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Abstract— This paper deals with modelling and control of
an endoscope actuated by Ionic Polymer Metal Composites
(IPMC) patches. The endoscope is modelled by a nonlinear
partial differential equation (PDE) capable to describe large
deformations. The dynamics of the flexible structure and of the
IPMC patches are in port-Hamiltonian form, with the actuators
interconnected to the mechanical device in power-conserving
way. Thus, the complete model is a port-Hamiltonian system in
which a PDE with fixed boundary conditions is coupled with a
set of ordinary differential equations. The control inputs are the
voltages applied to the patches, and the feedback law is designed
within the Interconnection and Damping Assignment Passivity-
based Control (IDA-PBC) framework. The asymptotic stability
of the closed-loop system is proved, and the effectiveness of the
design procedure is illustrated by a numerical example.

I. INTRODUCTION

In clinical practice, the utilisation of endoscopes for mini-
mally invasive surgery is becoming increasingly prevalent to
reduce patient discomfort. Thanks to the recent technological
advance, in [1] a micro-endoscope for endonasal skull base
surgery which employs Ionic Polymer Metal Composites
(IPMC) actuators for endoscope bending is proposed. The
most important advantage of the IPMC actuator is that it
exhibits a large bending with a very low applied voltage [2].
Nonetheless, modelling and control design pose significant
challenges due to the intricate nature of the material and to
the behaviour of the flexible structure.

In this paper, the modelling and control problem of the
IPMC actuated endoscope subject to large deformations is
considered. To deal with multi-physical phenomena and the
coupling between the IPMC patches and the endoscope, the
study is carried out within the port-Hamiltonian framework,
[3]–[5]. The key benefits of such a framework is that it allows
for a systematic and modular approach not only for model
development, but also for control design driven by a clear
physical interpretation based on energy, see for example the
energy shaping and control by interconnection and damping
assignment (IDA-PBC) paradigms, [6]–[8].

The port-Hamiltonian approach for the modeling of the
IPMC actuator has been investigated in [9]. In [10], instead,
a lumped parameter model for an IPMC actuated flexible
structure has been proposed, and the IDA-PBC paradigm
has been employed to control the position of the flexible
structure. A linear distributed parameter model of the same
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Fig. 1. IPMC actuated flexible beam with large deformation.

system has been proposed in [11]. However, the model can
only describe the flexible beam with small deformations. The
main contributions of this paper are as follows: we propose
a nonlinear distributed parameter model for a flexible en-
doscope under the port-Hamiltonian framework. Our model
takes into account the large deformations of the flexible
endoscope. Moreover, we model the IPMC patches using
a simple lumped parameter port-Hamiltonian system, which
is then interconnected to the nonlinear flexible beam model
in a power-preserving manner along the spatial domain.
Following that, we extend the IDA-PBC control synthesis
methodology to this port-Hamiltonian system, whose dynam-
ics are described by a nonlinear partial differential equation
(PDE) describing the flexible structure and coupled with a
certain number of linear lumped-parameter sub-systems (i.e.,
described by ordinary differential equations – ODEs), each
associated with an IPMC patch.

II. PORT-HAMILTONIAN MODEL

The model of the IPMC actuated endoscope is devel-
oped within the port-Hamiltonian framework, [3], [4]. The
flexible structure is described by a nonlinear, distributed-
parameter port-Hamiltonian system with one-dimensional
domain [5], while each IPMC patch as a lumped-parameter
port-Hamiltonian system. These patches are interconnected
in power-conserving way to the mechanical structure along
the spatial domain of the flexible link (see Fig. 1), and the
control input is the collection of the applied voltages to all the
IPMC actuators. From a mathematical point of view, the final
model is formulated as a set of coupled PDEs and ODEs.

A. Nonlinear model of a flexible link

The PDE model of the flexible beam has been developed
to be simple enough for control design, but at the same
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time to be able to describe large deformations in the 3D
space, [12]. The idea is rather simple. Let z ∈ [0, ℓ] be the
spatial coordinate along the unstressed configuration. Thus,
the position and orientation of each cross-section with respect
to the inertial frame E0 is denoted by h0

b(z) ∈ SE(3), where
the subscript b refers to the body frame Eb moving with the
cross-section. The motion of the cross-section is described
by a twist T ∈ se(3). Such a motion is caused by the elastic
forces due to difference in “velocity” between infinitesimally
closed cross-sections. The deformation of the structure is
described by a generalised displacement q ∈ se(3) and
generates a “force”, more precisely a wrench W ∈ se∗(3).
Thus, the difference between the two wrenches applied to
the cross-section is responsible for its motion, described by
a generalised momentum p ∈ se∗(3). These considerations
lead to the following equations, see [12] for more details:

