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Abstract— Ananthram and Borkar [1] showed that there exist
strategies that are consistent with the requirements of a de-
centralized information structure but are unattainable through
the use of common randomness. This opens the question
of discovering physically realisable mechanisms that provide
access to this region of the strategic space. In our previous
work we introduced a class of quantum strategies that allow
such access in a two-agent setting. In this paper, we consider
the problem of optimal allocation of a k-partite quantum
resource amongst n agents, k < n. We study the problem of
decentralized estimation of a binary source by agents that are
informed through independent binary symmetric channels, and
face a cost that is homogeneous in their actions. We show a
k-partite quantum resource produces the maximum advantage
over classical strategies when allocated to the agents with the
k most reliable channels.

I. INTRODUCTION

Decentralised control asks collaborative agents to choose
their actions as a function of noisy and asymmetric observa-
tions to optimize some collective objective of their actions
and some unknown underlying state. The precise structure
of the observation channels is described by the information
structure of the problem; the information structure imposes
constraints on the set of strategies available to these agents
whereby the decentralized control problem is to optimize an
expected cost over all strategies that respect these informa-
tion constraints.

The strategic spaces investigated in decentralized control
include the set of deterministic strategies, and stochastic
strategies implemented through either behavioural or local
randomness. These spaces can be enriched further using
externally supplied common randomness. But it is well
known that both local and common randomizations do not
improve upon the cost of the optimal deterministic strategy;
see e.g., [2].

However, there are decision strategies that do not violate
the constraints imposed by the information structure of the
problem but still lie outside the scope of the above strate-
gies. Ananthram and Borkar [1] demonstrate that there are
decision strategies, or equivalently correlations, that respect
the information structure but remain inaccessible even with
common randomness. They view this as a limitation of
common randomness in decentralised control problems of
both cooperative and competitive nature.

Shashank A Deshpande is with the DINaMo group at the Department of
Aeronautics and Astronautics at the Massachusetts Institute of Technology
and can be reached at croshank@mit.edu, but conducted this research
as a part of his Master’s thesis while at the Indian Institute of Technology
Bombay. Ankur A Kulkarni is with the department of Systems and Control
Engineering, Indian Institute of Technology Bombay, Mumbai 400076 and
can be reached at kulkarni.ankur@iitb.ac.in.

It is then natural to ask if there exist other, physically
realizable mechanisms that allow an access to the strategic
space beyond what common randomness avails, without
violating the constraints of the information structure. We
affirmatively answered this question in [3] through a novel
class of entanglement assisted quantum strategies. In par-
ticular, we showed that the set of quantum strategies is a
strict convex superset of the space of stochastic strategies
availed by classical common randomness. For a numerical
example we showed that such strategies achieve lower costs
than any achievable through classical common randomness,
thereby demonstrating the existence of a quantum advantage
in decentralised control.

The key feature of quantum mechanics that makes this
advantage possible is entanglement. In quantum strategies
we introduced in [3] agents choose their actions based
on measurements they perform on a multipartite composite
quantum system that is entangled across its components.
Entanglement has many stunning consequences, but perhaps
the most relevant for decentralized control is the existence
correlations beyond those possible classically, without any
additional communication requirements. Thus, our quantum
strategies do not violate the information structure, and yet
outperform all classical strategies. This is a manifestation of
the famed spooky action-at-a-distance produced by entangle-
ment. That entanglement is a real physical phenomenon was
demonstrated in ingenious experiments that were awarded
this year’s Nobel prize in physics.

Though entanglement lends itself naturally to decentral-
ized control as we have shown in [3], practically speaking
entanglement remains an expensive resource. Motivated by
this we ask the following question in this paper. Consider a
problem with n agents that are asymmetrically and noisily
informed through independent binary symmetric channels
about an underlying state, but are required to collectively
estimate this state via a cost function that is homogeneous
across the agents. Agents do not signal to each other and
thus obey a static information structure [4]. If these agents
were given access to a k-partite quantum resource, k < n,
which k of these agents should it be given to produce the
largest improvement over the classical cost? Our first main
contribution is in showing that the answer to this question is
rather clean – the k-partite resource produces the maximum
advantage when assigned to the top k best informed agents.

This implies that in this setting, the channel reliability is,
in some sense, a sufficient statistic for optimal allocation of
quantum resources. For more general problems, it would be
illuminating to discover a more general ‘measure’ or rubric
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by which quantum resources should be allocated. Though
our setting is specialized, we believe it opens a fascinating
new line of inquiry of optimal quantum resource allocation
in decentralized control.

