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Abstract— Although the suppression of mechanical reso-
nances for drive and positioning systems is a well-understood
problem in the literature, its importance is still actual as techno-
logical developments push towards an increase in performance
requirements. In this paper, the design of a notch filter is
investigated with the aim of suppressing a single resonant
frequency in SISO LTI two-mass drive systems. In the cases
where the notch filter is located inside an existing control loop,
as assumed in this work, it must not compromise the closed-
loop stability of the system, while assuring desired control
bandwidth and stability margins. Given a fixed known resonant
frequency to suppress, an automatic algorithm is proposed to
tune the notch filter parameters to guarantee specified control
requirements and stability of the closed-loop system, so as to
avoid, whenever possible, the reconfiguration of a preexisting
controller.

I. INTRODUCTION

Industry requirements demand fast accelerations and posi-
tioning accuracy of motion systems, and standard control tun-
ing guidelines exist when the mechanical design is such that
the system to be controlled is stiff and highly reproducible
[1]. However, fast accelerations are facilitated by lightweight
mechanical structures, that are often flexible [2]. On the other
hand, the growing control performance requirements ask for
the increase of the control bandwidth, with consequent shift
of the flexible dynamics in the crossover control region
[3]. The presence of flexible dynamics generally limits the
achievable feedback control bandwidth, as unwanted oscilla-
tions and even instability may occur [4].

The management of flexible dynamics with both motor
and load-side speed measurements is a well-known problem
in motion control [3], [5], [6]. Additionally, motion control
of two-mass systems is widely performed with PI/PID con-
trollers [7], [8]. In this setting, one of the most common so-
lutions to deal with a flexible mode in the control bandwidth
(without decreasing the PI/PID controller gain or redesigning
the system mechanics, as done in [9] and [10]) is the use
of a notch filter centered at that single resonant frequency,
with attenuation gain and filter bandwidth to be designed
[1, Chapter 4]. The notch filter can be inserted both as a
feedforward action, by filtering the reference signal, or inside
the control loop if a positive phase contribution is needed.
Notably, this latter design is the only viable solution when
the reference signal is zero, as for stabilized servo-systems
that must withstand external disturbances to keep their fixed
constant position. Nonetheless, the insertion of a filter in an
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already-designed control loop should cause as few alterations
as possible to the existing controller, so as not to compromise
the control performance and closed-loop system stability.

Several approaches have been proposed to design a notch
filter, also by adaptively estimating the resonance frequency
to suppress [7], [11], [12], [13]. However, these approaches
focused mainly on improving the goodness and computa-
tional complexity of the estimate of the resonant frequency,
without directly assessing the stability of the closed-loop
system after the insertion of the notch filter inside the control
loop.

In this paper, an automatic algorithm is proposed to
design a notch filter inside the speed control-loop for motion
control systems, that guarantees under stated assumptions
the asymptotic stability of the resulting closed loop, with
the fewest possible alterations on control performance. It is
considered a two-mass SISO LTI drive system with elastic
transmission, with known transfer function and resonance
frequency, controlled in velocity by a PI regulator with load-
side speed measurement. The proposed algorithm needs only
the parameters of the servo system and the PI controller
coefficients in order to tune the notch filter, along with
understandable configuration requirements specified by the
user. The approach allows faster development of the motion
control software without compromising a preexisting stabi-
lizing controller.

II. PROBLEM STATEMENT

A. Two-mass drive system description

MOTOR LOAD

Fig. 1. Two-masses drive system with elastic coupling.