∂q

∂t
=

∂T

∂z
+ adq+nT

∂p

∂t
=

∂W

∂z
− ad∗q+nW + p ∧ T

. (1)

In (1), all the quantities are in the body frame Eb. Besides,
adv denotes the adjoint representation of the Lie algebra
se(3) ∋ v, while ad∗v is its dual [13], the term p∧T = ad∗T p
takes into account the fact that the dynamics is written in the
body frame, and n ∈ se(3) is a “twist” that describes how
the unstressed configuration evolves in the z coordinate. The
system is equipped by two boundary ports, i.e. (T (ℓ),W (ℓ))
and (T (0),W (0)), while T and W are related to p and q
via the constitutive equations, see (4).

The model used for control design is (1), but re-written in
coordinates and with the addition of a port along the domain
to which the IMPC actuators are attached. For simplicity, the
focus is on the planar motion only. Thus, given v ∈ se(2),
with some abuse in notation we write v = (vx, vy, vθ) ∈ R3,
so for the adjoint representation of the algebra we have

adv ⇔

 0 −vθ vy
vθ 0 −vx
0 0 0

 ∈ R3×3 (2)

and

v∧ ⇔

 0 0 vy
0 0 −vx

−vy vx 0

 ∈ R3×3. (3)

To get the dynamical equations it is necessary to specify the
constitutive relations. Let m and J be the mass and moment
of inertia of the cross section for unitary length, and let M =
diag(m,m, J) be the inertia matrix. Besides, C = CT > 0
is the stiffness matrix. Then, the constitutive equations are

W (t, z) = Cq(t, z) T (t, z) = M−1p(t, z). (4)

The quantities q and p are usually referred as energy vari-
ables, while W and T are the co-energy variables.

If x = (q, p) ∈ R6, we extend (1) with the addition of the
distributed inputs ud ∈ RN , thus we get the nonlinear PDE

∂x

∂t
(t, z) = P1

∂

∂z

(
Lx(t, z)

)
+ P0(x(t, z))

(
Lx(t, z)

)
+Gd(z)ud(t)

(5)

in which

P1 =

(
0 I
I 0

)
P0(x) =

(
0 A(q)

−AT(q) P∧(p)

)
Gd(z) =

(
0

Ḡd(z)

)
L =

(
C 0
0 M−1

)
.

and Ḡd ∈ R3×N . The PDE (5) extends the class of linear,
port-Hamiltonian boundary control systems introduced in
[14] to the nonlinear case. With some abuse in notation, A(q)
and P∧(p) are the expressions of adq+n and p∧ reported in
(2) and (3), respectively. We have assumed that the unstressed
configuration is a straight line along the x direction of the
body frame, and so n = (1, 0, 0). Besides, the IPMC patches
apply a bending torque to the mechanical structure, thus ud

collects the applied torques, and ḠT
d (z) = (0, 0, GT

θ (z)),
with Gθ ∈ R1×N . Each (integrable) function Gθi describes
how the torque udi generated by the i-th IPMC actuator acts
on the flexible beam.

The Hamiltonian function of (5) is H(x) = 1
2

∫ ℓ

0
xTLxdz,

and its variation along the system’s trajectories is

Ḣ(x(t, ·)) = WT(t, ℓ)T (t, ℓ)−WT(t, 0)T (t, 0)

+ yTd (t)ud(t)

where yd(t) =
1
J

∫ ℓ

0
GT

θ (z)pθ(t, z) dz is the power-conjugat-
ed output. The quantity yTd ud gives the power flow through
the spatial domain, while the other two terms specify the
power flow through the boundary ports in 0 and ℓ. In the
remaining part of the paper, we assume that the compliance
matrix C is diagonal, i.e.:

C =

Cx 0 0
0 Cy 0
0 0 Cθ

 , with Cx, Cy, Cθ > 0,

and that the boundary conditions are

Tx(t, 0) = bxWx(t, 0) Tθ(t, 0) = 0

Ty(t, 0) = byWy(t, 0) W (t, ℓ) = 0
(6)

with bx and by positive. So, the beam is (approximately) in
the free-clamped configuration.

