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Abstract— Choosing a nonlinear state estimator for an appli-
cation often involves a trade-off between local optimality (such
as provided by an extended Kalman filter) and (almost-/semi-)
global asymptotic stability (such as provided by a constructive
observer design based on Lyapunov principles). This paper
proposes a filter design methodology that is both global and
optimal for a class of nonlinear systems. In particular, systems
for which there is an embedding of the state-manifold into
Euclidean space for which the measurement function is linear in
the embedding space and for which there is a synchronous error
construction. A novel observer is derived using the minimum
energy filter design paradigm and exploiting the embedding
coordinates to solve for the globally optimal solution exactly. The
observer is demonstrated through an application to the problem
of unit quaternion attitude estimation, by embedding the 3-
dimensional nonlinear system into a 4-dimensional Euclidean
space. Simulation results demonstrate that the state estimate
remains optimal for all time and converges even with a very
large initial error.

I. INTRODUCTION

State estimation for nonlinear systems is a challeng-
ing problem and has many applications across robotics,
aerospace, computer vision, etc. The extended Kalman filter
(EKF) is the de facto standard solution, and while it and its
relatives (UKF [1], IEKF [2], EqF [3], etc.) can provide a
locally optimal state estimate, no guarantees can be made
about their performance beyond a local domain [4]. In con-
trast, constructive nonlinear observer designs that exploit Lie
theory and differential geometry have demonstrated global
and almost-global asymptotic stability, but do not provide
the same local optimality as an EKF-type approach [5], [6],
[7], [8], [9], [10]. A key building block in constructive
nonlinear observer design is the concept of synchrony: the
property that the observer-system error dynamics are linearly
dependent on the observer correction term [7]; that is, there
are no exogenous or drift terms in the error dynamics.
This property makes designing the correction term for a
Lyapunov observer design straightforward [11]. Synchrony
is also closely related [11] to the group-affine structure that
plays a fundamental role in the performance of the Invariant
EKF [2]. The stochastic motivation for an EKF (or IEKF)
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design, however, does not generalise well to global nonlinear
systems analysis.

Minimum energy filtering provides a best-of-both-worlds
deterministic view of the noisy state estimation problem [12]
that specialises to the (optimal) Kalman filter on linear sys-
tems [12] but can be formulated globally on Lie-groups and
homogeneous spaces [13]. Although the minimum energy
framework has been used to derive EKF type filters [14],
[15], [16], [13], [17] by taking second order approximations
of the value function evolution, to the authors’ knowledge,
no optimal exact solution has been found prior to this work.
There is also a significant body of work in geometric optimal
control on Lie-groups and homogeneous spaces [18], [19],
[20] that considers the optimal control problem, but to the
authors understanding, does not treat the filtering problem.

In this paper, we consider the state estimation problem
for a class of systems posed on homogeneous spaces that
can be algebraically embedded into an ambient Euclidean
space. In addition, we require that the systems have dynamics
and measurement processes that can be written as linear in
the embedding coordinates. Note that while the dynamics
and measurement processes may be written algebraically
in a linear form, the system state is constrained to lie on
a nonlinear embedded manifold and the actual system is
therefore not linear in a classical sense. The approach has
been considered in the past: Choukroun et al. [21] proposed
to estimate the quaternion attitude of a vehicle by treating the
system as a linear system in R4 and then renormalising the
state estimate to recover a unit quaternion. Aguiar and Hes-
panha [22] provided a rigid-body pose estimation algorithm
that relied on an embedding of the orientation matrix into
R3×3 ≃ R9, and required a normalisation step to recover a
valid rotation matrix. In both of these examples, optimality
of the solution was lost in the projection step that was needed
to ensure the state estimate remained on the state-manifold.
In contrast, in this paper we exploit Lie-group symmetry
to ensure satisfaction of the state constraint while exploiting
linearity of the embedding system structure to obtain an exact
optimal solution.

Our contributions are as follows:
• We provide an exact optimal observer solution to a

nonlinear minimum energy filter problem for systems
on homogeneous spaces that can be expressed as alge-
braically linear in embedding coordinates.

• We demonstrate our method in an application to optimal
quaternion attitude estimation. To the authors under-
standing, this is the first globally optimal (in the sense
of a particular minimum energy cost criteria) attitude
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filter.

