
Computing Controlled Invariant Sets of Nonlinear Control-Affine Systems

Scott Brown Mohammad Khajenejad Sze Zheng Yong Sonia Martı́nez

Abstract— In this paper, we consider the computation of con-
trolled invariant sets (CIS) of discrete-time nonlinear control-
affine systems. We propose an iterative refinement procedure
based on polytopic inclusion functions, which is able to inner-
approximate the maximal controlled invariant set to within a
guaranteed robustness margin. In particular, this procedure
allows us to guarantee the invariance of the resulting near-
maximal CIS while also computing sets of control inputs which
enforce the invariance. Further, we propose an alternative
version of this procedure which refines the CIS by computing
backward reachable sets of individual components of set unions,
rather than all at once. This reduces the total number of inclu-
sion checking operations required for convergence, especially
when compared with existing methods. Finally, we compare
our methods to a sampling based approach and demonstrate
the improved accuracy and faster convergence.

I. INTRODUCTION

Invariance is an important concept for ensuring robustness
and safety of control systems. For a dynamical system, a
set is (forward) invariant if every trajectory starting in that
set remains in the set for all time. For control systems, this
notion can be generalized with the determination of a control
input which is able to render a set invariant, leading to the
notion of a controlled invariant set (CIS). For systems which
are subject to uncertainty or noise, the concept of a robust
controlled invariant set (RCIS) is critical for safety, as it
guarantees invariance in the presence of disturbances.

Literature Review. Controlled invariant sets have been
thoroughly studied for linear systems, e.g., [1]–[4]. Many of
these methods employ iterative procedures based on a one-
step backward operator [1], [2] to find backward reachable
sets of the system for computing the CIS with high pre-
cision. In order to improve the computation time for high-
dimensional systems, other non-iterative techniques have also
been proposed which rely on lifting to a higher dimensional
space to compute the CIS in closed form and projecting the
resulting set to the original domain, e.g., [3], [4].

On the other hand, determining controlled invariant sets
of nonlinear systems remains a significant challenge. Some
works employ convex or zonotopic approximations, e.g., [5],
[6], in order to reduce the computational complexity. How-
ever, as the maximal controlled invariant sets are nonconvex
in general, these methods can be overly conservative.

S. Brown, M, Khajenejad and S. Martı́nez are with the Mechanical and
Aerospace Engineering Department, University of California San Diego, San
Diego, CA, USA. ({sab007,mkhajenejad,soniamd}@ucsd.edu)

S. Z. Yong is with the Mechanical and Industrial Engineering
Department, Northeastern University, Boston, MA, USA.
(s.yong@northeastern.edu)

This work is partially supported by NSF grants 2003517,3 and CNS-
2313814.

Another related work pertains to the study of invariant sets
of switched systems, e.g., [7]–[9], where the input controls
switching between a finite number of modes. In that case,
the input is easily determined by considering all possible
modes and selecting those which lead to invariance [8]. By
sampling a continuous set of inputs, these methods can be
applied to more general nonlinear systems, but the accuracy
and scalability may be limited [9]. These methods result in
sets that are guaranteed to be invariant, but the sampling is
an additional source of computational complexity as it must
be fine enough to properly capture the nonlinear behavior of
the system. As a result, these methods are difficult to apply
to systems with multiple inputs.

Contributions. In this paper, we propose two itera-
tive algorithms to compute not necessarily convex inner-
approximations of the maximal controlled invariant sets of
control-affine systems up to a guaranteed robustness margin,
without sampling the set of allowable inputs. These algo-
rithms are complete, in the sense that they only return an
empty set if the system does not admit a robustly controlled
invariant set and always terminate in finite time. Inspired
by [8], our methods use a bisection approach to under-
approximate the one-step backward reachable set operator.
The main idea of the approach is to compute the forward
reachable set of the region of interest, which is described
by a union of intervals. The parts of this forward set that
are entirely contained in the original set are used as an
under-approximation of the backward reachable set. To check
the containment, we use polyhedral over-approximations
of forward reachable sets, which allows us to cast the
problem of determining the control input as a translation
of a polyhedron. This technique allows us to determine a
continuous, rather than sampled, set of invariance enforcing
control inputs. In addition, we leverage the structure of set
unions in an alternative algorithm, which has the potential to
significantly reduce the total number of inclusion checking
operations required, when compared with existing methods.