B. Model of the IPMC actuator

From a physical point of view, the bending of the IPMC
due to an applied voltage is caused by the cation flux and
polar solvents in the polymer membrane diffusion between
the electrodes. Motivated by the requirement that the model
of such a phenomenon is employed for control design, rather
than the multi-scale description proposed in [15], the simpler
formulation proposed in [10] is adopted. If the mechanical
dynamics is assumed to be part of the flexible structure, only
the electrical one is of importance and is equivalent to a RLC
circuit. For the i-th IPMC patch, we write

(
φ̇i

Q̇i

)
=

(
−ri −1
1 −gi

)(∂Hai

∂φi
(φi, Qi)

∂Hai

∂Qi
(φi, Qi)

)
+

(
ui

uai

)
(
yi
yai

)
=

(
∂Hai

∂φi
(φi, Qi)

∂Hai

∂Qi
(φi, Qi)

) (7)
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where

Hai(φi, Qi) =
1

2

φ2
i

Li
+

1

2

Q2
i

Ci
(8)

is the energy (Hamiltonian). In (7), φi is the magnetic flux,
Qi the charge in the capacitor, ri and g−1

i the resistances, ui

the applied voltage to the actuator, yi the current in the induc-
tance, and yai the voltage across the capacitor. The bending
torque is proportional to yai, with a constant coefficient
ki. So, if ua = (ua1, . . . , uaN ) and ya = (ya1, . . . , yaN ),
the power-conserving interconnection between the flexible
structure and the N IPMC actuators is given by(

ud(t)
ua(t)

)
=

(
0 K

−K 0

)(
yd(t)
ya(t)

)
, (9)

where K = diag(k1, . . . , kN ). Note that uai is a current
caused by the structure deformation. The overall dynamics
is in port-Hamiltonian form, in which a PDE is coupled with
N ODEs. If Q = (Q1, . . . , QN ) and φ = (φ1, . . . , φN ), then
xe = (x(z), Q, φ) denotes the state variable. The Hamilto-
nian function is He(xe) = H(x) +

∑N
i=1 Hai(φi, Qi), the

input u = (u1, . . . , uN ) groups the voltages applied to the
IPMC actuator, and y = (y1, . . . , yN ) is the output collecting
the currents in the patches.

III. EQUILIBRIUM CONFIGURATIONS

The working principle of the IPMC actuated flexible
beam is simple. The bending is modified by the voltage
applied to each patch, and the controller is designed to
make the desired configuration asymptotically stable. Thus,
a preliminary step consists in determining the achievable
equilibria. Such equilibria are now denoted by ·⋆. From (5), it
is immediate to see that p⋆θ(z) is an equilibrium configuration
for the beam if ∂p⋆

θ

∂z (z) = 0, i.e. p⋆θ(z) is constant for all
z ∈ [0, ℓ]. Besides, for all patches, we get from (7) that

0 = −ri
φ⋆
i

Li
− Q⋆

i

Ci
+ u⋆

i

0 =
φ⋆
i

Li
− gi

Q⋆
i

Ci
− ki

p⋆θ
J

∫ ℓ

0

Gθi(σ) dσ

(10)

Thus, if
φ⋆
i

Li
= gi

Q⋆
i

Ci
(11)

then from (10) we get

u⋆
i = (1 + rigi)

Q⋆
i

Ci
p⋆θ = 0, (12)

where u⋆
i is the control action to be provided in steady-state,

with i = 1, . . . , N . For the PDE model (5), at the equilibrium
we have that ∂px

∂t (t, z) =
∂py

∂t (t, z) = 0, and so

d

dz

(
Cxq

⋆
x(z)

Cyq
⋆
y(z)

)
+

(
0 q⋆θ(z)

−q⋆θ(z) 0

)(
Cxq

⋆
x(z)

Cyq
⋆
y(z)

)
= 0.

that has to hold for some q⋆θ(z). However, because of the free
boundary condition in z = ℓ reported in (6), we have that
Cxq

⋆
x(ℓ) = Cyq

⋆
y(ℓ) = 0, and so q⋆x(z) = q⋆y(z) = 0 for all

z ∈ [0, ℓ]. This result, together with ∂qx
∂t (t, z) =

∂qy
∂t (t, z) =

0 at the equilibrium, implies that

d

dz

(
p⋆x(z)
p⋆y(z)

)
+

(
0 q⋆θ(z)