The key advantage of the proposed state estimator is
that it is both optimal and global. EKF approaches are
optimal but only in a local domain, while deterministic
approaches behave well globally but cannot provide (even
local) optimality in general.

II. PRELIMINARIES

The inner product and norm on Rm×n are defined by

⟨A,B⟩ := tr(A⊤B), |A| :=
√
⟨A,A⟩,

for all A,B ∈ Rm×n. The set of symmetric positive-definite
m × m matrices is denoted S+(m). For any P ∈ S+(m),
the weighted vector norm is defined by

|v|P :=
√
⟨Pv, v⟩,

for every v ∈ Rm.
For a differentiable function V : Rm → Rn, we denote

the differential of V at x by DV (x) ∈ Rn×m with

DV (x)u :=
d

dt

∣∣∣∣
t=0

V (x+ tu).

For functions of multiple variables, a subscript may be
attached to D to indicate the variable being differentiated.
Square brackets are used, DV (x)[u], when the matrix struc-
ture of DV (x) multiplying u ∈ Rm is unclear. If V is scalar-
valued, i.e. V : Rm → R, then the gradient is defined to be

∇V (x) = DV (x)⊤ ∈ Rm,

since the differential DV (x) is a 1 ×m row vector. In this
case, the Hessian of V at x is defined to be

HessV (x) = D∇V (x) ∈ Rm×m.

Let G ≤ GL(m) 1 be an m ×m matrix Lie-group with
manifold dimension d = dimG. We denote the Lie-algebra
g ≤ gl(m) 2 , and define the ‘wedge’ operator ·∧ : Rd → g
and ‘vee’ operator ·∨ : g → Rd to be an identification of the
vector space underlying g with Rd; that is, for each u ∈ Rd,
there is a unique corresponding vector u∧ ∈ g, and (u∧)∨ =
u. Note that the wedge and vee operators can always be
defined, although they are not unique and depend on a choice
of basis for g. We define the matrices Υξ ∈ Rm×d and
Υξ ∈ Rm×d by

Υξ ∆
∨ := ∆ξ, Υξ ∆

∨ := ∆⊤ξ, (1)

for every ξ ∈ Rm and ∆ ∈ g ≤ gl(m).

1We write G ≤ GL(m) rather than G ⊆ GL(m) to emphasise that G
is not only a subset but also a subgroup.

2Similarly to the group case, the use of ≤ rather than ⊆ emphasises that
g is a Lie subalgebra (not just a subset) of gl(m).

III. PROBLEM DESCRIPTION

We consider a class of systems on homogeneous spaces
that admit an expression as algebraically linear in embedding
coordinates. This includes systems on matrix Lie-groups
where the measurement is a linear group action, such as
attitude estimation on SO(3) from bearing measurements
[5] and rigid body pose estimation on SE(2) or SE(3)
from landmark measurements [22], [6]. This also includes
systems on homogeneous spaces such as quaternion attitude
estimation on S3 [21] (also see § V) and bearing estimation
on S2 [5]. However, this excludes systems where the output
is given by a nonlinear group action, such as homography
estimation on SL(3) from image features [8].

Let G ≤ GL(m) be a d-dimensional matrix Lie-group
with Lie-algebra g ≤ gl(m), and consider the embedded
manifold M ⊆ Rm defined by

M = Gξ̊ =
{
X−1ξ̊ ∈ Rm

∣∣∣ X ∈ G
}
, (2)

for some fixed origin ξ̊ ∈ Rm. Note that M is a homoge-
neous space of G by definition. Then, for any ξ ∈ M , the
tangent space at ξ is given by

TξM := {Uξ ∈ Rm | U ∈ g} = {ΥξU
∨ | U ∈ g} . (3)

Consider a deterministic nonlinear system model defined on
M with outputs in Rn of the form

ξ̇(t) = −Utξ(t), (4a)
y(t) = Ctξ(t) (4b)

where Ut ∈ g and Ct ∈ Rn×m are known time-varying
matrices. This is an ideal system that does not take into
account the imperfections and noise inherent in real-world
systems. Note that we use the brackets around t in ξ(t) to
indicate this is a solution to an ODE or a part of the design
process, while we use the subscript t in Ut to indicate that
this is a known parameter. In the sequel we will use (t) when
introducing variables but may then drop this explicit notation
for the sake of readability.