Consider the two-mass drive system with elastic coupling
depicted in Fig. 1. Motor-side quantities are denoted by
motor position qm(t), torque τm(t), inertia Jm and co-
efficient of viscous friction Dm. Load-side quantities are
denoted by load position ql(t), torque τl(t), inertia Jl and
coefficient of viscous friction Dl. The elastic coupling is
modelled by a torsional spring with constant Kel and a
damper with damping coefficient Del. The transmission ratio
is defined as n = τtl(t)/τlm(t), where τtl(t) is the transmission
output (load-side) torque and τlm(t) is the transmission input
(motor-side) torque generated by the motor. The system in
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Fig. 1 can thus be described by

τm(t) = Kt · I(t) (1a)
Jmq̈m(t) +Dmq̇m(t) = τm(t)− τlm(t) (1b)
Jlq̈l(t) +Dlq̇l(t) = τtl(t)− τl(t) (1c)
τlm(t) = Kel(qm(t)− nql(t)) +Del(q̇m(t)− nq̇l(t)) (1d)

where Kt is the motor torque constant and I(t) is the motor
torque-generating current. Let τl = Dm = Dl = 0. The
transfer function Gvl(s) from motor current I(t) to load
speed (referred to the motor shaft) n · q̇l(t) reads as

Gvl(s) =
Ω̃l(s)

I(s)
= n

Ωl(s)

I(s)
=

µ

s

1 + 2
ξz

ωz
s

1 + 2
ξp

ωp
s+

s2

ω2
p

, (2)

where I(s),Ωm(s),Ωl(s) are the Laplace transformed motor
current, motor rotation speed and load rotation speed, Ω̃l(s)
is the load rotation speed referred to the motor shaft, ωz , ωp

are the zeros/poles resonance frequencies and ξz , ξp are the
zeros/poles damping coefficients.

It is considered a speed closed-loop system for Gvl(s) in
(2) with load-side velocity measurement q̇l(t), as shown in
Fig. 2. The controller R(s) is assumed to be a Proportional-
Integral (PI) one, with proportional gain Kp > 0 and integral
gain Ki > 0. The speed loop transfer function L(s) reads as

L(s) = R(s)Gvl(s) =

(
Kp +

Ki

s

)
µ

s

1 + 2
ξz

ωz
s

1 + 2
ξp

ωp
s+

s2

ω2
p

. (3)

Fig. 2. Loop transfer function L(s) with PI controller R(s) for the system
Gvl(s) in (2) with load-side speed measurement. When a notch filter N(s)
is inserted in the loop, the loop function becomes LN (s).

The transfer function in (3) might present a resonance
peak at ωp with magnitude greater than 0dB, which can cause
unwanted vibrations in the load speed output q̇l(t) as in Fig.
3. Notice how in these cases the magnitude of L(s) intersects
the 0dB axis more than once (specifically, 3 times).

Two common definitions are now stated for later use. [14]
Definition 1 (Gain crossover frequency): The gain

crossover frequency ωc of an open-loop transfer function
L(s) is the lowest frequency at which the magnitude of
L(s) intersects the 0dB axis, that is

ωc : |L(jωc)|dB = 0dB. (4)
Definition 2 (Phase margin): The phase margin φm is the

number of degrees by which the phase angle of L(s) is
smaller than −180◦ at the gain crossover frequency, that is

φm := 180◦ − |φc|, φc := ∠ L(jωc). (5)

Fig. 3. Bode diagram of L(s) at varying resonance frequency ωp, ωz =
80.27 [rad/s], ξp = 0.1, ξz = 0.058, Kp = 0.2342,Ki = 2.9269.

B. Notch filter description

A classical solution to suppress the resonance peak at
frequency ωp in (3) is to use a notch filter N(s)

N(s) =

1 + 2
ξ1

ωn
s+

s2

ω2
n

1 + 2
ξ2

ωn
s+

s2

ω2
n

, (6)

where the notched frequency ωn and the zeros/poles damp-
ings 0 < ξ1 < 1, 0 < ξ2 < 1 are design parameters. A
standard tuning is

ωn = ωp, ξ1 = ξp, (7)

with ξp ≪ ξ2 so to substitute the resonant poles with damped
ones. With this rationale, the design freedom is left only to
the parameter ξ2. Applying (6)-(7) to (3) leads to a new loop
function LN (s) = L(s)N(s), see Fig. 2:

LN (s) =

(
Kp +

Ki

s

)
µ

s

1 + 2
ξz

ωz
s

1 + 2
ξ2

ωp
s+

s2

ω2
p

. (8)

The gain crossover frequency of (8) follows from Definition
1 as

ωc,N : |LN (jωc,N )|dB = 0dB, (9)

and the phase margin φN follows from Definition 2 as

φN := 180◦ − |φc,N |, φc,N := ∠ LN (jωc,N ). (10)

The aim of this paper is to automatically design the
parameter ξ2 of a notch filter N(s) in (6) with initial
configuration as in (7) to suppress the resonant peak of
L(s) in (3), so that the resulting loop function LN (s) in
(8) maintains a phase margin φN > φ̄, with φ̄ chosen
by the designer, and approximately the same bandwidth of
L(s), that is ωc,N ≈ ωc. Under the validity of the Bode’s
stability criterion, a positive gain of LN (s) and a positive
phase margin φN in (10) ensure the asymptotic stability
of the feedback system FN (s) = LN (s)/(1 + LN (s)).
The proposed approach assumes the knowledge of (3) and
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explicitly avoids any computation on (8) to allow a fast
algorithm with simple implementation.

III. AUTOMATIC NOTCH FILTER DESIGN

This section first analyses the frequency response of the
the notch filter (6) - (7), highlighting a tradeoff between
notch magnitude and bandwidth when setting ξ2. Based on
this, an automatic design strategy for ξ2 is proposed.

Let N(s) be a notch filter as in (6) - (7), with ξ1 < ξ2.
The gain of N(s) at frequency ωn is inversely proportional
to ξ2 |N(jωn)|dB = 20 log10

ξ1
ξ2

. (11)

Conversely, the notch filter stop-bandwidth1 is directly pro-
portional to ξ2, as empirically shown in Fig. 4. The effect

2

2

Fig. 4. Notch filter Bode diagrams at varying ξ2, with ξ1 = 0.1 and
ωn = 1 rad/s. The arrow denotes increasing values of ξ2.

of ξ2 on the notch magnitude and stop-bandwidth highlights
a tradeoff in the choice of ξ2: a high ξ2 value leads to a
high notch attenuation at ωn, with corresponding increase of
the notch stop-bandwidth. Thus, increasing ξ2 may decrease
ωc,N in (9). This aspect is considered next in the proposed
automatic design of ξ2.

The design strategy relies on the following assumptions:
A1) The magnitude of L(s) in (3) intersects 0dB more than

once, as shown in Fig. 3;
A2) The resonance frequency ωp is such that ωp > ωc;
A3) The notch filter N(s) is defined as in (6) - (7) with

ξ1 < ξ2.
Assumption A1) is common in drive systems and it is the

starting point of this work. To verify this assumption, (4) can
be efficiently solved for ωc as shown in the appendix. The
gain crossover frequency (4) of (3) is the solution with the
lowest positive value. Assumption A2) derives from common
mechatronics control design.

For the proposed tuning strategy, the control designer has
to set the following design parameters, which in turn define
two constraints on the notch filter design:
C1) The minimum (negative) value of notch filter gain

M̄dB < 0 at the gain crossover frequency ωc in (4),

1Defined as the frequency range that lies under the −3dB axis.

so that
|N(jωc)|dB ≥ M̄dB. (12)

The constraint (12) imposes also a limit on the band-
width of N(s), so not to interfere with the magnitude
of LN (s) in the neighbourhoods of ωc, to enforce
ωc,N ≈ ωc.

C2) The minimum phase margin φ̄ > 0 of LN (s) in (10),
so that

φN ≥ φ̄ > 0. (13)

Under the validity of the Bode’s stability criterion,
this guarantees that FN (s) = LN (s)/(1 + LN (s)) is
asymptotically stable.

