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Abstract— We consider noisy input/state data collected from
an experiment on a polynomial input-affine nonlinear system.
Motivated by event-triggered control, we provide data-based
conditions for input-to-state stability with respect to measure-
ment errors. Such conditions, which take into account all
dynamics consistent with data, lead to the design of a feedback
controller, an ISS Lyapunov function, and comparison functions
ensuring ISS with respect to measurement errors. When solved
alternately for two subsets of the decision variables, these con-
ditions become a convex sum-of-squares program. Feasibility
of the program is illustrated with a numerical example.

I. INTRODUCTION

Input-to-state stability (ISS) [1] is a fundamental property
for nonlinear systems in that it guarantees bounded state for
any bounded input and that the effect of initial conditions
on this bound vanishes over time. Many stability-related
notions for nonlinear systems are encompassed by ISS [2]. In
particular, ISS addresses the case of so-called “open systems”
where one would like that a certain input, intended as a
disturbance, has a limited effect on the system state thanks to
the ability of the system to “dissipate” the energy introduced
by such an input. In this sense, ISS is linked to properties
like dissipativity [3], passivity [4], and L2-gain [5]. Indeed,
[6] shows that a system is ISS if and only if an ISS Lyapunov
function exists and such a Lyapunov function needs to satisfy
a dissipativity-like inequality [2, §3.3].

Event-triggered control constitutes an example of the util-
ity of the ISS property since a vast portion of event-triggered
schemes (notably, [7], [8], [9]) assume (i) ISS with respect to
the measurement error for the closed loop system, so that the
measurement error induced by event-based sampling can be
tolerated, and (ii) the existence of an ISS Lyapunov function
with respect to the measurement error, which plays a key
role in the construction of the event-triggering strategy. This
is further elaborated in Section II-C.

This work deals with enforcing ISS with respect to the
measurement error, motivated by the relevance of this prop-
erty in the context of event-triggered control [10]. Departing
from model-based approaches, we would like to design a
feedback controller that enforces ISS with respect to the mea-
surement error based on noisy input/state data collected in
an open-loop experiment, for the class of nonlinear systems
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given by input-affine polynomial systems. In a nutshell, our
approach consists of (i) characterizing, through the collected
noisy data, the set of all polynomial dynamics that could
have generated such data, along the lines of set-membership
identification [11]; (ii) finding data-based conditions under
which a controller, an ISS Lyapunov function and suitable
comparison functions can be designed for all such dynam-
ics; (iii) carrying out the design in an automated fashion,
thanks to tools for sum-of-squares (SOS) optimization [12],
[13], [14]. Since noisy data prevent exact identification
of the actual system, our conditions offer robustness to
uncertainty. Along with robustness guarantees and automated
optimization-based design of controller and ISS certificate,
appealing features of our result are that it requires only high-
level prior knowledge on the structure of the system and on
the upper bound of the magnitude of the noise, and is a
stepping stone towards event-triggered control. These aspects
are the contribution of this work. The limitations of the result
are that (i) the obtained conditions are bilinear in the decision
variables and, to leverage convexity, we need to solve for
them in two alternate steps, see the end of Section IV for
details; (ii) we assume to approximately measure the time
derivative of the state. Still, as for (i), most model-based
approaches also suffer from the same bilinearity [13], [15]
and, if the controller is fixed, our conditions become convex
in the ISS Lyapunov function and the comparison functions;
as for (ii), viable surrogates to the knowledge of the state
derivative are discussed in Section III.

Based on the above discussion, this work is related to
recent works on data-based verification/design for dissipa-
tivity and, tangentially, data-based event-triggered control.
Within the thread of dissipativity, [16] verifies dissipativity
and [17] enforces it from noisy input/state data, and [18],
[19] from input/output data, but all of these works consider
linear systems. Verification of dissipativity for polynomial
systems has been considered in [20], [21] where an analysis
problem is solved, instead of control synthesis to enforce ISS
of the closed-loop system. Within data-driven event-triggered
control, we mention [22], [23], [24] where linear systems
are considered. Whereas our previous works address data-
based control design for asymptotic stability or invariance
[25], [26], [27] for polynomial systems, we consider here a
different problem and property, namely, enforcing ISS with
respect to the measurement error, motivated by its relevance
for event-triggered control.