The dynamics (4a) lift to classical left invariant dynamics
on the Lie-group

Ẋ(t) = X(t)Ut

via the group action (2); that is, d
dtξ(t) = d

dt (X
−1ξ̊) =

−Utξ. This is a common model encountered in real-world
systems with linear group actions such as directions under
rotation, positions of landmarks under rigid-body translation,
etc. Note that the output (4b) is linear with respect to the
embedding of the manifold in Rm. This is a key assumption
in the present work that is also common in examples such
as [23], [6], [21].

Remark 3.1: While it may appear straightforward to sim-
ply treat (7) as a linear system, this approach will not take
into account the manifold constraint ξ ∈ M . The problem
with this is twofold. First, a general linear-systems filter for
(4) will not enforce the constraint and there is no intrinsic
method to reproject a general ξ̂ ∈ Rm onto the manifold
M [22], [21]. Second, the system may be observable when
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restricted to M without being observable when considered
over the ambient space Rm.

A. Error System

We introduce an observer or reference state in order
to rewrite the system dynamics in error form. Define an
observer state X̂ ∈ G with dynamics

˙̂
X(t) = X̂(t)Ut +∆(t)X̂(t), X̂(0) = X̂0 (5)

where ∆ ∈ g is a correction term that remains to be designed.
For now, ∆ will be treated as an arbitrary time-varying
signal, and the error system will be analysed without making
any assumptions about how ∆ is chosen. Given a trajectory
ξ(t) ∈ M of the system (4), the equivariant error [3] is

e(t) := X̂(t)ξ(t) ∈ M ↪→ Rm.

The ideal system (4) and observer dynamics (5) then combine
to yield an ideal error system,

ė(t) = ∆(t)e(t), (6a)

y(t) = CtX̂(t)−1e(t). (6b)

To capture the fact that real-world systems may not obey
their models exactly, we modify the ideal error system model
to include unknown error signals. Define the error system

ė(t) = ∆(t)e(t) +Btµ(t), (7a)

y(t) = CtX̂(t)−1e(t) + ν(t), (7b)

where:
• Bt ∈ Rm×l is a chosen input matrix.
• µ(t) ∈ Rl is the unknown dynamics error.
• ν(t) ∈ Rn is the unknown output error.

Note that these dynamics are determined by the choice of
∆ ∈ g. The role of the input matrix Bt is to constrain the
directions in which the dynamics error µ(t) can affect ė(t).
In practice, Bt is associated with the geometric constraints
of the state space (see Section IV-A), but the developments
in this paper will treat it simply as a known, arbitrary, time-
varying matrix. For fixed signals Ut, Ct, y(t), Bt, X̂(t),∆(t),
we define the set

T [0,t] =
{
(e[0,t], µ[0,t], ν[0,t])

∣∣ e, µ, ν satisfy (7)
}
. (8)

The notation e[0,t] emphasises that we refer to a trajectory
in Rm rather than a single point e ∈ Rm. For a trajectory
(e[0,t], µ[0,t], ν[0,t]) ∈ T [0,t], the initial condition e(0) and
the signal µ[0,t] determine e[0, t] by the error dynamics
(7a), and this in turn determines ν[0,t] by the error system
measurement (7b). The error signals µ(t) and ν(t) are
modelled as deterministic noise signals; that is, a-priori
unknown time-sequences that do not necessarily have a
stochastic interpretation [12], [16]. The problem addressed in
this paper is to find an error state e⋆(t) ∈ M that is optimal
in terms of a cost functional that penalises large error signals
µ(t) and ν(t), subject to the dynamics and measurements (4).

B. Minimum Energy Filtering

Classical minimum energy filtering chooses the correction
term to minimise a cost functional, defined in terms of the
error signals, subject to the system dynamics (4). In this
paper, we study the error system (7) around an arbitrary
known observer trajectory X̂ (5) rather than working directly
with the original system definition. Provided an optimal error
trajectory e⋆, a corresponding state estimate is recovered by

ξ̂ = X̂−1e⋆(t).