The present paper also follows up on our other previous
works [5] and [6]. Here we show that the quantum advantage
in a two-agent decentralized setting is essentially due to an
underlying decision-theoretic difficulty called the ‘coordina-
tion dilemma’. We study a problem class superstructure and
show that the only classes within it that admit a quantum
advantage are those with this dilemma. Our present paper is
an attempt at furthering the understanding of use of quantum
resources in n-agent settings for n > 2.

II. PROBLEM CLASS, DECISION STRATEGIES AND THE
NON-LOCAL ADVANTAGES

A. Notation

We denote the negation of a ∈ {0, 1} by a. For
a, b ∈ {0, 1}, we denote the binary addition or ‘XOR’
of a and b by a ⊕ b. For {ai}ki=1 ∈ {0, 1}, ⊕iai :=
a1 ⊕ a2 ⊕ ... ⊕ ak. For a set V , we use the notation V−j
to denote V \ {j} for a j ∈ V . Similarly for a tuple
x := (x1, ..., xk), x−j denotes (x1, ..., xj−1, xj+1, ..., xk).
Further if V ⊃ K := {i(1), · · · , i(m)}, then xK denotes the
tuple (xi(1) , · · · , xi(m)). P(Ξ) denotes the set of probability
distributions on Ξ, and P(U|Ξ) denotes the set of condi-
tional probability distributions on U given an element in Ξ.
δ(x, y) := δxy denotes the standard Kronecker Delta with
δxy = 1 if x = y and 0 otherwise.

B. The class of static team problems.

Let N := {1, 2, . . . , n} be a set of agents. For each agent
i ∈ N , we have an observation ξi ∈ Ξi and an action
ui ∈ Ui. Let ξ := (ξi)i, u = (ui)i, Ξ :=

∏
i Ξi and

U :=
∏
i Ui. Every ξi records a noisy observation about

an underlying state of nature ξW ∈ ΞW which distributed
according to P(ξW ) ∈ P(ΞW ) and their observations are
jointly correlated with this natural state according to a distri-
bution P(ξ, ξW ) ∈ P(Ξ×ΞW ). We denote u−k := (ui)i 6=k,
and likewise for K ⊆ N , uK = (ui)i∈K , u−K = (ui)i/∈K ,
and similarly for other variables. The agents face a static
team decision problem D := (P,U ,Ξ × ΞW , `) where they
jointly attempt to minimize a joint cost `(u, ξW ) dependent
on their actions u and the natural state ξW . We will specialize
later in the next section to a specific cost structure `.

C. Decision strategies for static teams.

We work in the space of occupation measures following
[7] so that a decision strategy for the above problem class
is given by a distribution Q ∈ P(U|Ξ). In the language
of stochastic control, any such strategy can be thought of
as occupation measure as done in Markov decision pro-
cesses [8]. Under a strategy Q, the expected cost of a problem
D = (P,U ,Ξ× ΞW , `) is given by a linear objective in Q:

J(Q;D) =
∑
u,ξ,ξW

P(ξ, ξW )Q(u|ξ)`(u, ξW ). (1)

We classify the space P(U|ξ) of decision strategies based
upon specification of further restrictions on the strategies.
Our strategies will be distinguished based on the resources
available to the agents.

1) Space of local strategies L:: We first introduce the
space of strategies, Π in which agents choose actions as a
function of only their (local) information. Toward specifying
L, first denote a locally randomized policy by the tuple
{Qi}i∈N where Qi ∈ P(Ui|Ξi). We let Π be the set of all
occupation measures that correspond generated from such
policies, defined as follows.

Π := {Q|∃ Qi ∈ P(Ui|Ξi) : Q(u|ξ) ≡
∏
i

Q(ui|ξi)}. (2)

a) Common randomness: Suppose now that in addition to
their local information, the agents have access to a passively
generated random variable w ∈ W : w ∼ Φ ∈ P(W) in
order to classically correlate their actions beyond the inherent
correlation provided by that among their observations. We
define L as the set of strategies so achievable with arbitrary
w,Φ

L = {Q|∃W,Φ ∈ P(W), Qi ∈ P(Ui|Ξi) :

Q(u|ξ) ≡
∑
w∈W

Φ(w)
∏
i

Qi(ui|ξi, w)}. (3)

We refer to L as the space of local or classical strategies.
2) Space of quantum strategies Q: We briefly specify this

space of strategies here; a more detailed description can be
found in [3]. Q is the space of decision strategies allowed
by quantum physical reality. A strategy Q ∈ Q is specified
by a tuple ({Hi}i, ρ, {P (i)

ui (ξi)}i,ξi,ui
) where Hi is a finite

dimensional Hilbert space for each i ∈ N , ρ ∈
⊗

iHi =: H
is such that ρ � 0,Tr ρ = 1 and P (i)

ui (ξi) denotes a projection
operator in Hi for each i, ξi ∈ Ξi, ui ∈ Ui. ρ is a composite
quantum system whose subsystems are accessible to each
decision maker i for measurement. The projection operators
are required to satisfy for each i, ξi:∑

ui

P (i)
ui

(ξi) = I;

P (i)
ui

(ξi)P
(i)
u′i

(ξi) = δ(ui, u
′
i)P

(i)
ui

(ξi).