Structure. We introduce preliminaries and elaborate on
the motivating application in Section II. Our data-based
setting and problem formulation are in Section III. Section IV
contains our main result to design a controller enforcing ISS
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Fig. 1. Event-triggered control scheme.

with respect to the measurement error from data. This design
is tested on a numerical example in Section V, where we also
show its potential for data-based event-triggered control.

II. PRELIMINARIES

A. Notation
In the sequel we use sum-of-squares (SOS) polynomials

and SOS matrix polynomials: we refer to, e.g., [12], [13],
[14], for excellent surveys on SOS. The identity matrix is I .
We write A ≻ 0 if a symmetric matrix A is positive definite
and A ≻ B if A − B ≻ 0. The set of nonnegative integer
numbers is N and N≥i := N∩{j : j ≥ i}. The n-dimensional
Euclidean space is Rn. The Euclidean norm of a vector x ∈
Rn is |x|. A function α : R≥0 → R≥0 is a class K∞ function
if it is continuous, strictly increasing, unbounded and satisfies
α(0) = 0. A function β : R≥0 ×R≥0 → R≥0 is a class KL
function if, for each t ≥ 0, β(·, t) is a class K∞ function and,
for each r ≥ 0, β(r, ·) is decreasing and limt→+∞ β(r, t) =
0 [2, p. 166]. For a matrix A, ∥A∥ is its induced 2-norm.
We abbreviate the symmetric matrix

[
A B⊤

B C

]
to [ A ⋆

B C ].

B. Auxiliary results for the sequel
Lemma 1 will allow us to design polynomial class K∞

functions and Lemma 2 to bound the data-based uncertainty.
Lemma 1: Consider α : R≥0 → R≥0 defined as α(r) :=∑N
k=1 ckr

2k. The function α is class K∞ if the scalars
c1, c2, . . . , cN satisfy c1 ≥ 0, c2 ≥ 0, . . . , cN ≥ 0 and
c1 + c2 + · · ·+ cN > 0.

Proof: The function α is continuous and α(0) = 0.
It is strictly increasing if α(r2) > α(r1) for all r1 and r2
with r2 > r1 ≥ 0. For two arbitrary r2 and r1 such that
r2 > r1 ≥ 0, α(r2) − α(r1) =

∑N
k=1 ck(r

2k
2 − r2k1 ). This

sum of nonnegative quantities is zero only if c1 = c2 =
· · · = cN = 0. This is excluded by hypothesis and, thus,
α(r2) > α(r1). Since at least one of c1, . . . , cN is nonzero
as a consequence of the hypothesis, α grows unbounded.

Lemma 2: Given matrices C = C⊤ ∈ Rp×p, E ∈ Rp×m,
G ∈ Rn×p and F̄ = F̄⊤ ⪰ 0, the fact that

C + EFG+G⊤F⊤E⊤ ⪯ 0 ∀F : F⊤F ⪯ F̄

is implied by the existence of a scalar λ > 0 such that

C + λEE⊤ + λ−1 G⊤F̄G ⪯ 0.
Proof: The claim follows by completing the square.

C. Motivation for ISS with respect to the measurement error
based on event-triggered control

In this section, we recall the basic ideas of model-based
event-triggered control [7] to motivate our study on enforcing
ISS with respect to measurement error, from data.

Event-triggered control considers the scheme in Fig. 1,
where a network connects plant and controller. The plant is
described, for state x ∈ Rn and input u ∈ Rm, by

ẋ = F (x, u). (1)

The processor computes the control action u = k(x) when
prompted by the scheduler. To save communication and
computation resources, the state is sampled and communi-
cated via the network only when necessary. This is decided
based on a stability condition involving ISS with respect
to the measurement error, as explained below. Suppose for
simplicity that as soon as a new measurement is collected at
times t0 := 0, t1, t2, . . . , ti, ti+1 . . . , the controller update
is computed and applied. Between any two consecutive
controller updates, the zero-order-hold policy

u(t) = k(x(ti)), t ∈ [ti, ti+1) , i ∈ N≥0 (2)

is adopted and the measurement error is

e(t) := x(ti)− x(t), t ∈ [ti, ti+1), i ∈ N≥0,

so that e(ti) = 0 for all i ∈ N≥0. With the introduction of
e, the control action in (2) is reformulated as

u(t) = k
(
x(t) + e(t)

)
, t ∈ [ti, ti+1) , i ∈ N≥0

and the design of the event-triggered scheme can be carried
out by considering the closed-loop system

ẋ = F (x, k(x+ e)). (3)

Indeed, to determine when to sample and to analyze stability
properties, one aims at enforcing that (3) is ISS with respect
to the measurement error e, as per the next definition where
∥e∥∞ is the (essential) supremum norm of e(·).