A. Notation

Let Z≥0 be the set of nonnegative integers, while Rn and
Rn×p are the n-dimensional Euclidean space and the set of
n × p matrices, respectively. By means of Br, we denote
the ∞-norm hyperball of radius r. We make use of IRn to
denote the collection of (multidimensional) intervals of Rn,
and denote its elements as [x] ≜ [x, x] ∈ IRn with lower
and upper bounds x and x. The function w([x]) measures
interval width (i.e., w([x]) = ∥x− x∥ with any vector norm
∥ · ∥), mid([x]) selects the midpoint of [x] (i.e., mid([x]) =
1
2 (x+ x)), and a function in brackets [f]([x]) represents an

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 7824

interval inclusion function (cf. Definition 1). The operator
⊕ denotes the Minkowski sum of two sets, i.e., A⊕B ≜
{a + b : a ∈ A, b ∈ B}, and ⊖ denotes the Pontryagin
difference, i.e., A⊖B ≜ {a : {a} ⊕B ⊆ A}. The usual set
difference is denoted as A \ B ≜ {a ∈ A : a /∈ B}. For a
function f : Rn → Rm and a set S ⊂ Rn, f(S) denotes the
image of S under f . For a bounded polyhedron (polytope)
P , we use HP and bP to denote the components defining the
halfspace representation P = {x : HPx ≤ bP}. The symbol
VP denotes the vertices of P . Finally, convX denotes the
convex hull of the set X .

II. PRELIMINARIES

This section introduces preliminary notions that will be
used throughout the paper. We begin by defining inclusion
functions, which are critical for tractably approximating the
images of sets under nonlinear functions.

Definition 1. Given a function f : Rn → Rm, an inclusion
function is an interval function [f] : IRn → IRm that
satisfies

[f]([x]) ⊇ f([x]), ∀[x] ∈ IRn,

where f([x]) denotes the exact image of [x] under f .

The reader is referred to [10, Section 2.4] and [11] for a
thorough discussion of different types of inclusion functions,
such as natural, centered, etc., as well as mixed-monotone
decomposition-based inclusion functions. The results of this
paper are not specific to any one type of inclusion function,
but different choices will affect the precision of the result.

A. Translating Polytopes

This section defines two different operations on polytopes:
translating one into another, and translating one so it in-
tersects another. These will be used in our algorithm to
determine safe control inputs.

Definition 2. Given two sets P and Q, the set of translations
of P that insert P into Q is denoted by

I(P,Q) ≜ {r ∈ Rn : P ⊕ {r} ⊆ Q} = Q⊖P.

Similarly, the set of translations of P that overlap P with Q
is defined as

O(P,Q) ≜ {s ∈ Rn : P ⊕ {s} ∩ Q ̸= ∅}.

From the definition it is clear that for a set Q =
⋃N

i=1Qi,
O(P,Q) =

⋃N
i=1O(P,Qi). We now describe how to com-

pute these operations when P and Q are polytopes.

Proposition 1 ([12, Theorem 2.3]). For polytopes P and Q,

I(P,Q) = {r ∈ Rn : HQr ≤ bQ − β},

where βi = maxv∈VP (HQ)iv. If P cannot be embedded into
Q, then this results in I(P,Q) = ∅.

Proposition 2. Given two polytopes P and Q,

O(P,Q) =
{
s ∈ Rn :

[
HQ
−HP

]
s ≤

[
bQ − α
bP − γ

]}
,

where αi = minv∈VP (HQ)iv and γi = minv∈VQ(HP)iv.

Proof. See Appendix A. ■

III. INVARIANCE CONTROL PROBLEM

Here we introduce the class of systems under consideration
and define the concept of controlled invariance. Specifically,
we consider nonlinear control affine systems of the form

xk+1 = f(xk, uk) ≜ f0(xk) +

m∑
i=1

gi(xk)ui,k, (1)

where x ∈ Rn is the state and u ∈ U ⊂ Rm is the input. We
assume that U is a compact interval, and we will restrict our
attention to a region of interest, Ω ⊂ Rn, which we assume
to be given as a finite union of compact intervals.

Assumption 1. The functions f0, and g1, . . . , gm are
Lipschitz continuous, i.e., for every x, y ∈ Ω,

∀i ∈ {1, . . . ,m}, ∃Li s.t. ∥gi(x)− gi(y)∥ ≤ Li∥x− y∥,
and L0 s.t. ∥f0(x)− f0(y)∥ ≤ L0∥x− y∥.

Next we define the precise notions of invariance which we
will consider in this work.

Definition 3 (Controlled Invariant). A set X ⊂ Rn is
controlled invariant with respect to the dynamics (1) if for
every x0 ∈ X , there exists an input u such that f(x0, u) ∈ X .

There are many computational challenges associated with
computing controlled invariant sets, many of which arise due
to the infinite precision required to adequately handle regions
near the boundary of the set. As such, it is convenient to
modify the definition to incorporate a robustness margin r.

Definition 4 (Robustly Controlled Invariant). A set X ⊂
Rn is r-robustly controlled invariant for system (1) if for
every x0 ∈ X , there exists a non-empty corresponding set of
control inputs UI(x0) such that for any input u ∈ UI(x0),
f(x0, u) ∈ X ⊖ Br.

Intuitively, in order to be robustly invariant, every point
must be mapped into the interior of the set, at some distance
r from the boundary. See [8] for more details.

We are ready to formally state the problem which we aim
to address in this paper.