A. Design of ξ2 for constraint C1)

From Assumption A3), the notch magnitude is negative,
see Fig.4. The insertion of the notch in the loop will reduce
the magnitude of L(s) with the possibility to modify the
bandwidth of LN (s), with the consequence that ωc,N ≤ ωc.

Proposition 1: Under A1)-A3), given M̄dB < 0, the con-
straint (12) holds for every value of ξ2 so that

0 < ξ2 ≤ ξ̃, (14)
where

ξ̃ :=

√
(ω2

n − ω2
c )

2
+ 4ξ21ω

2
nω

2
c − 10M̄dB/10 · (ω2

n − ω2
c )

2

4ω2
nω

2
c · 10M̄dB/10

(15)
Proof: The proof is in the appendix.

B. Design ξ2 for constraint C2)

To satisfy the constraint in (13), the notch filter has to be
designed so that

180◦ − |∠L(jωc,N ) + ∠N(jωc,N )| ≥ φ̄ > 0. (16)

Under A2)-A3), it is true that ∠N(jωc) < 0◦. Thus,
since ωc,N ≤ ωc, it follows that ∠N(jωc,N ) < 0◦. So,
the application of N(s) in (6) to L(s) in (3) will lead to
φN ≤ φm, see also Fig. 4. Considering (3), it is true that

∠L(jω) < 0◦, ∀ω. (17)

Thus,

|∠L(jωc,N ) +∠N(jωc,N )| = |∠L(jωc,N )|+ |∠N(jωc,N )|,

and (16) reads as

−|∠N(jωc,N )| ≥ φ̄− 180◦ + |∠L(jωc,N )| (18a)

∠N(jωc,N ) ≥ −
(
180◦ − |∠L(jωc,N )| − φ̄

)
, (18b)

where (18b) follows from the fact that ∠N(jωc,N ) < 0◦.
Define θ̄ :=

(
180◦ − |∠L(jωc)| − φ̄

)
. Then, the following

proposition holds.
Proposition 2: Under A1)-A3) and assuming further that(
2ωn · ωc,N

(
ω2
n − ω2

c,N

)
+ tan

(
−θ̄
)
4ξ1ω

2
c,Nω2

n

)
> 0,

given a φ̄ > 0, the constraint (13) holds for every value
of ξ2 when

0 < ξ2 ≤ ξ̄, (19)
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where

ξ̄ :=
2ξ1ωn · ωc,N

(
ω2
n − ω2

c,N

)
− tan

(
−θ̄
)
·
(
ω2
n − ω2

c,N

)2
2ωn · ωc,N

(
ω2
n − ω2

c,N

)
+ tan

(
−θ̄
)
4ξ1ω2

c,N · ω2
n

(20)
Proof: The proof is in the appendix.

Thus, ξ2 should be chosen such that

0 < ξ2 ≤ min
(
ξ̄, ξ̃, 1

)
. (21)

C. Design of the notch filter attenuation gain

The choice of ξ2 highlights a tradeoff between:
1) the constraint (21) (lower ξ2);
2) the gain of the notch filter at ωp (higher ξ2), so that

|LN (jωp)|dB < 0, (22)

in order to damp the resonance at ωp (that is the
primary application of the notch filter in this work).

The condition (22) guarantees that the magnitude of LN (s)
intersects 0dB axis only once and so the existence of one
unique gain crossover frequency ωc,N . The satisfaction of
(22) and stable poles2 in LN (s) allows the application of
the Bode’s stability theorem. A positive phase margin φN ,
ensured by (13), and a positive gain3 of LN (s) guarantee
the stability of FN (s). Considering ξ̄ < 1 and ξ̃ < 1, an
automatic rule to set ξ2 is thus

ξ2 = min (ξ̄, ξ̃). (23)

The limits in (15) and (20) depend heavily from the
parameters M̄dB and φ̄ in (12)-(13) chosen by the designer.
In particular, if φ̄ > φm, it is not possible to choose a value
for ξ2 that respects (15), (20) and (22). As a result of this,
it is recommended to choose a minimum phase margin φ̄
considering φm, for instance by setting

φ̄ = α · φm, 0 < α < 1. (24)

A summary is presented in Algorithm 1.