Definition 1 ([2, p. 171]): System (3) is ISS with respect
to measurement error e if there exist a class KL function β
and a class K∞ function γ such that the bound

|x(t)| ≤ β(|x0|, t) + γ(∥e∥∞)

holds for all solutions (i.e., for all signals e(·), all initial
conditions x0 and all t ≥ 0).

A standard way to guarantee ISS is through an ISS
Lyapunov function, defined next, since a system is ISS (with
respect to some input) if and only if it admits a smooth ISS
Lyapunov function [6].

Definition 2 ([2, p. 178]): A smooth function V : Rn →
R≥0 is an ISS Lyapunov function for the closed-loop system
(3) if there exist class K∞ functions α1, α2, α3 and α4

satisfying, for all x and e,

α1(|x|) ≤ V (x) ≤ α2(|x|) (4a)
⟨∇V (x), F (x, k(x+ e))⟩ ≤ −α3(|x|) + α4(|e|). (4b)

Suppose now that sampling and controller updates occur
as soon as, for σ ∈ (0, 1), the condition

α4(|e|) ≤ σα3(|x|) (5)

is violated, where α3 and α4 are from Definition 2. Then,

⟨∇V (x), F (x, k(x+ e))⟩ ≤ (σ − 1)α3(|x|) (6)
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and strict decrease of V for x ̸= 0 holds. This, along
with (4a), ensures global asymptotic stability of the origin.

In view of this reasoning, the existence of an ISS
Lyapunov function with the properties in Definition 2 is
the cornerstone of most event-triggered control schemes.
Nonetheless, the existence of such an ISS Lyapunov function
is typically assumed as a starting point in the event-triggered
literature [7], [8], [9]. Here, we would like to show that,
for polynomial input-affine nonlinear systems, such an ISS
Lyapunov function can be computed from data.

III. DATA-BASED PROBLEM FORMULATION

As a class of the nonlinear systems in (1), we consider
input-affine nonlinear systems with polynomial dynamics

ẋ = f⋆(x) + g⋆(x)u (7)

where f⋆ and g⋆ have polynomials as their elements. We
consider this relevant class of (1) because, in general, poly-
nomial vector fields can approximate smooth vector fields
tightly (on compact sets) and, here, they enable combining
data-based conditions with powerful design tools provided
by SOS. The actual expressions of f⋆ and g⋆ are unknown
to us; nonetheless, we make the next assumption on them.

Assumption 1: We know Z(x) ∈ RN and W (x) ∈
RM×m that have monomials of x as their elements and
are such that there exist constant coefficient matrices A⋆ ∈
Rn×N and B⋆ ∈ Rn×M satisfying, for each x ∈ Rn,

f⋆(x) = A⋆Z(x), g⋆(x) = B⋆W (x).

Moreover, Z(0) = 0.

Thanks to Assumption 1, (7) can be rewritten as

ẋ = A⋆Z(x) +B⋆W (x)u (8)

for some known Z and W , which amount to lists of mono-
mials, and unknown coefficient matrices A⋆ and B⋆. We
make the next remark on Assumption 1 and the selection
of regressors Z and W .

Remark 1: In principle, a foolproof way of satisfying
Assumption 1 is to let Z and W contain all monomials with
degree less than a large positive integer since Assumption 1
only requires that if a monomial is present in f⋆ (or g⋆)
it must be present in Z (or W ), but not vice versa. This
choice, however, can be overly conservative because the
redundant terms can lead to an increased computational cost
and possible infeasibility of the resulting SOS program (in
our case, the program (19) below). Still, even from high-
level knowledge on the system under study [28], it may be
apparent which monomials would appear in f⋆ (or g⋆), and
thus in Z (or W ); otherwise, techniques such as those in [29]
can be preliminarily employed. In this regard, a parsimonious
choice of the monomials in Z and W is best suited.

To compensate for the lack of knowledge of A⋆ and B⋆,
our approach is to gather information about the system from
data and, based only on such data, design a state-feedback
controller enforcing ISS with respect to the measurement
error. Data are collected in an open-loop experiment. We

consider T data that are generated by (8) in the inevitable
presence of a noise term d, namely, for i = 0, . . . , T − 1,

ẋ(td
i ) = A⋆Z(x(td

i )) +B⋆W (x(td
i ))u(t

d
i ) + d(td

i ) (9)

where we measure input, state and state derivative at time td
i

(the superscript d denotes “data”), but we know only a norm
bound on the noise samples, as in the next assumption.