Problem 1. For a system (1) that satisfies Assumption 1
and a region of interest Ω ⊂ Rn, given by a union of
compact intervals, compute the maximal controlled invariant
set contained in Ω up to a guaranteed robustness margin.
Additionally, compute the corresponding set of control inputs
that enforces this invariance.

IV. COMPUTATION OF CONTROLLED INVARIANT SETS

This section starts by reviewing a well-known iterative
procedure for computing maximal controlled invariant sets
[13]. After this, we describe our main contribution, which
under-approximates the operator used in each iteration.

7825

Definition 5 (Pre-Set). The pre-set, or the one-step backward
reachable set of a set Ω ⊂ Rn is defined as

Q(Ω) ≜ {x ∈ Rn : ∃u ∈ U s.t. f(x, u) ∈ Ω} .

We further define the operator

I(Ω) ≜ Q(Ω) ∩ Ω,

which will enable computation of the maximal controlled
invariant set. Repeated application is denoted as Ii(Ω) =
I(Ii−1(Ω)), i ∈ Z≥0, with I0(Ω) = Ω. We also define
Ir(Ω) ≜ Q(Ω⊖ Br) ∩ Ω.

Lemma 1 ([13, Special Case of Proposition 4]). If Ω ⊂ Rn

is closed, then

I∞ ≜ lim
i→∞

Ii(Ω)

is the maximal controlled invariant set contained in Ω.

This result is the basis for many iterative algorithms,
e.g., [1], [2], [13]. However, there are several computational
challenges when dealing with nonlinear systems. In addition
to operations involving backward reachability, our algorithm
also utilizes operations related to forward reachability, which
we define here.

Definition 6 (Reachable Set). The one-step forward reach-
able set of a set Ω ⊂ Rn is defined as

P (Ω) ≜ {x ∈ Rn : ∃x0 ∈ Ω, u ∈ U s.t. x = f(x0, u)}.

The following definition restricts the previous reachable
set to that of a particular input, which is used later for
determining a suitable controller.

Definition 7 (Fixed-Control Reachable Set). For a given u ∈
U , the fixed-control one-step forward reachable set of a set
Ω ⊂ Rn is defined as

Pu(Ω) ≜ {x ∈ Rn : ∃x0 ∈ Ω s.t. x = f(x0, u)}.

From the definitions, it is clear that
⋃

u∈U Pu(Ω) = P (Ω).

A. Polyhedral Approximation of Reachable Sets

Our algorithm will employ polyhedral over-
approximations of P (Ω) and Pu(Ω) to determine feasible
control inputs that can lead to invariance.

To this end, we use a decomposition of the function
f0, which we will show to satisfy certain properties. This
decomposition will vary depending on the interval [x] under
consideration. We first compute A and ϕ such that

f0(x) = Ax+ ϕ(x), ∀x ∈ [x], (2)

decomposing f0 into a linear term plus a nonlinear remainder
term. This is always possible (since we can let A = 0) and
can be done in multiple different ways. For example, if f0
is differentiable, this can be done via linearization about the
midpoint of the interval. Another possibility is that f0 has a
bounded Jacobian matrix on [x], in which case we can apply
a Jacobian sign-stable decomposition [14, Proposition 2] to
compute (2). The method of decomposition will affect the

accuracy of the final approximation, as we will discuss at the
end of this section. Then, by using an inclusion function [Φ] :
IRn → IRn satisfying [Φ]([x]) ⊇ ϕ([x]), we can guarantee
that

f0([x]) ⊆ A[x]⊕ [Φ]([x]), (3)

where A[x] denotes the exact (polytopic) image of [x] under
the linear map A.

We also decompose the individual input functions gi.
For an inclusion function [gi], let si = mid([gi]([x])) and
[Ψi]([x]) = [gi]([x])⊖ {si}, so that

gi([x]) ⊆ {si} ⊕ [Ψi]([x]), (4)

and [Ψi]([x]) is centered at the origin. A centered [Ψi]([x])
will result in a better approximation later on. We will use
the notation S ∈ Rn×m and [Ψ] : IRn → IRn×m to denote
the matrices with columns si and [Ψi], respectively.

In order to guarantee the accuracy of the algorithm, we
must first compute bounds on the error of these over-
approximations. Assumption 1 allows us to upper bound the
width of the resulting inclusion functions.

Proposition 3. Under Assumption 1, there exist inclusion
functions [Φ] and [Ψi], i ∈ {1, . . . ,m}, and constants L̃i >
0, i ∈ {0, . . . ,m} so that for every interval [x] ⊆ Ω,

w([Φ]([x])) ≤ L̃0w([x]) and w([Ψi]([x])) ≤ L̃iw([x]).