The optimality criterion in this paper is developed in terms
of the error system (7). Define the initial cost V0 : Rm → R+

and the stage cost ℓτ : Rl × Rn → R+ to be

V0(e(0)) :=
1

2
|e(0)− X̂(0)ξ0|2H0

, (9)

ℓτ (µ(τ), ν(τ)) :=
1

2
|µ(τ)|2Qτ

+
1

2
|ν(τ)|2Rτ

, (10)

in terms of the state error µ(t) and output error ν(t), where
• ξ0 ∈ M is the initial state estimate.
• H0 ∈ S+(m) is the initial gain.
• Qτ ∈ S+(l) is the state gain.
• Rτ ∈ S+(n) is the output gain.

The cost functional Jt : T [0,t] → R+ is defined to be

Jt(e[0,t], µ[0,t], ν[0,t]) := V0(e(0)) +

∫ t

0

ℓτ (µ(τ), ν(τ))dτ.

The cost functional is a measure of how large the error
terms µ[0,t] and ν[0,t] must be chosen in order that the
error trajectory e[0,t] satisfies (7). In other words, the cost
functional penalises large deviations µ and ν of the error
system (7) from the nominal error system (6).

The value function Vt : Rm → R+ is defined as the cost
of the final state e(t) given that the rest of the trajectory is
chosen to minimise J . That is,

Vt(e) := min
{

J (e[0,t], µ[0,t], ν[0,t])
∣∣ e[0,t](t) = e

}
(11)

It is straightforward to verify that, as the notation suggests,
the initial condition V0 of Vt is exactly the initial cost defined
in (9). The Hamilton-Jacobi-Bellman equation [24] is applied
in the following Lemma and corollaries to provide recursive
formulae for the evolution of Vt, its gradient ∇eVt, and its
Hessian HesseVt. The proofs are provided in the Appendix.

Lemma 3.2: The time-differential of the value function Vt

defined in (11) is given by

DtVt(e) = −⟨∇eVt(e),∆e⟩ − 1

2
|B⊤

t ∇eVt(e)|2Q−1
t

+
1

2
|y − CtX̂

−1e|2Rt
. (12)

Corollary 3.3: The gradient of the value function (11)
evolves according to

Dt∇eVt(e) = −HesseVt(e)[∆e]−∆⊤∇eVt(e)

−HesseVt(e)BtQ
−1
t B⊤

t ∇eVt(e)

+ X̂−⊤C⊤
t Rt(CtX̂

−1e− y). (13)
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Corollary 3.4: The Hessian H(t) = HesseVt(e) of the
value function (11) is independent of e and has dynamics

Ḣ = −H∆−∆⊤H −HBtQ
−1
t B⊤

t H

+ X̂−⊤C⊤
t RtCtX̂

−1. (14)

IV. OBSERVER DESIGN

The insight of Mortensen [12] was that the optimal
solution of the minimum energy filter is characterised by
tracking the critical point of Vt(e). In the constrained case,
where e ∈ M is enforced, a constrained critical point is a
critical point of the value function restricted to the manifold
Vt|M : M → R. In other words, a constrained critical
point is a value e ∈ M for which ⟨∇Vt(e), ζ⟩ ≡ 0 for
all ζ ∈ Te(t)M . This means that the gradient of the value
function Vt only needs to be nullified in the tangent space of
the manifold at e, and may be non-zero in the normal space
(the orthogonal complement of the tangent space).

Choose ξ̊ := ξ0 and choose X̂0 ∈ G such that X̂0ξ0 = ξ̊,
noting that X̂0 ∈ G may not be fully determined by this
condition but any such choice is sufficient. It is easily verified
that the critical point of ∇V0(e(0)) at time t = 0 is e⋆(0) =
ξ̊ ∈ M . The approach taken here is to design the observer
X̂ trajectory by defining ∆ ∈ g to ensure e(t) = e⋆ = ξ̊ is a
constrained critical point for all time. Note that this means
that ∆ will depend on the measurements y(t) and Ut, and
on the input, output, and gain matrices. This is compatible
with the analysis undertaken so far, since no assumptions
were made on ∆ other than that it is not a function of the
trajectory optimisation parameters (e, µ, ν)[0,t].