−q⋆θ(z) 0

)(
p⋆x(z)
p⋆y(z)

)
= 0

with p⋆x(0) = mbxCxq
⋆
x(0) = 0 and p⋆y(0) = mbyCyq

⋆
y(0) =

0 because of the boundary conditions in z = 0 stated in (6).
As before, we get that p⋆x(z) = p⋆y(z) = 0 for all z ∈ [0, ℓ].
The last equilibrium coordinate results from the requirement
∂p⋆

θ

∂t (t, z) = 0. We get Cθ
dq⋆θ
dz (z) +

∑N
i=1 ki

Q⋆
i

Ci
Gθi(z) = 0,

in which q⋆θ(ℓ) = 0 because of the last condition in (6). If
Gθi(z) =

∫ ℓ

z
Gθi(σ) dσ, i = 1, . . . , N , it is easy to see that

q⋆θ(z) =
1

Cθ

N∑
i=1

kiQ
⋆
i

Ci
Gθi(z). (13)

So, the “desired” equilibrium is x⋆
e = (x⋆(z), Q⋆, φ⋆), in

which x⋆(z) =
(
0, 0, 1

Cθ

∑N
i=1

kiQ
⋆
i

Ci
Gθi(z), 0, 0, 0

)
, while

Q⋆ and φ⋆ are defined in (11) and (12).

IV. IDA-PBC CONTROL DESIGN

The IDA-PBC design paradigm aims at obtaining a state-
feedback control action able to map the open-loop dynamics
into a target one characterised by a desired energy function
and “structural properties,” such as the internal dissipation.
More details in [7], [8] or, for a problem similar to the
one discussed here, in [10]. The results of this paper are an
extension of the lumped-parameter case tackled there. The
closed-loop Hamiltonian function is selected with a global
minimum at the desired equilibrium configuration, in this
case x⋆

e . This specifies the steady-state in closed-loop. The
transient is tuned by changing the internal dissipation and
the equivalent stiffness of the system which determine how
fast the energy decreases towards its minimum, i.e. to x⋆

e . A
possible choice for the desired Hamiltonian is

H ′
e(xe) =

1

2

N∑
i=1

(
φ̃2
i

L′
i

+
Q̃2

i

C ′
i

+ Γiφ̃iQ̃i

)

+

N∑
i=1

∫ ℓ

0

(αiQ̃i + βiφ̃i)q̃θ dz +
1

2

(∫ ℓ

0

γiq̃θ dz

)2


+
1

2

∫ ℓ

0

[
pTM−1p+ Cxq

2
x + Cyq

2
y + Cθ q̃

2
θ

]
dz,

(14)
where φ̃i = φi − φ⋆

i , Q̃i = Qi − Q⋆
i , and q̃θ = qθ − q⋆θ ,

while the C ′
i, L

′
i and Γi are parameters, and the αi, βi and

γi functions to be determined later. Note that H ′
e(x

⋆
e) = 0.

As far as the target dynamics is concerned, with an eye
on (7) and (9) for each IPMC patch we have that

φ̇i = −r′i
∂H ′

e

∂φi
− ∂H ′

e

∂Qi

Q̇i =
∂H ′

e

∂φi
− gi

∂H ′
e

∂Qi
− ki

∫ ℓ

0

Gθi
δH ′

e

δpθ
(xe) dz,

(15)

where r′i > 0 is a “desired” resistance. The function δH′
e

δpθ
is

the variational derivative of H ′
e with respect to pθ, see [5]
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for more details related to the port-Hamiltonian description
of infinite-dimensional systems, or [16] for an application
in control design. If the first relations in (7) and (15) are
compared, the expression of the stabilising law is deduced:

ui(xe) = ri
φi

Li
+

Qi

Ci
− r′i

∂H ′
e

∂φi
(xe)−

∂H ′
e

∂Qi
(xe). (16)

As far as the flexible structure is concerned, because of the
choice (14), only the last equation is changed into

∂pθ
∂t

=
∂

∂z

δH ′
e

δqθ
(xe)− Cxqxqy + Cy(qx + 1)qy

+

N∑
i=1

ki

∫ ℓ

0

Gθi
δH ′

e

δQi
(xe) dz

(17)

since H ′
e differs from He in the φi, Qi and qθ coordinates

only, while the boundary conditions (6) remain the same,
except for the last one that turns into δH′

e

δqθ
(x(ℓ), Q, φ) = 0.