Proof. We can, for example, use inclusion functions based
on mixed-monotone decompositions (cf. [15, Lemma 1]) or
the mean-value form (cf. [10] and [8, Eq. (3)]) that can be
shown to satisfy these bounds. ■

With these decompositions in mind, we can define our
approximations of the forward reachable sets. Let

P ([x]) ≜ A[x]⊕ [Φ]([x])⊕ SU ⊕ [Ψ]([x])U

be the polyhedral over-approximation of the one-step forward
reachable set, and let

Pu([x]) ≜ A[x]⊕ [Φ]([x])⊕ Su⊕ [Ψ]([x])U (5)

be the polyhedral over-approximation of the fixed-control
reachable set. The expression SU denotes the polytopic
image of U under the linear transformation S, and [Ψ]([x])U
denotes the interval-valued product that can be computed
using interval arithmetic. The over-approximation [Ψ]([x])U
is used rather than [Ψ]([x])u so that u appears linearly
in (5) with a constant coefficient S. This introduces some
conservatism, as seen in the following lemma.

Lemma 2. Let ρ ≜ L̃0 +max1≤i≤m L̃iw(Ui). Then for all
intervals [x] ⊂ Ω, the following inclusions hold:

Pu([x]) ⊆ Pu([x]) ⊆ Pu([x])⊕ Bρw([x]),

P ([x]) ⊆ P ([x]) ⊆ P ([x])⊕ Bρw([x]).

Proof. The inclusion Pu([x]) ⊆ Pu([x]) is guaranteed by
construction, since

Pu([x]) = A[x]⊕ ϕ([x])⊕ Su⊕
m∑
i=1

ĝi([x])ui,

7826

ϕ([x]) ⊆ [Φ]([x]), and ĝi([x]) ⊆ [Ψi]([x]) where ĝi ≜ gi−si.
The inclusion Pu([x]) ⊆ Pu([x]) ⊕ Bρw([x]) follows from
Proposition 3 and the definition of the Minkowski sum. The
second statement is proved in the same way. ■

B. Interval Approximation of Pre-Sets

We describe our main contribution next, which is a novel
algorithm for approximating the operator I for systems of the
form (1). Given a union of compact intervals Ω, we propose
an iterative refinement procedure that approximates I(Ω) by
another union of compact intervals. Algorithm 1 summarizes
the main steps of this process, described in detail next.

Algorithm 1 I(Ω)

Require: Ω, ε
1: q ← {Ω}, N ← ∅, I ← ∅, E ← ∅, UI ← ∅
2: while q ̸= ∅ do
3: [x]← pop front(q)
4: Compute A, Φ, si, and Ψi on [x]
5: if P ([x]) ∩ Ω = ∅ then
6: N ← N ∪ [x]
7: else if ∃u ∈ U s.t. Pu([x]) ⊆ Ω then
8: I ← I ∪ [x]
9: UI ← UI ∪ ([x], S†(SU([x]))) ▷ See Lemma 3

10: else if w([x]) ≤ ε then
11: E ← E ∪ [x]
12: else
13: (l, r)← bisect([x])
14: push back(q, l), push back(q, r)
15: end if
16: end while
17: return I , UI

The algorithm is a loop that operates on a queue (q) of
intervals. An element of the queue is retrieved (and removed)
from the front of the queue using the pop front operation,
while an element is added to the back of the queue using the
push back operation. The following steps are implemented
until the queue is empty. We perform an inclusion check on
every interval [x], to see whether it may be included as part
of the pre-set of Ω. Two tests are performed:

1) Is the forward reachable set from [x] disjoint with Ω?
If so, [x] is disjoint from I(Ω).

2) Can an input u be found so that the reachable set from
[x], restricted to the input u, lies entirely within Ω? If
so, [x] ⊂ I(Ω).

If either condition is satisfied, then the set [x] is saved in lists
labeled N (the collection of intervals disjoint with I(Ω)) and
S (the collection of intervals contained in I(Ω)).

If neither condition is satisfied and the [x] is wider than the
specified tolerance, it is bisected along its largest dimension
and both resulting intervals are added to the back of the
queue using the push back operation. Otherwise, [x] is
added to E , which is a collection of the “indeterminate” sets,
which are neither disjoint from nor subsets of I(Ω).

Line 7 of Algorithm 1 requires checking the condition

∃u ∈ U s.t. Pu([x]) ⊆ Ω, (6)

which is a nonconvex feasibility problem, due to the non-
convexity of Ω. Luckily, we can exploit the structure of
both Pu([x]) and Ω in order to efficiently and precisely
compute the set of u that satisfy (6). Notice that, in the
definition of Pu, the term A[x] ⊕ [Φ]([x]) ⊕ [Ψ]([x])U is
a convex polyhedron, and the additive term Su serves only
to translate the resulting polyhedron. On the other hand, Ω
is a union of intervals, and also more generally a union of
polyhedra. Therefore, we can reduce the feasibility problem
in (6) to a problem of translating a polyhedron into a union
of polyhedra. We describe here an equivalence which helps
solve this problem, inspired by [16].