Theorem 4.1: Recall the observer dynamics (5). Define
∆ ∈ g to satisfy

P := Υ⊤
ξ̊
HΥξ̊ +Υ⊤

ξ̊
Υη, (15)

P∆∨ = Υ⊤
ξ̊

(
X̂−⊤C⊤

t Rt(CtX̂
−1ξ̊ − y)−HBtQ

−1
t B⊤

t η
)
,

where H ∈ S+(m) denotes the Hessian of Vt, and η =
∇eVt(ξ̊) ∈ Rm denotes the gradient of Vt at ξ̊. Let Vt|M
denote the restriction of the value function Vt (11) to the
manifold M . Then e⋆ = ξ̊ ∈ M is a critical point of Vt|M
for all time.

Proof: The condition that e⋆ = ξ̊ ∈ M is a critical
point of Vt can be expressed as ∇eVt|M (ξ̊) = 0, which is
equivalent to

Υ⊤
ξ̊
∇eVt(ξ̊) = 0, (16)

Since Tξ̊M = imΥξ̊. It is immediately clear that this is
satisfied at the initial condition t = 0. For any t ≥ 0,
differentiating (16) yields

d

dt
Υ⊤

ξ̊
∇eVt(ξ̊) = Υ⊤

ξ̊
Dt∇eVt(ξ̊) = 0. (17)

The remainder of the proof will show that this condition is
indeed satisfied for all time.

Using the shorthand η = ∇eVt(ξ̊) and substituting in the
dynamics (13), the optimality condition becomes

0 = Υ⊤
ξ̊
η̇

= Υ⊤
ξ̊

(
−H∆ξ̊ −∆⊤η −HBtQ

−1
t B⊤

t η

+X̂−⊤C⊤
t Rt(CtX̂

−1ξ̊ − y)
)

= −P∆∨ +Υ⊤
ξ̊

(
−HBtQ

−1
t B⊤

t η

+X̂−⊤C⊤
t Rt(CtX̂

−1ξ̊ − y)
)
,

where P is defined as in (15). Thus, the differential optimal-
ity condition (17) is precisely satisfied when ∆ is defined
by the proposed equation (15). It follows that ξ̊ remains a
critical point of Vt for all time.

Minimising the constrained value function Vt|M is equiv-
alent to minimising the cost functional Jt over trajectories
e[0,t] that end on the manifold, e[0,t](t) ∈ M . By choosing
∆ as described in Theorem 4.1, the origin ξ̊ = e⋆ is
always the minimum energy solution of the constrained value
function. In other words, ξ̊ is always the minimum energy
‘estimate’ for the current error state e⋆[0,t](t) ∈ M . Although
the derivation of the filter is done in terms of the error state,
the equivalent state estimate can be recovered easily by

ξ̂(t) := X̂(t)−1e⋆[0,t](t) = X̂(t)−1ξ̊ ∈ M . (18)

Crucially, the state estimate ξ̂ will remain in the manifold
for all time due to the relationship (2).

A. Selection of Gain Matrices

The gain matrices H0, Qt, Rt and the input matrix Bt can
be chosen to reflect the noise characteristics of a real-world
system. The initial Hessian H0 represents the confidence of
the initial state estimate information ξ0 ∈ Rm, and typically,
it is sensible to choose H0 small. The state gain matrix Qt

reflects confidence in the error dynamics, and Q−1
t represents

the corresponding uncertainty. In a practical system, much
of the uncertainty in the error dynamics is associated with
uncertainty in the measured velocity. Let Ût ∈ g denote
a measurement of the velocity signal Ut ∈ g, and assume
that Û∨

t is normally distributed with mean U∨
t and a given

covariance Mt ∈ S+(d). Then if ξ ∈ M denotes the system
state, one has

ė =
d

dt
X̂ξ = X̂(Ût − Ut)ξ +∆X̂ξ

= ∆e+ X̂(Ût − Ut)X̂
−1e

= ∆e+Υe Ad∨
X̂
(Ût − Ut)

∨

≈ ∆e+Υξ̊ Ad∨
X̂
(Ût − Ut)

∨,

where the final step uses the approximation e ≈ ξ̊, and
Ad∨

X̂
: Rd → Rd is the linear map defined by Ad∨

X̂
U∨ =

(X̂UX̂−1)∨. We thus choose to define Bt := Υξ̊ Ad
∨
X̂

and
Qt = M−1

t .
The output gain matrix Rt represents the confidence in the

measurement y ∈ Rn, and R−1
t represents the uncertainty.