From the second relations in (7) and (15), since we have
that δH′

e

δpθ
(xe) = J−1pθ, after few passages we obtain that

0 =
(
L̃−1
i − giΓi

)
φi −

(
giC̃

−1
i − Γi

)
Qi

−
(
L′−1
i − giΓi

)
φ⋆
i +

(
giC

′−1
i − Γi

)
Q⋆

i

+

∫ ℓ

0

(βi − giαi) (qθ − q⋆θ) dz,

where L̃−1
i = L′−1

i − L−1
i and C̃−1

i = C ′−1
i − C−1

i . Then,

Γi = giC̃
−1
i βi(z) = giαi(z)

L̃−1
i = giΓi = g2i C̃

−1
i

(18)

with i = 1, . . . , N , since L′−1
i − giΓi = L−1

i and giC
′−1
i −

Γi = giC
−1
i , and because of (11).

In a simliar way, from the last equations in (5) and (17),
after few passages we get that

0 =

N∑
i=1

[(
kiC̃

−1
i Gθi +

dαi

dz

)
(Qi + giφi)

− gi

(
kiC̃

−1
i Gθi +

dαi

dz

)
φ⋆
i

−
(
kiC

′−1
i Gθi +

dαi

dz

)
Q⋆

i

+ kiGθi

∫ ℓ

0

αiq̃θ dz +
dγi
dz

∫ ℓ

0

γiq̃θ dz

]
− Cθ

dqθ
dz

which implies that dαi

dz (z) = −kiC̃
−1
i Gθi(z), i = 1, . . . , N .

To satisfy the matching condition, because q⋆θ is defined as
in (13), an effective choice is αi(z) = kiC̃

−1
i Gθi(z) and

γi(z) = ki

√
C̃−1

i Gθi(z). The result is that all the elements
that appear in the desired Hamiltonian function (14) have
been determined. Similarly to the lumped-parameter case
treated in [10], such parameters are strongly coupled and
the degrees of freedom are the constants C ′

i. Using a similar
approach as in [10], it is possible to check that they can be
selected sufficiently small so that H ′

e is lower bounded and
x⋆
e is a global minimum.

Before concluding this part, it is interesting to analyse the
structure of the feedback law with an eye on the physical
parameters of the plant. In a real-world scenario, see Table I,
the admittance gi is almost 0, thus (16) simplifies into

ui(xe) = − r′i
Li

(φi − φ⋆
i )−

1

C ′
i

(Qi −Q⋆
i )

+ kiC̃
−1
i

∫ ℓ

0

Gθi(qθ − q⋆θ) dz +
ri
Li

φi +
Qi

Ci

= −(r′i − ri)
φi

Li
+

(
1

C ′
i

+
giri
Ci

)
Q⋆

i

− 1

C̃i

[
Qi − ki

∫ ℓ

0

Gθi(qθ − q⋆θ) dz

]
(19)

since L′
i ≃ Li if gi ≃ 0, see (18). For the same reason, also

giriC
−1
i ≃ 0. Now, from (7), we get that

Ii(t) = Q̇i(t) +
ki
J

∫ ℓ

0

Gθi(z)pθ(t, z) dz (20)

being Ii = L−1
i φi the measured current flowing in the i-th

patch, and where we have assumed gi ≃ 0. If we take the
time derivative of the last term in (19), from (5) we obtain

d

dt

∫ ℓ

0

Gθi(z)qθ(t, z) dz =
1

J

∫ ℓ

0

Gθi(z)
∂pθ
∂z

(t, z) dz

=
1

J
[Gθi(ℓ)pθ(t, ℓ)− Gθi(0)pθ(t, 0)]

− 1

J

∫ ℓ

0

dGθi

dz
(z)pθ(t, z) dz

=
1

J

∫ ℓ

0

Gθi(z)pθ(t, z) dz.

(21)

In (21), we have used the fact that Gθi(ℓ) = 0 by construc-
tion, pθ(t, 0) = 0 because of the clamped boundary condition
in z = 0 specified in (6), and Gθi(z) = −dGθi

dz (z). As a
consequence, from (20), we can rewrite (19) as

ui(I(t)) = −(r′i − ri)I(t)−
1

C̃i

∫ t

0

I(τ) dτ +
Q⋆

i

C ′
i

(22)

so the state-feedback control action obtained thanks to the
IDA-PBC design is approximated by a output-feedback law
that does not require to measure the bending of the beam.
Note that (22) has a PI-like structure. This result extends [10,
Proposition 4] to the distributed-parameter scenario.