Lemma 3. Let P = conv(Ω ∩ P ([x])) and Q = P \ (Ω ∩
P ([x])). Then, the following statements are equivalent:

1) ∃u ∈ U such that Pu([x]) ⊆ Ω;
2) SU([x]) ≜ I(P 0([x]),P) \ O(P 0([x]),Q) ̸= ∅.

where P 0([x]) is Pu([x]) with u = 0.

Proof. From P 0([x]) = A[x]⊕ [Φ]([x])⊕ [Ψ]([x])U , we ob-
tain that for any u, Pu([x]) = P 0([x])⊕{Su}. Furthermore,
P ([x]) = P 0([x])⊕ SU . This gives rise to the equivalence

∃u ∈ U s.t. Pu([x]) ⊆ Ω

⇐⇒ ∃r ∈ Rn s.t. P 0([x])⊕ {r} ⊆ Ω ∩ P ([x]),

where it must be true that r = Su. We see that by intersecting
Ω with P ([x]) on the right hand side, we can identify a
translation by a vector r, which is automatically restricted
to the range of S. To find the r in the latter expression,
we first find the translations into the convex hull of Ω ∩
P ([x]) (i.e., I(P 0([x]),P)), then remove the translations
that cause overlap with parts of the convex hull that are not
in the original set (i.e., O(P 0([x]),Q)). This gives the set
of translations r that result in containment in Ω ∩ P ([x]),
therefore yielding the expression for SU([x]). ■

Since Q is the difference between a polytope and a union
of polytopes, its closure can be expressed as the union of a
finite number of polytopes [17]. This means that the closures
of O(P 0([x]),Q) and SU([x]) can also be expressed as
unions of a finite number of polytopes. The equivalence
in Lemma 3 provides a tractable method of solving the
feasibility problem in (6), using procedures to efficiently
compute I and O. Finally, since ∀r ∈ SU([x]), ∃u ∈ U
such that r = Su, we can recover the set of inputs with
the Moore-Penrose pseudoinverse, U([x]) = S†(SU([x])),
which is stored/saved in UI as pairs ([x],U([x])).

Remark 1. The computation of the set difference between
two polyhedra can be represented as a union of (not nec-
essarily closed) polyhedra. This procedure is computation-
ally expensive, especially when considering the difference
between a polyhedron and a union of polyhedra, for which
the best algorithms [17] have exponential complexity. In fact,

7827

the computation of set differences is the largest computa-
tional burden of our method. Caching results from previous
iterations can reduce the amount of computation required,
but these details are omitted for the sake of brevity. •

We finish this section by proving that Algorithm 1 returns
a useful approximation of I(Ω), which is within some known
bound of the maximal CIS.

Lemma 4. Let Ω be a finite union of compact intervals.
Then, for any precision ε > 0, Algorithm 1 terminates in a
finite number of iterations. Furthermore, letting I(Ω) denote
the output of Algorithm 1 and r = ρε, it holds that

I(Ω⊖ Br) ⊆ Ir(Ω) ⊆ I(Ω) ⊆ I(Ω). (7)

Proof. The proof is similar to [8, Lemma 1], relying on the
bounds provided by Lemma 2. ■

C. Near-Maximal Controlled Invariant Sets

With the ability to compute I(Ω) using Algorithm 1, all
that remains is to repeat this operation until convergence is
achieved. Algorithm 2 describes this simple procedure, which
is guaranteed to terminate in finite time.

Algorithm 2 Approximation of I∞(Ω)

Require: Ω, ε
1: I0 ← Ω, I1 ← ∅
2: while I0 ̸= I1 do
3: I1 ← I0
4: I0 ← I(I0) ▷ via Algorithm 1
5: end while
6: return I0

Theorem 1. For any finite union of compact intervals Ω and
precision ε > 0, Algorithm 2 terminates in a finite number of
iterations. Furthermore, denoting the output of the algorithm
as I∞(Ω), the following inclusions hold:

I∞r (Ω) ⊆ I∞(Ω) ⊆ I∞(Ω),

where r = ρε. Finally, I∞(Ω) is controlled invariant.

Note that it is possible for the algorithm to return an empty
set only if the system does not admit an r-robustly controlled
invariant set, meaning I∞r = ∅.

Proof. Let Ik(Ω) denote the value of I(Ik−1(Ω)) in the k-th
iteration, with I0(Ω) = Ω. Since the algorithm terminates if
Ik−1(Ω) = Ik(Ω), we only need to consider the case when
they are not equal. In this case, the structure of Algorithm 1
is such that Ik(Ω) ⊊ Ik−1(Ω). Since Ω is compact, Ik(Ω)
contains only a finite number of intervals which will be
considered using the bisection method for a given ε. Then
∃K ≥ 0 such that Ik(Ω) = ∅, ∀k ≥ K, meaning the
algorithm terminates in finite time.