Let ẑ = h(ξ) + ν′ ∈ Rn′
denote a physical measurement
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of the system for some output map h : M → Rn, where
ν′ ∈ Rn′

is a normally distributed noise term with zero-
mean and covariance R̄−1 ∈ S+(n′). If h(ξ) = Ctξ for a
matrix Ct, then we can simply choose R = R̄.

In some cases (see the example in Section V), it is
necessary to write an implicit measurement function to obtain
the embedded form (4b); that is,

y = Ct(h(ξ))ξ,

where Ct = Ct(h(ξ)) is a matrix built from the physical
measurement h(ξ). In this situation, we may employ lineari-
sation to obtain a model for the error. Let z = h(ξ), then

y(z, e) = Ct(z)X̂
−1e

= Ct(ẑ − ν′)X̂−1e,

≈ Ct(ẑ)X̂
−1e−DCt(ẑ)[ν

′]X̂−1e

≈ Ct(ẑ)X̂
−1e−DCt(ẑ)[ν

′]X̂−1ξ̊

= Ct(ẑ)X̂
−1e+Dzy(ẑ, ξ̊)[z − ẑ]

where the first approximation linearises the implicit mea-
surement y(z, e) ∈ Rn in terms of z, and the second
approximation once more uses e ≈ ξ̊. In this case we thus
choose to define

R−1
t = Dzy(ẑ, ξ̊)R̄

−1Dzy(ẑ, ξ̊)
⊤.

V. EXAMPLE: QUATERNION ATTITUDE ESTIMATION

Quaternions provide a convenient setting to study the
problem of attitude estimation provided angular velocity
measurements and body-frame measurements of a time-
varying reference vector.

A. Problem Description of the Example

Define H to be the set of unit quaternions, and define q ∈
H to be the unit quaternion describing a vehicle’s orientation
with respect to some inertial reference frame. Note that −q
describes the same physical attitude as q. We identify the
space of quaternions H with the 3-sphere S3 ⊂ R4 by writing
q ∈ H as a vector (qr, qv) ∈ R4, where qr ∈ R is the real
component of q and qv ∈ R3 is the vector of imaginary
components of q. The product of two quaternions q, h ∈ H
is given by

(qr, qv) ∗ (hr, hv) = (qrhr − q⊤v hv, qrhv + hrqv + qv × hv).

The dynamics of q = (qr, qv) are given by

q̇ = q ∗ (0, 1

2
ω); i.e.,

d

dt

(
qr
qv

)
= −1

2

(
0 ω⊤

−ω ω×

)(
qr
qv

)
, (19)

where ω ∈ R3 is a measurement of the angular velocity of
the vehicle expressed in the body-frame, ∗ : H × H → H
denotes the quaternion product, and ω× ∈ R3×3 is defined
by the property that ω×v = ω × v for all v ∈ R3.

As shown by the matrix form (19), the dynamics of q are
linear with respect to the embedding of H ↪→ R4, and match

the form (4a), where the Lie-algebra g and wedge operator
are defined by

g :=
{
δ∧ ∈ R4×4

∣∣ δ ∈ R3
}
≤ gl(4), δ∧ :=

(
0 δ⊤

−δ δ×

)
.

The vee operator ·∨ : g → R3 is simply defined as the inverse
of the wedge. The corresponding Lie-group G ≤ GL(4) is
defined by

G :=
{
cos(θ)I4 + sin(θ)δ∧

∣∣ δ ∈ R3, |δ| = 1, θ ∈ S1
}

which may be obtained by exponentiating elements of the
Lie-algebra. From the definition of g, the matrices (1) are

Υq =

(
−q⊤v

qrI3 + q×v

)
∈ R4×3, Υq = −Υq ∈ R4×3.