Assumption 2: For δ > 0, d(td
0), . . . , d(td

T−1) belong to

D :=
{
d ∈ Rn : |d|2 ≤ δ

}
. (10)

For simplicity, we assume to measure the state derivative ẋ
at times td

0, . . . , td
T−1. When not available, ẋ can be recovered

from a denser sampling of x, e.g., using techniques from
continuous-time system identification [30]: at any rate, these
techniques allow reconstructing ẋ with some error which we
account for through noise d. See [22, Appendix A] for an
alternative approach that does not require measuring ẋ (but
leads anyhow to the sets Ii and I defined below in (11) and
(12)). Moreover, we emphasize that sampling is not required
to be uniform (i.e., we do not need td

T−1 − td
T−2 = · · · =

td
2 − td

1 = td
1 − td

0) and, as a matter of fact, data points
{u(td

i ), x(t
d
i ), ẋ(t

d
i )}

T−1
i=0 need not be collected from a single

trajectory but can arise from multiple trajectories.
Based on the collected data, we can characterize the set

of matrices [A B] consistent with data point {u(td
i ), x(t

d
i ),

ẋ(td
i )} and the instantaneous bound D in (10) as

Ii :=
{
[A B] : ẋ(td

i ) = [A B]
[

Z(x(td
i))

W (x(td
i))u(t

d
i)

]
+d, |d|2 ≤ δ

}
,

(11)
namely, the set of all matrices [A B] that could have gener-
ated data point {u(td

i ), x(t
d
i ), ẋ(t

d
i )} for some d complying

with bound D, cf. (9). The set of matrices consistent with
all data points and the instantaneous bound D is then

I :=

T−1⋂
i=0

Ii. (12)

The presence of the noise d during the experiment prevents
from identifying the system unambigously, as is the case in
set-membership system identification [11], and requires us
to design a feedback controller enforcing ISS with respect
to the measurement error for all matrices [A B] ∈ I, all of
which could have generated the data. Based on Section II-C,
this amounts to the design of a feedback controller k and,
as per Definition 2, an ISS Lyapunov function V and class
K∞ functions α1, α2, α3, α4 so that the conditions in (4)
hold true, based on our priors and the available data. This
results in the next problem statement.

Problem 1: For data points {u(td
i ), x(t

d
i ), ẋ(t

d
i )}

T−1
i=0 and

the resulting set in I in (12), design a controller u = k(x),
an ISS Lyapunov function V and class K∞ functions α1,
α2, α3, α4 such that for all [A B] ∈ I and all (x, e)

α1(|x|)≤V (x)≤α2(|x|) (13a)

⟨∇V (x),
[
A B

][ Z(x)
W (x)k(x+e)

]
⟩≤−α3(|x|)+α4(|e|). (13b)

We emphasize that this problem involves finding a solution
V to a dissipativity-like inequality as that in (13b), from data.
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Before solving Problem 1 in Section IV, we conclude this
section by introducing an ellipsoidal overapproximation of
the set I, which relies on [31], [27] and extends the approach
in [32, §3.7.2]. For data point i = 0, . . . , T − 1, define

CCCi := ẋ(td
i )ẋ(t

d
i )

⊤ − δI, BBBi := −
[

Z(x(td
i ))

W (x(td
i ))u(t

d
i )

]
ẋ(td

i )
⊤,

AAAi :=

[
Z(x(td

i ))
W (x(td

i ))u(t
d
i )

] [
Z(x(td

i ))
W (x(td

i ))u(t
d
i )

]⊤
. (14)

Consider the set Ī

Ī :={[A B] = ζ⊤: B̄⊤Ā−1B̄+ B̄⊤ζ + ζ⊤B̄+ ζ⊤Āζ ⪯ I}

where the matrices Ā and B̄ are designed by solving

min. − log det Ā (over Ā, B̄, τ0, . . . , τT−1)

s.t. Ā ≻ 0, τi ≥ 0, for i = 0,1, . . . , T − 1−I −
∑T−1

i=0 τiCCCi ⋆ ⋆

B̄−
∑T−1

i=0 τiBBBi Ā−
∑T−1

i=0 τiAAAi ⋆
B̄ 0 −Ā

 ⪯ 0.

