>k Γek−
θ+ρk [11], where the error variable ek is as in (12). It can be
observed that the network-effect-aware VoI in (14) contains
Gaussian noise realizations since the latest triggering, which
is more informative than the classic one. Additionally, a
larger communication delay leads to increasing information
freshness and more frequent triggering, while the awareness
of packet dropouts probability will make the packet less
valuable.

Remark 2: By leveraging the structural analysis of event-
triggered control subject to delay and packet dropouts in [15],

the optimal scheduling-based remote estimation can be easily
extended to the optimal event-triggered control problem.

The residual term ρk is interpreted as the deviation of the
cost-to-go under different scheduling decisions δk. To reduce
the computation burden and facilitate the implementation of
the VoI metric, we will eliminate the ρk using a rollout
algorithm. In the following, we use a rollout algorithm as
the baseline policy and evaluate the cost-to-go under the
designed scheduling policy.

Lemma 2: Consider the optimization problem (6) for sys-
tem dynamics (1), the rollout-based scheduling policy π̃

δ̃k = π̃(Isk) =

{
1 if VoIPk > 0
0 otherwise,

(18)

where VoIPk = −θ+ (1−β)ε>k Γεk denotes the approxima-
tion of the VoI at time k, is suboptimal, and outperforms a
periodic triggering policy.

Proof: Let π̄ = {δ̄0, δ̄1, . . . } be a periodic schedul-
ing policy with a period of p. We choose π̃ =
{δk, δ̄k+1, δ̄k+2, . . . } as the baseline policy for the roll-
out algorithm to deal with ρk. Under the same com-
munication delay and packet dropouts probability, we
have E[Vk+1|Isk, δk = 0, δ̄k+1, . . . ] = E[Vk+1|Isk, δk =
1, δ̄k+1, . . . ]. Thus, it results in ρk = 0 using the rollout
algorithm, and the VoIP function is obtained as (18).

The next is to prove that the obtained VoIP-based schedul-
ing policy outperforms a periodic triggering policy. Let the
cost-to-go function under VoIP-based and periodic triggering
policies be Ṽk and V̄k, respectively. We need to prove Ṽk ≤
V̄k, which enables Ψ(γ̃) ≤ Ψ(γ̄) establish. Assume that the
claim holds for k + 1, we have

Ṽk = E[θδ̃k + e>k+τΓek+τ + Ṽk+1 | Isk]

≤ E[θδ̃k + e>k+τΓek+τ + V̄k+1 | Isk]

≤ E[θδ̄k + e>k+τΓek+τ + V̄k+1 | Isk] = V̄k,

The first inequality follows from the induction hypothesis,
and the second inequality follows from the definition of the
sub-optimal triggering policy γ̃.

B. Performance characterization

Consider for the special case {δ̃k−τ = · · · = δ̃k−1 = 0},
we have ηk+τ−1 = ηk−1+τ . In this case, the local scheduler
has full knowledge of the remote estimation. In order to sim-
plify the tradeoff analysis, we implement a waiting strategy
to further simplify performance characterization. To achieve
it, we introduce a variable sk to denote the availability of
a communication network. The communication channel is
available when sk = 0, otherwise sk = 1. The network
availability status is denoted as

sk+1 =


τ if δ̃k = 1 & sk = 0

sk − 1 if δ̃k = 0 & sk > 0

0 if δ̃k = 0 & sk = 0

(19)

with s0 = 0. Specifically, the waiting strategy (19) implies
that the local scheduler has received feedback from the
remote estimator about transmitted packets status before
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making decisions.
To simplify notations, we define the elapsed time since the

last triggering by time k as tk = k −max{l|δl = 1, l < k}.
Impose a time-out interval T on the triggering policy (18), we
obtain the scheduling policy with waiting strategy as follows:

δ̌k = π̌(Isk, sk) =


1 if tk = T

δ̃k else if sk = 0
0 otherwise.

(20)

Therefore, the triggering intervals {tk}k is restricted within
a finite state space S := {1, . . . , T}. Note that the inter-event
intervals will be not less than the round trip time τ + 1, we
require T > τ + 1 to guarantee that the time-out restriction
will not conflict with the waiting strategy.