Let z̊ ∈ R3 be a known time-varying reference vector in
the inertial frame. If z ∈ R3 is a measurement of z̊ in the
body-frame of the vehicle, then

(0, z) = q−1 ∗ (0, z̊) ∗ q. (20)

This is a nonlinear measurement, but its defining equation
can be manipulated to yield an implicit measurement that is
linear with respect to the embedding H ⊂ R4 (cf. Section
IV-A). Specifically, by left-multiplying both sides by q and
subtracting, one has

q ∗ (0, z)− (0, z̊) ∗ q = 0; i.e., (21a)(
0 z̊⊤ − y⊤

z − z̊ −(z + z̊)×

)(
qr
qv

)
= 0. (21b)

In other words, by treating z as if it were an independent
time-varying quantity, a linearly-embedded measurement
function can be obtained, defined by

y(z, q) = Ct(z)q = 0,

Ct := Ct(z) =

(
0 z̊⊤ − z⊤

z − z̊ −(z + z̊)×

)
.

Remark 5.1: A similar interpretation of the dynamics and
measurements was proposed in [21]. However, the solution
proposed here is substantially different to this prior work.
While [21] proposed to estimate the quaternion as a free
vector in R4, our approach estimates the unit quaternion in
H directly. That is, in contrast to prior work, our proposed
method does not require any form of normalisation to be
added to the filter; the estimated quaternion will always
remain on the manifold of unit-length quaternions due to the
constraints inherent in updating the observer state X̂ ∈ G.

B. Simulation Results

The dynamics (19) and measurement (21b) are both of
the required form (4). As such, we define the observer X̂ ∈
G ≤ GL(4) to have dynamics

˙̂
X = −1

2
X̂ω∧ +∆X̂,

where ∆ ∈ g is determined according to (15).
To verify the proposed observer design, we carried out

simulations of the dynamics (19) with measurements (20).
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Fig. 1. Simulated quaternion attitude estimation without noise.

The initial condition was chosen to be q(0) = (1, 03) ∈ H,
and the input signal was determined by

Ut =
1

2
ω(t)∧, ω(t) =

(
0.1 cos(0.1t) 0.0 0.2

)⊤ ∈ R3.

The time-varying reference vector z̊ was determined by

z̊(t) =
(
sin(t) 0 cos(t)

)⊤ ∈ R3, (22)

and the measurement z(t) was computed according to (20).
The system was simulated using Lie-Group Euler integration
at 0.1 s increments over a total time of 100 s.

The observer was simulated in two settings: in a noise-free
setting, and in a setting where the measured input signal ω
and measured output signal z were corrupted with noise. For
the simulations with noise, the measured values ω̂ and ẑ were
obtained by

ω̂ = ω + µ̄, µ̄ ∼ N(0, Q̄−1) Q̄−1 = 0.012I3,

ẑ = z + ν̄, ν̄ ∼ N(0, R̄−1) R̄−1 = 1.02I3.

The initial conditions of the observer were chosen to be

q̊ = (1, 03),

X̂(0) = exp
(π
2
(0.99, 0, 0)∧

)
,

H0 = (0.1)2 X̂(0)⊤Υ⊤
q̂(0)Υq̂(0)X̂(0).

In particular, these choices mean that the initial estimated
attitude q̂(0) = X̂−1

0 q̊ was misaligned with the true attitude
q by 0.99π rad. The gain matrices were chosen according to
the procedure described in Section IV-A; specifically,

Q−1
t = (0.5)2Q̄−1

t ,

Bt = Υξ̊ Ad∨
X̂
,

R−1
t = Dzy(ẑ, q̂)R̄

−1Dzy(ẑ, q̂)
⊤,

Dzy(ẑ, q̂) =

(
−q̂⊤v

q̂rI3 + q̂×v

)
.

The observer equations (15) were implemented with adaptive
Lie-group Euler integration. The integration time-step dt was
chosen such that |∆∨dt| ≤ 0.01 and dt ≤ 0.1.

Figure 1 shows the results of the estimation without noise.
The initial convergence of the estimate is very fast thanks
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Fig. 2. Simulated quaternion attitude estimation with noise.

to the optimality of the proposed observer, in spite of the
large initial error of 0.99π rad. Following this initial period,
the estimation error and correction term both converge expo-
nentially to zero, with oscillations due to the periodic time-
variation of the reference vector (22) used in the measure-
ments. The top-right subplot shows the component values of
the optimality criterion (16). These all remain near zero, and
only fail to be exactly equal to zero due to numerical errors.

Figure 2 shows the results of the estimation subject to
noise. As in the noiseless case, the observer is able to
estimate the true attitude quickly even with a large initial
error. The optimality criterion is also still satisfied up to
numerical errors. This is as expected, since the observer (15)
makes no assumption that the input and output signals are
free from noise, rather, it only seeks to track a critical point of
the value function by keeping the optimality criterion equal
to zero.