To prove the inclusions, note that by Lemma 4, Ir(Ω) ⊆
I(Ω) ⊆ I(Ω). Also, for any two sets A ⊆ B ⊆ Rn, we
know that I(A) ⊆ I(B) and Ir(A) ⊆ Ir(B). Therefore

by applying Lemma 4 and induction, we can determine that
Ikr (Ω) ⊆ Ik(Ω) ⊆ Ik(Ω) for all k ≥ 0.

Finally, to prove invariance of I∞(Ω), note that by
Lemma 4, I∞(Ω) = I(I∞(Ω)) ⊆ I(I∞(Ω)). ■

Remark 2 (An Outside-In Approach). The method described
in this paper is commonly known as an outside-in method,
since we start with a region of interest Ω and search for the
largest invariant set X = I∞(Ω) which it contains. It is also
possible to use an inside-out approach, which starts with a
known invariant set, and iteratively grows that set [9]. Our
method can be easily adapted for this case, as well. •

To conclude this section, we state a result that has the
potential to reduce the number of inclusion checking opera-
tions required by Algorithm 2. Let {Ωi}Ni=1 be any ordered
collection of sets such that Ω =

⋃N
i=1 Ωi. Define the operator

Ii(Ω) ≜
⋃
j ̸=i

Ωj ∪ (Q(Ω) ∩ Ωi) ,

and let I1:N ≜ IN (· · · (I1(Ω))). We let the Ii operator
preserve the order of the constituent subsets by defining

(Ii(Ω))i = Q(Ω) ∩ Ωi and (Ii(Ω))j = Ωj , j ̸= i.

Theorem 2. For a closed set Ω ⊆ Rn, I1:N satisfies

I1:N (Ω) ⊆ I(Ω), and

lim
k→∞

(I1:N)k(Ω) = lim
k→∞

Ik(Ω) = I∞(Ω). (8)

Proof. By definition, for any i ̸= j,

Ii(Ij(Ω)) =
⋃
ℓ ̸=i

Ij(Ω)ℓ ∪ (Q(Ij(Ω)) ∩ Ij(Ω)i)

=
⋃

ℓ ̸=i,ℓ̸=j

Ωℓ ∪ (Q(Ω) ∩ Ωj) ∪ (Q(Ij(Ω)) ∩ Ij(Ω)i)

⊆
⋃

ℓ ̸=i,ℓ ̸=j

Ωℓ ∪ (Q(Ω) ∩ (Ωi ∪ Ωj)) ,

since Ij(Ω)i ⊆ Ωi and Q(Ij(Ω))∩ Ij(Ω)i ⊆ Q(Ω)∩Ωi. By
applying this statement recursively, we arrive at

I1:N (Ω) ⊆
N⋃
i=1

Ωi ∩Q(Ω) = I(Ω). (9)

In (8), since I1:N is monotonically decreasing and closed, the
limit exists. We will show by induction that for all k ≥ 0,
(I1:N)k(Ω) ⊇ I∞(Ω). Consider a point x ∈ I∞(Ω). We
know x ∈ Q(I∞(Ω)) ⊆ Q(Ω). Therefore, by the definition
of I1, x ∈ I1(Ω), meaning I1(Ω) ⊇ I∞(Ω). By repeating
this reasoning for I2, . . . , IN , we can see that I1:N (Ω) ⊇
I∞(Ω). For the step case, assume that (I1:N)k−1(Ω) ⊇
I∞(Ω). Then by the same argument as the base case, for any
x ∈ I∞(Ω), x ∈ Q(I∞(Ω)) ⊆ Q((I1:N)k−1(Ω)), implying
(I1:N)k(Ω) ⊇ I∞(Ω). Using this fact in combination with
(9), monotonicity of I and I1:N , as well as an induction
argument proves (8). ■

Theorem 2 is useful because it allows us to independently
consider individual regions of the invariant set, rather than

7828

approximating the I operator all at once. Inspired by this, we
propose Algorithm 3, a modified procedure that considers
only one interval at a time (as opposed to Algorithm 2,
which iterates over the whole set before returning the updated
approximation). In the algorithm, Ω is updated whenever an
interval is determined to not be a part of the invariant set.
The loop terminates if every interval in the queue has been
checked since Ω was last changed, meaning every interval in
the queue is contained in the invariant set. The set C contains
all intervals [x] which have been checked against the current
Ω. Whenever Ω changes, C is reset to the empty set. Note that
push front places newly bisected intervals in the front of the
queue. The following theorem formalizes the convergence of
Algorithm 3 and its relationship to to Algorithm 2.