(15)

The objective function of (15) corresponds to the size of the
set Ī [31, §2.2] and its constraints ensure the next result.

Fact 1 ([31, §5.1]): If Ā and B̄ are a solution to (15),
the set Ī satisfies I ⊆ Ī.
The so-obtained Ī is thus an overapproximation of I and
we use it since, unlike the set I, it is a matrix ellipsoid and
this enables the developments of the sequel. We would like
to reassure the reader on the feasibility of the optimization
program in (15) by recalling the next fact, with definitions

W0 :=
[
W (x(td

0))u(t
d
0) . . . W (x(td

T−1))u(t
d
T−1)

]
∈ RM×T

Z0 :=
[
Z(x(td

0)) . . . Z(x(td
T−1))

]
∈ RN×T .

Fact 2 ([27, Lemma 2]): If the matrix
[
Z0

W0

]
has full row

rank, then the optimization program in (15) is feasible.
Intuitively, collecting more data points can ensure that

[
Z0

W0

]
becomes full row rank if it is not, since these additional data
points constitute additional columns of

[
Z0

W0

]
; hence, Fact 2

suggests that the more data points, the higher the chance that[
Z0

W0

]
has full row rank and, in turn, that (15) is feasible.

If Ā and B̄ are a solution to (15), we have Ā ≻ 0 by
construction. Then, we can define

ζ̄ := −Ā−1B̄ and Q̄ := I, (16)

and rewrite the set Ī as

Ī = {[A B] = ζ⊤ = (ζ̄ + Ā− 1
2ΥQ̄

1
2 )⊤ : ∥Υ∥ ≤ 1}. (17)

IV. MAIN RESULT: LEARNING AN ISS LYAPUNOV
FUNCTION FROM DATA

In this section, we give our main result. With Ā, ζ̄ and
Q̄ readily obtained from noisy data via (15), we provide
conditions to find a controller, an ISS Lyapunov function, and
comparison functions for all possible dynamics consistent
with data. The next theorem contains these conditions.

Theorem 1 (Data-driven noisy ISS): For data points
{u(td

i ), x(td
i ), ẋ(td

i )}
T−1
i=0 and under Assumptions 1-2, let

the optimization program in (15) be feasible. Suppose
there exists a scalar ε > 0, a vector polynomial k with

k(0) = 0, polynomials α1, . . . , α4, polynomials V and λ,
SOS polynomials s1, s2, s3, an SOS matrix polynomial s4
such that (19), displayed over two columns, holds for all r,
x, e. Then,

ẋ =
[
A B

] [ Z(x)
W (x)k(x+ e)

]
(18)

is ISS with respect to the measurement error e for all [A B] ∈
Ī, and in particular for [A⋆ B⋆].

Before proving this result, some comments on it are
appropriate. Condition (19a) ensures that α1, α2, α3, α4 are
class K∞ functions by Lemma 1. The reason for considering
even powers of r in them is that such powers cancel the
square roots in

√∑n
i=1 x

2
i = |x| or

√∑n
i=1 e

2
i = |e| so

that α1(|x|), α2(|x|), α3(|x|), α4(|e|) in (19b) and (19c) are
polynomials in the components of x and e and, thus, SOS
tools can be fruitfully applied to solve (19). By allowing
some coefficients of functions αi, i = 1, . . . , 4 to be zero,
we let program (19) design the maximum degree of the
αi’s, which is only required to be nongreater than a positive
integer Ni of our choice. Condition (19b) entails lower and
upper bounds on the ISS Lyapunov function V , as in (13a),
and positivity of state- and error-dependent multiplier λ, as
needed in Lemma 2. Finally, condition (19c) corresponds
to guaranteeing the dissipativity-like inequality (13b) for all
polynomial dynamics that are consistent with data, and uses
the quantities ζ̄, Q̄, Ā that were obtained from {u(td

i ), x(t
d
i ),

ẋ(td
i )}

T−1
i=0 by solving (15). Theorem 1 effectively solves

Problem 1 since I ⊆ Ī by Fact 1.
Proof of Theorem 1. By (19a) and Lemma 1, α1, . . . , α4

are class K∞ functions (when their domain is restricted to
R≥0). Since s1, s2 are SOS polynomials, (19b) implies (13a).
If, for V , α3 and α4, we have that for all (x, e) and all Υ
with ∥Υ∥ ≤ 1