In the following, we prove that the scheduling policy (20)
outperforms a periodic triggering policy.

Lemma 3: Consider the optimization problem (6) for
system dynamics (1), the scheduling policy π̌ with waiting
strategy as in (20) is suboptimal, and outperforms a periodic
triggering policy.

Proof: Let the cost-to-go function under triggeing
policy (20) be V̌k. The same as Lemma 2, we need to prove
V̌k ≤ V̄k. Assume that the claim holds for k + 1, we have

V̌k = E[θδ̌k + e>k+τΓek+τ + V̌k+1 | Isk]

≤ E[θδ̌k + e>k+τΓek+τ + V̄k+1 | Isk]

≤ E[θδ̄k + e>k+τΓek+τ + V̄k+1 | Isk] = V̄k,

The remaining proof is the same as in Lemma 2.

In this section, we are going to characterize the performance
of the VoIP-based scheduling policy (20) for remote estima-
tion subject to delay and packet dropouts. Before presenting
the main result, we have the following lemmas.

Lemma 4: The sequence of random variables {tk}k is an
ergodic Markov chain on the state space S. Its transition
probability P ∈ RT×T is given as

Pij =


1 if j = i+ 1, i = {1, . . . , τ},

or i = T, j = 1
pi,1 if j = 1, i = {τ + 1, . . . , T − 1}
1− pi,1 if j = i+ 1, i = {τ + 1, . . . , T − 1}
0 otherwise,

where its components are Pij = P(tk+1 = j|tk = i) for
some instants k, and pi,j ∈ (0, 1) are some positive scalars.

Proof: Firstly, we prove that the random variable {tk}k
is a Markov chain. According to the triggering law (20)
and VoIP expression given in (18), we define the admissible

region of εk as M := {εk ∈ Rn|‖εk‖ ≤ θ}. We have

P (tk+1 | tk, tk−1, · · · , t0)

=

∫
M

P (tk+1, εk | tk, tk−1, · · · , t0) dεk

=

∫
M

P (tk+1 | εk, tk, tk−1, · · · , t0)

×P (εk | tk, tk−1, · · · , t0) dεk

=

∫
M

P (tk+1 | εk, tk) P (εk | tk) dεk

=

∫
M

P (tk+1, εk+1 | tk) dεk+1 = P (tk+1 | tk) ,

The third equality establishes as tk+1 is determined by trig-
gering policy (20) based on εk and tk, the random variable εk
depends on ηk+τ−1 as in (14), and ηk+τ−1 = tk + τ − 1. In
addition, as the probability density function of the random
variable ξk in the triggering condition (13) is continuous,
one can easily verify that the Markov chain {tk}k ∈ S is
irreducible, aperiodic, with all states being positive recurrent,
and thus ergodic. According to the scheduling policy (20),
the scheduler will not transmit the data before receiving feed-
back signal γk−τ , we have pi,i+1 = 1, for i = {1, . . . , τ}.
In addition, pT,1 = 1 as T is the time-out interval. The
computation of components pi,1, for i = {τ +1, . . . , T −1},
is presented in the Appendix.
The following lemma calculates the occurrence probability
of the triggering intervals in the long run.

Lemma 5: Consider the system dynamics (1) under the
VoIP-based triggering policy (20) with the time-out interval
T . Denote qi = P(tk = i) as the stationary distribution of
tk = i, for some k and all i ∈ S, which is given as

qi =

{
r if i = {1, . . . , τ + 1}
r
∏i−1
j=τ+1(1− pj,1) if i = {τ + 2, . . . , T},

(21)
where r denotes the average triggering rate is as follows:

r =
1

τ + 1 +
∑T
i=τ+2

∏i−1
j=τ+1(1− pj,1)

. (22)

Proof: Give the waiting strategy (19), we have
ηk+τ−1 = tk−1 + τ − 1 for some k. The random variable
εk in the scheduling policy (18) is therefore simplified as
εk =