Algorithm 3 Alternative Approximation of I∞(Ω)

Require: Ω, ε
1: q ← {Ω}, C ← ∅, N ← ∅, I ← ∅, E ← ∅, UI ← ∅
2: while C ̸= Ω do
3: [x]← pop front(q)
4: C ← C ∪ [x]
5: Compute A, Φ, si, and Ψi on [x]
6: if P ([x]) ∩ Ω = ∅ then
7: N ← N ∪ [x]
8: Ω← Ω \ [x], C ← ∅
9: else if ∃u ∈ U s.t. Pu([x]) ⊆ Ω then

10: push back(q, [x])
11: UI ← UI ∪ ([x], S†(SU([x])))
12: else if w([x]) ≤ ε then
13: E ← E ∪ [x]
14: Ω← Ω \ [x], C ← ∅
15: else
16: (l, r)← bisect([x])
17: push front(q, l), push front(q, r)
18: end if
19: end while
20: I∞ ←

⋃
[x]∈q[x]

21: return I∞, UI

Theorem 3. For any finite union of compact intervals Ω and
precision ε > 0, Algorithm 3 terminates in a finite number
or iterations and returns the same result as Algorithm 2.

Proof. Similar to the proof of Theorem 1. ■

By comparing the steps of each algorithm, one can see
that the number of inclusion checks required by Algorithm 3
should be less than or equal to that of Algorithms 1 and 2.
This is because Algorithm 3 updates Ω every time an interval
[x] is identified as not belonging to the invariant set. On the
other hand, Algorithm 2 checks every [x] against a fixed Ω,
which is only updated in the outer loop of Algorithm 1. A
formal comparison is the topic of future work.

V. EXAMPLE AND COMPARISON

In this section, we demonstrate the effectiveness of our
approach on a numerical example, namely, an inverted pen-

Fig. 1: Controlled invariant sets of the inverted pendulum system.

Fig. 2: Invariance-enforcing inputs U([x]) identified by Lemma 3.

dulum on a cart. We also compare our approach to the
method for switched systems in [8], where the input space
is sampled and considered as controlled modes.

As in [8], we consider an inverted pendulum on a cart,
discretized using forward Euler with a sampling time of
0.01s. The dynamics are

ẋ1 = x2, ẋ2 =
mgl

J
sin(x1)−

b

J
x2 +

l

J
cos(x1)u,

with parameters m = 0.2 kg, g = 9.8 m/s2 , l = 0.3 m,
J = 0.006 kg · m2, and b = 0.1 N/m/s. This system and
its discretization are control-affine. We consider a region of
interest Ω = [−0.05,−0.05]× [−0.01, 0.01] and an input set
U = [−0.1, 0.1]. The natural inclusion function is used.

Figure 1 shows the identified controlled invariant sets for
our approaches, i.e., using Algorithms 2 and 3, and that
of [8], with nu = 10 and nu = 1000 sampled inputs.
All methods were run with a precision ε = 0.001. On
the other hand, Figure 2 shows the union of all invariance-
enforcing control inputs U([x]) identified by Algorithms 2
and 3. Finally, Table I shows a comparison of computation
times with different parameters. By “iterations”, we mean
the number of times an interval is popped from the queue,
which is equivalent to the number of inclusion checks.

7829

Method ε Iterations Total Time (s) Volume
Algorithm 2 10−3 703 0.54 97.9%
Algorithm 3 10−3 618 0.63 97.9%

[8] (nu = 10) 10−3 10729 0.12 59.8%
[8] (nu = 1000) 10−3 485 0.59 97.9%

TABLE I: Computational comparison between Algorithm 2, Al-
gorithm 3, and [8]. nu denotes the number of input samples taken
uniformly across U . The volume is given in % of the original Ω.

Evidently, our method is able to identify a larger CIS in
fewer iterations than the sampling and interval arithmetic
based approach in [8], when the number of samples is
small. This is presumably due to the higher accuracy of
our polytopic approximations, and the fact that we consider
the entire continuous range of control inputs. Increasing the
number of sampled inputs results in a better approximation
of the CIS, at the cost of some additional computation time.
Finally, we see that although Algorithm 3 results in fewer
iterations, it takes the longest. This is likely due to the cost
of updating Ω more frequently.

VI. CONCLUSION

We proposed two methods for approximating controlled
invariant sets of nonlinear control-affine systems using an
iterative refinement approach. We used techniques from
computational geometry involving translations of polyhedra
to allow us to efficiently compute continuous sets of feasible
control inputs, rather than using a sampling approach with
switched dynamics. We demonstrated the effectiveness of our
method on a numerical example, which showed improved
accuracy over existing methods and led to faster convergence
in some cases. In the future, we will further explore the
extension of our approach to continuous time, as well as
the control synthesis problem, including some notions of
optimality, while also investigating ways to improve the
accuracy and efficiency of our algorithms. We also will test
our approaches on a wide variety of nonlinear systems.

APPENDIX

A. Proof of Proposition 2

We begin by stating two intermediate results which will
be used to prove the proposition. The first allows us to
determine whether two polytopes intersect by examining the
hyperplanes defining each polytope.

Proposition 4. Given two polytopes P and Q, P ∩ Q ̸= ∅
if and only if both of the following statements are true

1) P intersects every halfspace defining Q, i.e., ∀i ∈
{1, . . . , NQ}, ∃pi ∈ P such that (HQ)ipi ≤ (bQ)i.