α3(|x|)− α4(|e|) + ∂V
∂x (x)ζ̄

⊤
[

Z(x)
W (x)k(x+e)

]
+ ∂V

∂x (x)Q̄
1
2Υ⊤Ā− 1

2

[
Z(x)

W (x)k(x+e)

]
≤ 0,

(20)

then, by (17), (13b) holds for all (x, e) and all [A B] ∈
Ī ⊇ I, where (13b) corresponds to (4b). In other words, by
Definition 2, V is a (smooth) Lyapunov function for (18) for
all [A B] ∈ Ī; since [A⋆ B⋆] ∈ I ⊆ Ī by Assumption 2,
this would prove the statement. We show then that by (19b)
and (19c), (20) holds for all (x, e) and all Υ with ∥Υ∥ ≤ 1.
We rewrite (20) as

α3(|x|)− α4(|e|) + ∂V
∂x (x)ζ̄

⊤
[

Z(x)
W (x)k(x+e)

]
+ 1

2
∂V
∂x (x)Q̄

1
2Υ⊤Ā− 1

2

[
Z(x)

W (x)k(x+e)

]
+ 1

2

[
Z(x)

W (x)k(x+e)

]⊤
Ā− 1

2ΥQ̄
1
2 ∂V

∂x (x)
⊤ ≤ 0.

(21)

Since ε > 0 and s3 is an SOS polynomial, (19b) implies
λ(x, e) > 0 for all (x, e) ∈ Rn+n. So, by Lemma 2, (21) is
valid for all (x, e) and all Υ with ∥Υ∥ ≤ 1 if, for all (x, e),

α3(|x|)− α4(|e|) + ∂V
∂x (x)ζ̄

⊤
[

Z(x)
W (x)k(x+e)

]
+ λ(x,e)

2

[
Z(x)

W (x)k(x+e)

]⊤
Ā− 1

2 Ā− 1
2

[
Z(x)

W (x)k(x+e)

]
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αi(r) =

Ni∑
k=1

cikr
2k, cik ≥ 0,

Ni∑
k=1

cik ≥ ε for i = 1, . . . , 4, k = 1, . . . , Ni (19a)

V (x)− α1(|x|) = s1(x), α2(|x|)− V (x) = s2(x), λ(x, e)− ε = s3(x, e), (19b)
α3(|x|)− α4(|e|) + ∂V

∂x (x)ζ̄
⊤
[

Z(x)
W (x)k(x+e)

]
⋆ ⋆

Q̄
1
2
∂V
∂x (x)

⊤ −2λ(x, e)I ⋆

λ(x, e)Ā− 1
2

[
Z(x)

W (x)k(x+e)

]
0 −2λ(x, e)I

 = −s4(x, e), (19c)

+ 1
2λ(x,e)

∂V
∂x (x)Q̄

1
2 Q̄

1
2 ∂V

∂x (x)
⊤ ≤ 0. (22)

Applying Schur complement to (22) yields that, for all (x, e),
{

α3(|x|)−α4(|e|)
+∂V

∂x (x)ζ̄
⊤
[

Z(x)
W (x)k(x+e)

]}
⋆ ⋆

Q̄
1
2
∂V
∂x (x)

⊤ −2λ(x,e)I ⋆

λ(x,e)Ā− 1
2

[
Z(x)

W (x)k(x+e)

]
0 −2λ(x,e)I

⪯0,

which is implied by (19c). □
Admittedly, the program (19), and specifically (19c), is

bilinear, and thus nonconvex, due to the products of decision
variables V , k and λ, k. To address this nonconvexity,
one can use solvers tailored for bilinear programs, such as
PENBMI and BMIBND. Here, we adopt the widespread
alternate approach [13], [15] where, in a first step, we fix
k and solve (19), which becomes convex with respect to the
remaining decision variables (which include V , λ) and, in a
second step, we fix V , λ and solve (19), which becomes
convex with respect to the remaining decision variables
(which include k). We successfully use this approach in our
numerical example in Section V.

For a given umax(·), bounds in the form |k(x)| ≤ umax(x),
for all x, are readily incorporated by adding to (19) the
convex condition

[
−umax(x)

2 k(x)⊤

k(x) −I

]
= −s5(x), for all x,

for an SOS polynomial s5.

Fig. 2. Data-collection experiment for the considered polynomial system.