∑tk−1

r=1 A
r+τ−1ξk−r. We use the notation ε(tk = i)

to highlight that the random variable εk is a function of tk.
Let I denotes the indicator function. By Birkhoff’s Ergodic
Theorem [18], the equality

r = lim
N→∞

1

N

N∑
k=1

δ̌k = E[I(1−β)(Aτ ε(τ+1))>ΓAτ ε(τ+1)≥θ]

establishes almost surely. Stack the stationary distribution qi
into a vector ~q = [q1, · · · , qT ]. The stationary distribution qi
is calculated with ~q = ~qP and ~q1T = 1, where 1T denotes
the T -dimension vector with all entries being 1.

In the following, we are going to compute the expected
average cost of the optimization objective defined in (6).
Random packet dropouts make it difficult for the local
scheduler to predict the information freshness at the remote
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estimator. Therefore, we provide the upper bound of the
expected estimation performance. Define a function h(X) =
A>XA+W and denote hi as the i-th function composition
of h. The covariance of the remote estimation error at time
k is hηk(P s), where the matrix P s is the covariance of the
local estimation error êsk as in (4).

Theorem 2: Consider the optimization objective (6) for
the system dynamics (1). Under the scheduling policy (20),
the upper bound of the expected average cost is given by

Ψup(π̌) =
1

ηave

ηave∑
i=1

tr(Γhi(P s)) + rθ, (23)

where ηave = d 1
r(1−β)e + τ represents the upper bound of

the average information freshness of the remote estimator.
Proof: First, taking the expectation of the expected cost

(6), we have

Ψ(π̌) = lim sup
N→∞

1

N + 1
E[

τ∑
k=0

(êεk)>Γêεk +

N∑
k=0

θδ̌k]

+

N∑
k=τ+1

tr(Γhηk(P s)). (24)

The first term lim supN→∞
1

N+1E[
∑τ
k=0(êεk)>Γêεk] con-

verges to zero when the time horizon T approaches
infinity. The average communication cost is given as
lim supN→∞

1
N+1E[

∑N
k=0 θδ̌k] = rθ, where r is calculated

from Lemma 5.
The event-based scheduling policy (20) outperforms a

pure offline policy, e.g., the periodic triggering policy, as
proved in Lemma 3. Thus, we upperbound the estimation
performance under the scheduling policy (20) by the cost
under the periodic triggering policy with the same average
communication rate. The average arrival rate between the
local scheduler and the remote estimator is r(1−β). Adding
up the network-induced delay, we obtain ηave as the average
information freshness at the remote estimator. The expected
estimation performance under the periodic triggering policy
is give as 1

ηave

∑ηave
i=1 tr(Γhi(P s)). In combination of (24),

we obtain (23).

IV. SIMULATION RESULT

In this section, we will illustrate the effectiveness of our
proposed VoI-based scheduling approach through a numer-
ical simulation. The stability analysis is provided in [15],
which requires β < 1

‖A‖2τ+2
2

. Thus, we select a scalar linear
system with system matrices A = 0.9 and C = 1. The
covariance matrices of process noise and measurement noise
are W = 0.01 and V = 0.01, respectively. The weighting
factor in the estimation performance penalty function (6) is
chosen as Γ = 1. The time horizon is chosen as N = 500.

In Fig. 2, we compare tradeoffs between estimation per-
formance and transmission rate of the system (1) under the
classic VoIP-based scheduling policy, the network effect-
aware VoIP-based scheduling policies (18) and (20), and
periodic scheduling policies, respectively. The empirical av-
erage triggering rate is defined as 1

N+1

∑N
t=0 δ̌k and the
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Fig. 2. Tradeoffs between estimation performance and communication rate.
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Fig. 3. From top to button: Tradeoffs between estimation performance
and communication rate w.r.t different network effects; empirical estimation
performance of scheduling policy (20) and its upper bound.

estimation performance is measured by the average mean
square error 1

N+1

∑N
k=0 ‖êεk‖2. Monte Carlo simulations run

2000 trials. It can be observed that the network-effect-
aware VoIP-based scheduling policy (18) outperforms the
remaining scheduling policies, including the classic VoI-
based scheduling and periodic scheduling policies.