IV. SIMULATIONS AND RESULT

In order to verify the effectiveness of the proposed method
for tuning the parameter ξ2 of (6), a simulated system as in
(3) is considered, where: Jl = 6.7 [Kg m2], Jm = 4.77·10−5

[Kg m2], n = 266, Kt = 0.0304 [Nm/A], ωz = 80.27
[rad/s], ωp = 138.23 [rad/s], ξz = 0.0581, ξp = 0.1, Kp =
0.2342, Ki = 2.9269. Since it is assumed that ωc,N in (9) is
not known as its computation is cumbersome, the practical
computation of (20) can be performed by using ωc in (4) in
place of ωc,N . This substitution is motivated by (12).

Fig. 5 shows a case where M̄dB = −1dB and α =
80%, so the minimum phase margin is set to φ̄ ≈ 62◦.
After the application of N(s), tuned with Algorithm 1, the
phase margin of LN (s) results φN ≈ 63◦. In this case
the constraint C2) is more restrictive than the constraint
C1), in fact ξ̄ = 0.3393 and ξ̃ = 0.4320. The algorithm

2For 0 < ξ2 < 1 the poles of LN (s) are stable.
3The gain of LN (s) is µKi > 0 by the physical properties of the system

(2) and by the positive controller gains Kp in R(s).

Algorithm 1 Automatic tuning ξ2

Input: α, M̄dB, L(s), ωn, ξ1
1: x = solutions of (4)
2: if (the number of solutions x in greater than one) then
3: ωc = min(x) s.t. x > 0
4: φ̄ = α · |∠L(jωc)| as in (24)
5: θ̄ = 180◦ − |∠L(jωc)| − φ̄
6: Compute ξ̃ as in (15)
7: Compute ξ̄ as in (20)
8: ξ2 = min(ξ̃, ξ̄) as in (23)
9: if (ξ2 > 0 and ξ2 < 1 and |LN (jωp)|dB < 0) then

10: A value ξ2 that satisfies (21)-(22) has been found.
11: else
12: No value ξ2 that satisfies (21)-(22) has been found. The

constraint C1) or C2) is too restrictive.
13: end if
14: end if
Output: tuned ξ2

sets ξ2 = min
(
ξ̄, ξ̃
)

= 0.3393 according to (23) so the
inequality in (13) becomes an equation and it’s correct to
obtain φN ≈ φ̄.

Fig. 5. Open loop functions L(s) and LN (s). Bode diagrams at ωp =
138.23 [rad/s]

The same servomechanism has been tested with different
values of α and fixed M̄dB = −1dB with the aim of analysing
how the ξ2 parameter, the gain crossover frequency ωc,N and
the phase margin φN vary. The results are shown in Tab. I.
As α decreases, constraint C1) becomes less restrictive and
the tuned ξ2 increases, until constraint C2) intervenes. In
fact, for α = 70% and α = 60%, the ξ2 value is the same,
since it is limited by the value of M̄dB = −1dB.

α 85% 80% 75% 70% 60%
ωp [rad/s] 138.23 138.23 138.23 138.23 138.23
ωc [rad/s] 65.9 65.9 65.9 65.9 65.9
φ̄ [◦] ≈ 66 ≈ 62 ≈ 58 ≈ 54 ≈ 46.5
ξ2 0.2759 0.3393 0.4064 0.4320 0.4320

ωc,N [rad/s] 61 59.3 57.6 56.9 56.9
φN [◦] ≈ 67 ≈ 63 ≈ 60 ≈ 59 ≈ 59

TABLE I
RESULTS WITH DIFFERENT α VALUES.