V. STABILITY ANALYSIS

The stability analysis relies on two assumptions. The first
one is that both the open- and closed-loop systems are well-
posed. This means that trajectories exist, thus it makes sense
to evaluate e.g. how the energy function changes as long as
the system evolves. As a matter of fact, it seems reasonable
to extend the machinery in [17, Appendix B] to the class of
boundary control systems (5). Note that for the flexible beam
model discussed here, it has been shown in [18] that it can be
equivalently described as a quasi-linear hyperbolic system.
The second assumption is about the pre-compactness of the
closed-loop trajectories. This is a fundamental requirement
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to apply the LaSalle’s invariance principle in the distributed
parameter scenario, [19, Theorem 3.64].

With few passages, and because of the control law (16) in
closed-loop we still have a port-Hamiltonian system, for the
target energy-function (14), we obtain that

Ḣ ′
e(xe) =− bxW

2
x (0)−

N∑
i=1

r′i

(
∂H ′

e

∂φi
(xe)

)2

− byW
2
y (0)−

N∑
i=1

gi

(
∂H ′

e

∂Qi
(xe)

)2

≤ 0.

(23)

Besides, for construction, H ′
e is a Lyapunov function. From

(23), we deduce that a steady state is reached and, because
H ′

e is radially unbounded, that the trajectories of the closed-
loop system are bounded, e.g. in the L2 norm for the part
of the state modelled via the nonlinear PDE (5).

As far as the steady-state is concerned, from the first
relation in (15), we have that φ̇i = 0, i.e. a constant value
for φi is reached for each patch. Besides, since

∂H ′
e

∂φi
(xe) =

φ̃i

L′
i

+ gi
Q̃i

C̃i

+
giki

C̃i

∫ ℓ

0

Gθiq̃θ dz = 0

∂H ′
e

∂Qi
(xe) =

Q̃i

C ′
i

++gi
φ̃i

C̃i

+
ki

C̃i

∫ ℓ

0

Gθiq̃θ dz = 0

(24)

we see that Qi is also constant, and so are the bending torque
applied by each pach to the mechanical structure and the
integral term in (24). Besides, from (15), we get that∫ ℓ

0

Gθipθ dz = const., with i = 1, . . . , N . (25)

To study the steady-state of the beam, inspired by [20],
a multiplier approach based on the auxiliary functional
W (x) =

∫ ℓ

0
η (qxpx + qypy) dz is considered, where η ∈

C1(0, ℓ;R) is a function defined later. It is easy to verify that,
for ε > 0 and sufficiently small, H ′

e + εW is a Lyapunov
function for the closed-loop system, and that

Ẇ (x) =
1

2

[
η

(
p2x + p2y

m
+ Cxq

2
x + Cyq

2
y

)]z=ℓ

z=0

+

∫ ℓ

0

[
ηΩ(x)− dη

dz
∥(qx, qy, px, py)∥2

]
dz

with Ω(x) = CyQθqxqy + m−1qθqypx − J−1pθpy . If we
select η so that η(ℓ) = 0 and dη

dz (z) is sufficiently large,
since the trajectories of the closed-loop system are bounded,
we get that there exist κ0, κη > 0 so that

Ẇ (x) ≤ κ0η(0) ∥(qx, qy, px, py)(0)∥2

− kη

∫ ℓ

0

∥(qx, qy, px, py)∥2 dz.
(26)

A possible choice is η(z) = eη̄(z−ℓ) − 1, with η̄ > 0.
Now, if we consider the Lyapunov function H ′

e + εW , for ε
sufficiently small the (possibly) positive contribution in (26)

TABLE I
PARAMETERS OF THE IPMC ACTUATED ENDOSCOPE, [10].

parameter value parameter value

ℓ 0.16 m m 4.5·10−5 kg·m−1

J 0.19·10−5 kg·m Cx 10 N·m−2

Cy 0.80 N·m−2 Cθ 0.26 Nm·m−1·rad−1

Ci 5.8·10−2 F Li 0.01 H
ri 29.75Ω gi 1.4·10−3 Ω−1

ki 0.98 Nm·V−1

is dominated by the boundary dissipation due to the boundary
conditions (6). In fact, with an eye on (23), we have that

bxW
2
x (0) + byW

2
y (0) =

1
2

[
bxW

2
x (0) + byW

2
y (0)

]
+ 1

2

[
b−1
x T 2

x (0) + b−1
y T 2

y (0)
]
,

thus it is sufficient that ε is selected so that 2κ0η(0) ε ≤
min(bxC

2
x, byC

2
y , b

−1
x m2, b−1

y m2). So, in steady state, qx, qy ,
px and py go to 0 for all z ∈ [0, ℓ].