V. NUMERICAL EXAMPLE

To exemplify our result for data-based design of a con-
troller achieving ISS with respect to the measurement error,

we consider the polynomial system[
ẋ1
ẋ2

]
=

[
−x1+x2

1x2

0

]
+ [ 01 ]u = f⋆(x) + g⋆(x)u (23)

from [33, Example 14.11]. Based on the considerations in
Remark 1, we select Z(x) =

[
x1 x2

1 x2
1x2 x1x

2
2 x3

2

]⊤
and W (x) = 1, which satisfy Assumption 1. Note that Z
contains more monomials than those appearing in f⋆. With
these Z and W , (23) yields A⋆ =

[−1 0 1 0 0
0 0 0 0 0

]
and B⋆ = [ 01 ],

which are unknown in our setting, see Section III, and used
only to generate the noisy data points on which (19) is based.
In the numerical experiment, u and d are taken as uniformly
distributed random numbers with |u| ≤ 10 and |d| ≤ 0.001
and x0 = (2,−2). The evolutions of x, u and the unknown
d are in Fig. 2. From these evolutions we collect data points
{u(td

i ), x(t
d
i ), ẋ(t

d
i )}

T−1
i=0 with T = 50.

With these data points, we construct the matrices CCCi, BBBi,
AAAi in (14), i = 0, . . . , T − 1, solve (15) by YALMIP [34]
and obtain matrices Ā, B̄ and, thus, ζ̄ and Q̄ in (16).

With Ā, ζ̄ and Q̄, we solve (19) with YALMIP [35] im-
posing that the maximum degrees of λ, k, V are respectively
4, 3, 2 at most. As elucidated at the end of Section IV, we
solve (19) alternately, first with V , λ (but not k) among the
decision variables and then with k (but not V , λ) among
the decision variables. These two steps are repeated 3 times
and require an initial guess for the controller k. As an initial
guess, we take k(x) = −x3

1−8x2 from [33, Example 14.11],
which achieves global asymptotic stability when the error
e is zero; it is however well-known that global asymptotic
stability with e = 0 does not imply ISS with respect to e in
general [2]. The solutions obtained from (19) in this way are

k(x) = −0.0410x1 − 1.8348x2 + 0.0086x2
1

+ 0.0279x1x2 + 0.0128x2
2 − 1.3188x3

1

− 4.1114x2
1x2 − 2.9410x1x

2
2 − 1.7240x3

2 (24)

V (x) = 1.1045x2
1 + 1.3849x2

2 + 1.2357x1x2, (25)

α1(r) = 0.4808r2, α2(r) = 2.2602r2 + 1.3966r4,

α3(r) = 0.6066r2 + 0.0378r4,

α4(r) = 2.8953r2 + 10.0643r4, λ(x, e) = 12.0254.

For these polynomials, we have reported only their most
significant terms and not the terms with comparatively much
smaller coefficients. Having found a certified feasible solu-
tion entails that (23) with feedback controller u = k(x+ e)
for k in (24) (i.e., in the presence of measurement error
e) is ISS with respect to e, thanks to the existence of ISS
Lyapunov function V in (25).
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To showcase this solution but without discussing the
existence of a lower bound on the interevent times, we
utilize the data-based designed controller k and class K∞
functions α3, α4 in an event-triggered control scheme, as
outlined in Section II-C. Specifically, the control action is
computed as in (2) and the triggering condition is in (5), for
σ = 0.9. This results in the state evolution in Fig. 3, where
convergence to zero is ensured by (6). Fig. 3 also shows
α4(|e(t)|) ≤ σα3(|x(t)|) for all t ≥ 0, thus confirming the
strict decrease of the designed ISS Lyapunov function as in〈
∇V (x),

[
A⋆ B⋆

] [ Z(x)
W (x)k(x+e)

]〉
≤ −α3(|x|) + α4(|e|).

Fig. 3. Evolution of the state (top) and comparison functions (bottom).

VI. CONCLUSION

Noisy input/state data from an open-loop experiment on
a polynomial input-affine system allow the designer to
characterize all dynamics consistent with data. We provided
conditions to design, robustly for all these consistent dynam-
ics, a feedback controller, an ISS Lyapunov function, and
comparison functions that enforce ISS of the closed loop
with respect to the measurement error. The design is verified
on a numerical simulation, which shows the potential of
employing such controller and comparison functions for a
data-based event triggered control scheme.
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