The algorithm has been tested also with fixed α = 0.8
and different values of M̄dB; the results are shown in Tab.
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M̄dB -1 -0.8 -0.6 -0.3
ωp [rad/s] 138.23 138.23 138.23 138.23
ωc [rad/s] 65.9 65.9 65.9 65.9
φ̄ [◦] ≈ 62 ≈ 62 ≈ 62 ≈ 62
ξ2 0.3393 0.3393 0.3333 0.2425

ωc,N [rad/s] 59.3 59.3 59.5 61.9
φN [◦] ≈ 63 ≈ 63 ≈ 64 ≈ 68

TABLE II
RESULTS WITH DIFFERENT M̄DB VALUES.

II. As M̄dB decreases, the ξ2 value decreases and also the
difference between the gain crossover frequency ωc and
the gain crossover frequency ωc,N decreases. The ξ2 value
obtained by the algorithm when M̄dB = −1dB and M̄dB =
−0.8dB is the same as in these cases the constraint C2) is
more restrictive than the constraint C1).

A low value of M̄dB is necessary to keep ωc ≈ ωc,N and a
high value of α is advisable to obtain a high φN . However,
choosing a too-low value of M̄dB and a too-high value of α
is not recommended because this would lead to obtain a low
ξ2 value. When |ξ2| < 0.3 the magnitude of LN (s) presents
a peak at the poles’ frequency. In these cases it is important
that the peak is still less than 0dB, as explained in section
III-C.

The adaptability of the proposed algorithm has been tested
by varying the ωp value of the servomechanism and using
as hyperparameters: M̄dB = −1dB and α = 80%. As shown
in Tab. III, the effect produced by the resonance varies
according to the poles resonant frequency.

ωp [rad/s] 138.23 157 188.5 219.9
ξ2 0.3393 0.4249 0.5377 0.6397

φ̄ [◦] ≈ 62.4 ≈ 62 ≈ 62.7 ≈ 62.9
ωc [rad/s] 65.9 59.9 56.4 54.8

ωc,N [rad/s] 59.3 55.6 53.2 52
φN [◦] ≈ 63 ≈ 63 ≈ 63 ≈ 63

TABLE III
RESULTS WITH DIFFERENT ωp VALUES.

In all simulations, it is possible to check that φN ≈ φ̄. In
addition, since the conditions of the Bode’s stability criterion
are respected, a positive gain of LN (s) and a positive
phase margin φN guarantee the asympotic stability of the
resulting closed-loop system FN (s). The results obtained by
the simulation demonstrate the capability to suppress the
resonance at different frequencies, keeping a high control
performance and guaranteeing a stable closed-loop system.

V. CONCLUSION

This paper presented an automatic method to tune a
notch filter for suppressing the main resonance in two-drive
mass systems, so as not to affect the system performance
and guarantee the control loop stability after the notch
application. The proposed approach is simple, allows a
fast computation and needs only the configuration of two
parameters. Furthermore, the effectiveness of the algorithm
is shown in simulations under varying system configurations.

VI. APPENDIX

A. Solving (4) in closed form
Consider L(s) in (3). The magnitude of L(s) at a fre-

quency ω reads as

|L(jω)|dB=20 log10

(√
K2

p +
K2

i

ω2

µ

ω

√
1+

4ξ2zω
2

ω2
z√(

1− ω2

ω2
p

)2

+
4ξ2pω

2

ω2
p

)
.

Solving (4) for a generic ω leads to the expression√
K2

p +
K2

i

ω2

µ

ω

√
1 +

4ξ2zω
2

ω2
z√(

1− ω2

ω2
p

)2

+
4ξ2pω

2

ω2
p

= 1,

√
K2

pω
2+K2

i µ
√

1 +
4ξ2zω

2

ω2
z

−ω2

√(
1− ω2

ω2
p

)2

+
4ξ2pω

2

ω2
p

ω2

√(
1− ω2

ω2
p

)2

+
4ξ2pω

2

ω2
p

=0,

(
− 1

ω4
p

)
ω8 +

(
2

ω2
p

−
4ξ2p
ω2
p

)
ω6 +

(
4µ2ξ2zK

2
p

ω2
z

− 1

)
ω4+

+

(
K2

pµ
2 +

4µ2ξ2zK
2
i

ω2
z

)
ω2 + µ2K2

i = 0.