VI. CONCLUSION

This paper proposes a novel observer design for a class of
embedded nonlinear systems with Lie-group symmetry. By
leveraging both the embedding structure and the symmetry
of the system, the observer is able to provide an estimate of
the state that is optimal, globally valid, and always remains
on the manifold. This is a significant contrast to existing
approaches, which make trade-offs between local optimality
and global validity, or fail to preserve the nonlinear manifold
structure intrinsic to the problem. Simulation results verify
the theoretical results and demonstrate performance in a
realistic attitude estimation problem.
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APPENDIX

Proof of Lemma 3.2: Applying the HJB equation [24]
to (11) yields

DtVt(e) = min
µ∈Rl

{−DeVt(e)[ė] + ℓt(µ, ν)}

= min
µ∈Rl

{−DeVt(e)[∆e+Btµ] + ℓt(µ, ν)}

= min
µ∈Rl

{
−DeVt(e)[∆e+Btµ] +

1

2
|µ|2Qt

+
1

2
|ν|2Rt

}
.

The argument of this minimisation problem is positively
quadratic in terms of µ, so the unique minimiser µ∗ is found
by setting the derivative with respect to µ to zero. If µ∗ is
the minimiser, then for any direction δ ∈ Rl,

0 = −DeVt(e)[Btδ] + ⟨Qtµ
∗, δ⟩

= −⟨B⊤
t ∇eVt(e), δ⟩+ ⟨Qtµ

∗, δ⟩
= ⟨Qtµ

∗ −B⊤
t ∇eVt(e), δ⟩,

and hence

µ∗ = Q−1
t B⊤

t ∇eVt(e).

Substituting this into the HJB equation yields

DtVt(e) = −DeVt(e)[∆e+BtQ
−1
t B⊤

t ∇eVt(e)]

+
1

2
|Q−1

t B⊤
t ∇eVt(e)|2Qt

+
1

2
|ν|2Rt

,

= −⟨∇eVt(e),∆e⟩ − 1

2
|B⊤

t ∇eVt(e)|2Q−1
t

+
1

2
|y − CtX̂

−1e|2Rt
,

as required.
Proof of Corollary 3.3: The result is a consequence

of Lemma 3.2 obtained by differentiating with respect to
e ∈ Rm. For any direction δ ∈ Rm, one has

Dt(DeVt(e)[δ]) = De(DtVt(e))[δ],

= De

(
−⟨∇eVt(e),∆e⟩ − 1

2
|B⊤

t ∇eVt(e)|2Q−1
t

+
1

2
|y − CtX̂

−1e|2Rt

)
[δ],

= −⟨∇eVt(e),∆δ⟩ − ⟨HesseVt(e)δ,∆e⟩
− ⟨B⊤

t ∇eVt(e), Q
−1
t B⊤

t HesseVt(e)δ⟩
+ ⟨Rt(CtX̂

−1e− y), CtX̂
−1δ⟩,

= −⟨∆⊤∇eVt(e), δ⟩ − ⟨HesseVt(e)∆e, δ⟩
− ⟨HesseVt(e)BtQ

−1
t B⊤

t ∇eVt(e), δ⟩
+ ⟨X̂−⊤C⊤

t Rt(CtX̂
−1e− y), δ⟩.

The result follows from the definition of the gradient as the
transpose of the differential.

Proof of Corollary 3.4: This result follows from differ-
entiating the gradient presented in Corollary 3.3. The time-
derivative of the Hessian is given by

DtHesseVt(e) = DeDt∇eVt(e)

= −(DeHesseVt(e))[·,∆e]−HesseVt(e)∆−∆⊤HesseVt(e)

− (DeHesseVt(e))[·, BtQ
−1
t B⊤

t ∇eVt(e)]

−HesseVt(e)BtQ
−1
t B⊤

t HesseVt(e)

+ X̂−⊤C⊤
t RtCtX̂

−1.

Substitute H for HesseVt(e), and note that DeH = 0. Then
we recover exactly the proposed dynamics (14) for H . It
follows from the Cauchy-Kowalevski Theorem [25], H =
HesseVt(e) for all time.
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