In the top subfirgure of Fig. 3, we depict the tradeoff be-
tween estimation performance and communication rate with
VoIP-based scheduling policy (18) under different network
effects. It can be observed that the performance decreases
with the increasing network effects. The button subfigure
of Fig. 3 shows that the derived theoretical value (23)
successfully bounds the simulated average cost.

V. CONCLUSIONS

In this paper, we investigated the online scheduling for
resource-aware remote state estimation in the presence of
network-induced delay and packet dropouts. A network-
effect-aware VoI metric is constructed to facilitate efficient
communication between the sensor and the remote estimator.
We prove that the designed scheduling outperforms other
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scheduling policies, including the scheduling based on the
classic VoI unaware of the network effects. We implement
and analyze the performance of scheduling based on this
network-effect-aware VoI metric. The communication rate
and the upper bound of the estimation performance are char-
acterized analytically under the designed scheduling policy.
Finally, numerical simulations demonstrate the efficacy of
the metric-based scheduling policy.

VI. APPENDIX

Given the inter-event time tk, the variable εk in
the scheduling policy (18) is simplified as εk =∑tk−1

r=1 A
r+τ−1ξk−r, where cov[ξk|Isk] = KCP̃ s with P̃ s

being the covariance of prediction error êsk|k−1. Denote Π :=

KCP̃ s and Πi = hi−1(Π). Consider the error vector ~ε(l) =
[ε(τ + 1)> · · · ε(τ + l)>]> ∈ Rl, for l ∈ {1, . . . , T − τ},
which is a random vector having the multivariate normal
distribution with zero mean and the covariance matrix Σ(l)
with components Σij(l) as follows: for i, j ∈ {1, . . . , l},

Σij(l) =


AτΠi+τ (Aτ )> if i = j,
AτΠi+τ (Aj+τ−1)> if j > i,
Σ>ji(l) otherwise.

Note that the negative information effect is not explored
in this study, which generally leads to significantly more
involved filtering algorithms, see [19]. Define the admission
region of ~ε(l) as Ul := {~ε(l) ∈ Rl|

⋂l
r=1 ε(τ+l)>Γε(τ+l) ≤

θ
1−β }, for l = {1, . . . , T − τ}.

Lemma 6: The components pl+τ,1, for l ∈ {1, . . . , T −
τ − 1} of the transition matrix P are given as

pl+τ,1 =

{
Pi l = 1

1− Pl+1

Pl l ∈ {2, . . . , T − τ − 1}

with Pl = 1√
2πΣ(l)

∫
Ul exp(− 1

2 ς
>
l (Σ(l))−1ςl)dςl and ςl ∈

Rl, for l ∈ {1, . . . , T − τ − 1}.
Proof: The transition probability pl+τ,1 is calculated

based on the VoIP-based scheduling polic, as in (18). We
classify the calculation into the following two categories.
1) The event {δ̌k−i+1 = · · · = δ̌k−1 = 0, δ̌k−i = 1} is
equivalent to {tk−1 = i}, for some k. For l = 1, pτ+1,1

implies that the event {δ̌k = 1, tk−1 = τ}, for some k occurs
with the probability pτ+1,1 = Pr(ε(τ + 1) ∈ Uτ+1) = P1.
2) For l = {2, . . . , T − τ − 1}, the conditional transition
probability pl+τ,1 refers that the event {δ̌k = 1, tk−1 = l +
τ − 1} occurs with the probability

pl+τ,1 = P(δ̌k = 1|tk−1 = l + τ − 1)

=
P(δ̌k = 1, tk−1 = l + τ − 1)

P(tk−1 = l + τ − 1)

= 1− P(tk = l + τ)

P(tk−1 = l + τ − 1)
.

The event tk = l + τ , for l = {1, . . . , T − τ} and some k,
occurs with the probability P(tk = l + τ) = P(~ε(l) ∈ Ul).
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