Employing the substitution t = ω2, the associated quartic
equation is achieved(

− 1

ω4
p

)
t4 +

(
2

ω2
p

−
4ξ2p
ω2
p

)
t3 +

(
4µ2ξ2zK

2
p

ω2
z

− 1

)
t2+

+

(
K2

pµ
2 +

4µ2ξ2zK
2
i

ω2
z

)
t+ µ2K2

i = 0.

(25)

The solutions of (4) are the positive roots of (25), that is ω1 =√
t1, ω2 =

√
t2, ω3 =

√
t3, ω4 =

√
t4, where t1, t2, t3, t4 are

positive and real.

B. Proof of proposition 1

The magnitude of the notch filter frequency response at
frequency ωc reads as

|N(jωc)| =

√
(ω2

n − ω2
c )

2
+ 4ξ21ω

2
nω

2
c√

(ω2
n − ω2

c )
2
+ 4ξ22ω

2
nω

2
c

(26)

so that constraint (12) can be rewritten as

|N(jωc)| =

√
(ω2

n − ω2
c )

2
+ 4ξ21ω

2
nω

2
c√

(ω2
n − ω2

c )
2
+ 4ξ22ω

2
nω

2
c

≥ 10
M̄dB
20 , (27)

√
(ω2

n−ω2
c )

2
+4ξ21ω

2
nω

2
c−10

M̄dB
20

√
(ω2

n−ω2
c )

2
+ 4ξ22ω

2
nω

2
c√

(ω2
n−ω2

c )
2
+4ξ22ω

2
nω

2
c

≥ 0.

(28)
The denominator of (28) is always greater than zero. Thus,

it is necessary to study the sign of the numerator of (28) to
assess when (28) holds true.√

(ω2
n−ω2

c )
2
+4ξ21ω

2
nω

2
c− 10

M̄dB
20

√
(ω2

n−ω2
c )

2
+4ξ22ω

2
nω

2
c ≥0
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2
+4ξ21ω

2
nω

2
c ≥ 10

M̄dB
20

√
(ω2

n−ω2
c )

2
+4ξ22ω

2
nω

2
c(

ω2
n−ω2

c

)2
+4ξ21ω

2
nω

2
c ≥ 10

M̄dB
20

((
ω2
n−ω2

c

)2
+4ξ22ω

2
nω

2
c

)
(
ω2
n − ω2

c

)2
+ 4ξ21ω

2
nω

2
c ≥ 10

2M̄dB
20

(
ω2
n − ω2

c

)2
+ 10

2M̄dB
20

(
4ξ22ω

2
nω

2
c

)
ξ22 ≤

(
ω2
n − ω2

c

)2
+ 4ξ21ω

2
nω

2
c − 10

M̄dB
10

(
ω2
n − ω2

c

)2
4ω2

nω
2
c · 10

M̄dB
10

(29)

It is possible to notice that

10
M̄dB
10 < 1,

due to the fact that M̄dB < 0. It follows that(
ω2
n − ω2

c

)2 − 10
M̄dB
10 ·

(
ω2
n − ω2

c

)2 ≥ 0,

and thus the numerator of (29) is not negative.
Thus, an upper bound can be computed for ξ2 as

ξ̃2 :=

√√√√ (ω2
n − ω2

c )
2
+ 4ξ21ω

2
nω

2
c − 10

M̄dB
10 · (ω2

n − ω2
c )

2

4ω2
nω

2
c · 10

M̄dB
10

(30)