2) Q intersects every halfspace defining P , i.e., ∀i ∈
{1, . . . , NP}, ∃qi ∈ Q such that (HP)iqi ≤ (bP)i.

Proof. Necessity is simple, since if P ∩ Q ≠ ∅, every v ∈
P ∩Q will satisfy the existence conditions in 1) and 2).

To prove sufficiency, note that P ∩ Q = ∅ if and only if
there exists a separating hyperplane, defined by some h∗ ∈
Rn and b∗ ∈ R, such that ∀v ∈ P, h⊤v ≤ b and ∀v ∈
Q, h⊤v > b. Conditions 1) and 2) preclude the existence of
this separating hyperplane, implying P ∩Q ̸= ∅. ■

The second intermediate result tells us how to translate a
polytope so that it intersects a given halfspace.

Proposition 5. Given a polytope P and halfspace H = {x :
h⊤x ≤ b}, the set of translations of P that intersect H; i.e.,
O(P,H) ≜ {s ∈ Rn : P ⊕ {s} ∩ H ≠ ∅}, is given by

O(P,H) = {s ∈ Rn : h⊤s ≤ b− α},

where α = minv∈VP h⊤v.

Proof. The reasoning is similar to [12, Theorem 2.3], with
min replacing max because intersection, rather than contain-
ment, is required. ■

Proposition 2 follows from the combination of Proposi-
tion 4 with repeated application of Proposition 5 to every
halfspace defining both P and Q (with −s replacing s in
the second part, as the translation is applied to P , not Q).

REFERENCES

[1] M. Fiacchini and M. Alamir, “Computing control invariant sets in high
dimension is easy,” arXiv preprint, 2018.

[2] M. Rungger and P. Tabuada, “Computing robust controlled invariant
sets of linear systems,” IEEE Transactions on Automatic Control,
vol. 62, no. 7, pp. 3665–3670, 2017.

[3] T. Anevlavis and P. Tabuada, “Computing controlled invariant sets in
two moves,” in 2019 IEEE 58th Conference on Decision and Control
(CDC), 2019, pp. 6248–6254.

[4] T. Anevlavis, Z. Liu, N. Ozay, and P. Tabuada, “Controlled invariant
sets: implicit closed-form representations and applications,” arXiv
preprint arXiv:2107.08566, 2022.

[5] M. Fiacchini, T. Alamo, and E. Camacho, “On the computation of con-
vex robust control invariant sets for nonlinear systems,” Automatica,
vol. 46, no. 8, pp. 1334–1338, 2010.

[6] L. Schäfer, F. Gruber, and M. Althoff, “Scalable computation of robust
control invariant sets of nonlinear systems,” IEEE Transactions on
Automatic Control, pp. 1–15, 2023.

[7] S. Jang, N. Ozay, and J. L. Mathieu, “An invariant set construction
method, applied to safe coordination of thermostatic loads,” arXiv
preprint, 2022.

[8] Y. Li and J. Liu, “Invariance control synthesis for switched nonlin-
ear systems: An interval analysis approach,” IEEE Transactions on
Automatic Control, vol. 63, no. 7, pp. 2206–2211, 2018.

[9] J. Bravo, D. Limon, T. Alamo, and E. Camacho, “On the computation
of invariant sets for constrained nonlinear systems: An interval arith-
metic approach,” Automatica, vol. 41, no. 9, pp. 1583–1589, 2005.

[10] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, “Applied interval
analysis,” ed: Springer, London, 2001.

[11] M. Khajenejad and S. Z. Yong, “Tight remainder-form decomposition
functions with applications to constrained reachability and guaranteed
state estimation,” IEEE Transactions on Automatic Control, pp. 1–16,
2023.

[12] I. Kolmanovsky and E. Gilbert, “Theory and computation of distur-
bance invariant sets for discrete-time linear systems,” Mathematical
Problems in Engineering, vol. 4, pp. 317–367, 01 1998.

[13] D. Bertsekas, “Infinite time reachability of state-space regions by using
feedback control,” IEEE Transactions on Automatic Control, vol. 17,
no. 5, pp. 604–613, 1972.

[14] M. Khajenejad, F. Shoaib, and S. Z. Yong, “Interval observer synthesis
for locally Lipschitz nonlinear dynamical systems via mixed-monotone
decompositions,” in American Control Conference (ACC), 2022, pp.
2970–2975.

[15] M. Khajenejad and S. Z. Yong, “Simultaneous input and state interval
observers for nonlinear systems with full-rank direct feedthrough,” in
IEEE Conference on Decision and Control, 2020, pp. 5443–5448.

[16] B. Baker, S. Fortune, and S. Mahaney, “Polygon containment under
translation,” Journal of Algorithms, vol. 7, no. 4, pp. 532–548, 1986.

[17] M. Baotic, “Polytopic computations in constrained optimal control,”
Automatika, vol. 50, pp. 119–134, 04 2009.

7830