Finally, the focus is on the deflection dynamics. From
the LaSalle’s invariance principle [19, Theorem 3.64], the
trajectories converge to the largest invariant set contained in
Ḣ ′

e(xe) = 0. From (5) and the previous considerations, we
obtain that in steady state

∂qθ
∂t

(t, z) =
1

J

∂pθ
∂z

(t, z)

∂pθ
∂t

(t, z) =
∂

∂z

δH ′
e

δqθ
(qθ(z), pθ(z)) + τ̄

, (27)

with the boundary conditions pθ(0) = 0 and δH′
e

δqθ
(ℓ) = 0,

and where τ̄ is the constant bending torque applied by the
patches on the mechanical structure. With few passages, it
turns out that (27) is a wave equation with constant boundary
conditions. As a matter of fact, the only invariant solution
compatible with the property (25) of the steady-state is that
pθ(z) is constant for all z ∈ [0, ℓ], i.e. it is equal to zero
because of the clamped configuration in z = 0. Thus, from
the second relation in (27), we can check that qθ = q⋆θ ,
and so from (24) we finally get that φi = φ⋆

i and Qi =
Q⋆

i , with i = 1, . . . , N . The conclusion is that the unique
invariant solution contained in Ḣ ′

e(xe) = 0 is the equilibrium
x⋆
e , thus proving that the feedback law (16) makes such a

configuration asymptotically stable.

VI. NUMERICAL SIMULATIONS

In this section, the shape control for an IPMC actuated
flexible beam with the proposed control methodology is
considered. The numerical values of the parameters for the
simulation are listed in Table I. The IPMC patches are
assumed to be equal. The aim is to use the IPMC actuators
to drive the flexible beam to the desired shape. The flexible
beam has N = 4 IPMC actuators attached to it, located
at the clamped side, 1/4 and 3/4 of the length away from
the clamped side, and at the tip end side. The length of
each actuator is 2 cm. So, the Gθi(z) functions appearing in
(5) that describe the way in which the actuators bends the
mechanical structure have been selected to be equal to 1 in a

1959
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Fig. 2. Beam tip and middle point displacements under actuation with
r′i = 10Ω and different C′

i.

subset of the domain [0, ℓ] of length 2 cm and centered in the
application point, and 0 elsewhere. The desired displacement
of the end tip point is 4 cm, and for the middle point is 3 cm.
To achieve the desired configuration, we activate the four
IPMC actuators one after another, starting from the clamped
side. The first actuator is activated at 2 s, the second one at
5 s, the third one at 10 s, and the last one at 15 s.

In Fig. 2, we show the beam tip (upper figure) and the
middle point (lower figure) displacements. As far as the
controller parameters are concerned, we have fixed r′i = 10Ω
fixed, while different values for C ′

i have been tested. Thus,
the IPMC actuators share the same control law. The blue
solid line shows the displacements when C ′

i = 0.01F. When
such a parameter becomes larger, the response turns slower
(red line C ′

i = 0.02F, and black dashed line C ′
i = 0.03F).

VII. CONCLUSIONS AND FUTURE ACTIVITIES

In this paper, a model and a control law for a deformable
endoscope actuated by a set of IPMC patches using the port-
Hamiltonian framework have been presented. The flexible
structure is modelled by a nonlinear PDE with fixed bound-
ary conditions that is able to describe large deformations
in space. The IPMC patches are modelled by a lumped-
parameter port-Hamiltonian system, and are interconnected
to the spatial domain of the PDE model. The resulting system
is still in port-Hamiltonian form, with the dynamics charac-
terised by coupled PDEs and ODEs. The control design is
based on the IDA-PBC paradigm, and exploits the electro-
mechanical coupling to get the closed-loop Hamiltonian
function.

There are several points that require further investigation.
Among them, a more realistic model of the IPMC patch
could be employed. Such a model should take into account
the polymer gel diffusion, thus making the control design
even more challenging. From an experimental point of view,
the validity of the proposed modelling and control design

framework has to be validated. For this reason, we are
realising a laboratory setup.
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