C. Proof of Proposition 2
The frequency response of the notch filter in (6) at the

frequency ωc is

N(jωc,N ) =
(jωc,N )2 + 2ξ1ωn · jωc,N + ω2

n

(jωc,N )2 + 2ξ2ωn · jωc,N + ω2
n

=

(
ω2
n−ω2

c,N

)
+ 2ξ1ωn · jωc,N(

ω2
n−ω2

c,N

)
+ 2ξ2ωn · jωc,N

·
(
ω2
n−ω2

c,N

)
− 2ξ2ωn · jωc,N(

ω2
n−ω2

c,N

)
− 2ξ2ωn · jωc,N

The real and imaginary parts follow as

Real [N(jωc,N )] =

(
ω2
n − ω2

c,N

)2
+ 4ξ1ξ2ω

2
c,Nω2

n(
ω2
n − ω2

c,N

)2
+ 4ξ22ω

2
c,Nω2

n

(31)

Img [N(jωc,N )] =
2ξ1ωn · ωc,N

(
ω2
n − ω2

c,N

)(
ω2
n − ω2

c,N

)2
+ 4ξ22ω

2
c,Nω2

n

+

+
−2ξ2ωn · ωc,N

(
ω2
n − ω2

c,N

)(
ω2
n − ω2

c,N

)2
+ 4ξ22ω

2
c,Nω2

n

.

(32)

Since Real [N(jωc,N )] > 0 then

∠N(jωc,N ) = tan−1

(
Img [N(jωc,N )]

Real [N(jωc,N )]

)
. (33)

The condition (18b) than reads as

tan−1

(
Img [N(jωc,N )]

Real [N(jωc,N )]

)
≥ −θ̄,

Img [N(jωc,N )]

Real [N(jωc,N )]
≥ tan

(
−θ̄
)
,

(34)

2ξ1ωn · ωc,N

(
ω2
n − ω2

c,N

)
− 2ξ2ωn · ωc,N

(
ω2
n − ω2

c,N

)(
ω2
n − ω2

c,N

)2
+ 4ξ1ξ2ω2

c,Nω2
n

− tan
(
−θ̄
)
≥ 0,

2ξ1ωn · ωc,N

(
ω2
n − ω2

c,N

)
− 2ξ2ωn · ωc,N

(
ω2
n − ω2

c,N

)
(ω2

n − ω2
c )

2
+ 4ξ1ξ2ω2

c,Nω2
n

+

+
− tan

(
−θ̄
) (

ω2
n − ω2

c,N

)2 − tan
(
−θ̄
)
4ξ1ξ2ω

2
c,Nω2

n(
ω2
n − ω2

c,N

)2
+ 4ξ1ξ2ω2

c,Nω2
n

≥ 0.

(35)

Since ξ2 > 0 and ξ1 > 0 by filter definition and ωn = ωp >
ωc ≈ ωc,N , the denominator of (35) is always greater than
zero. The numerator of (35) is ≥ 0 when

ξ2 ·
(
2ωn · ωc,N

(
ω2
n − ω2

c,N

)
+ tan

(
−θ̄
)
4ξ1ω

2
c,Nω2

n

)
<

≤ 2ξ1ωn · ωc,N

(
ω2
n − ω2

c,N

)
− tan

(
−θ̄
)
·
(
ω2
n − ω2

c,N

)2
.

By assuming that(
2ωn · ωc,N

(
ω2
n − ω2

c,N

)
+ tan

(
−θ̄
)
4ξ1ω

2
c,Nω2

n

)
> 0,

it’s possible set an upper bound for ξ2 as

ξ2 ≤
2ξ1ωn · ωc,N

(
ω2
n − ω2

c,N

)
− tan

(
−θ̄
)
·
(
ω2
n − ω2

c,N

)2
2ωn · ωc,N

(
ω2
n − ω2

c,N

)
+ tan

(
−θ̄
)
4ξ1ω2

c,Nω2
n

.
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