The occupation measure corresponding to the above-
mentioned strategy Q is then computed as

Q(u|ξ) = Tr

(
ρ
⊗
i

P (i)
ui

(ξi)

)
. (4)

A quantum strategy is executed as follows. An order of
measurements is decided (say 1 to n). Upon observing ξ1,
player 1 performs a local measurement on the shared quan-
tum resource ρ in the POVM {Pu1(ξ1)}u1∈U1 , then player
2 performs his measurement, and so on. The action is then
determined by the measurement outcome (u1, . . . , un). We
refer the reader to [9] for details on POVMs and composite
systems.
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3) Space of no-signalling strategies NS: This is the set
of all decision strategies Q ∈ P(U|Ξ) that respect the
absence of signalling between the agents. This is provided by
imposing that ui is conditionally independent of ξ−i given
ξi for each i ∈ N . Thus for each i ∈ N ,

NS = {Q|Q(ui|ξi, ξ−i) ≡ Q(ui|ξi) ∀i ∈ N}.

These restrictions enforce the condition Q(uK |ξK , ξ−K) =
Q(uK |ξK) for all K ⊂ N [10]. It is easy to see that Q ∈ NS
is equivalent to,∑
ui

Q(u|ξi, ξ−i) =
∑
ui

Q(u|ξ′i, ξ−i) ∀ ξi, ξ′i, ξ−i, u−i, (5)

and Q ∈ P(U|Ξ). Notice that these are finite a set of linear
equality constraints on P(U|Ξ), and hence NS is a polytope.

4) Centralised polytope P(U|Ξ): We call the set of all
distributions P(U|Ξ) the centralised polytope. This is indeed
the set of all strategies when the information in the problem
is centralised.

Later we will introduce additional strategic classes. For
any class S, say S = Π,L,Q,NS and P(U|Ξ), denote the
infimum of the expected cost of a problem D over set S as

J∗S(D) = inf
Q∈S

J(Q;D). (6)

Denote the centralised optimum J∗P(U|Ξ)(D) by J∗∗(D). It
can be shown that our strategic spaces obey the inclusion [6]

L ⊆ Q ⊆ NS ⊆ P(U|Ξ), (7)

from which, it then follows that

J∗L(D) ≥ J∗Q(D) ≥ J∗NS(D) ≥ J∗∗(D). (8)

Further, since J(Q;D) is a linear objective in Q and L =
conv(Π), it follows that J∗Π(D) = J∗L(D). We say that at in-
stance D admits a quantum no-signalling, or a centralisation
advantage if the following equations respectively hold:

J∗Q(D) < J∗L(D),

J∗NS(D) < J∗L(D),

J∗∗(D) < J∗L(D).

D. Limitations of common randomness

We now come to a key matter in decentralized control,
which is also our main motivation for this paper. Prima-
facie, it appears plausible that decentralized players tied
by a static information structure can access strategies in
NS; after all the only requirement of NS is that players
cannot communicate, which is the essence of the information
structure of the problem. But the natural question then is,
what is the mechanism by which they can access this region?
Ananthram and Borkar [1] have highlighted the inherent
limitation of common randomness in achieving this access.
In [1] they demonstrate a strategy that lies in NS , but
cannot be expressed in the form (3), i.e., as arising by
providing common randomness to the decision makers. Thus
the inclusion L ⊆ NS is, in general, strict.

One can then ask, what physically realizable mechanism is
available that does not violate the no-signalling requirement,
and yet provides access to the NS region? In [3], we con-
struct a class of physically-implementable quantum strategies
Q that escape the limitations of common randomness and
produce strategies in NS\L. We showed that there exist
decentralized control problems with the property that there
exists a quantum strategy that strictly outperforms all strate-
gies in L, thereby demonstrating the existence of a quantum
advantage in decentralized control.

E. Partitioned quantum strategies

Let P = {K1, · · · ,Kp} be a partition on N . Denote uK =
(ui)i∈K and similarly ξK = (ξi)i∈K for K ∈ P. Consider
a strategy Q that allows agents within each Kj access to
a shared, possibly entangled, quantum resource. Hence, if
Q = ({Hi}i, ρ, {P (i)

ui (ξi)}i,ξi,ui), then ρ decomposes as ρ =⊗
i ρKi where ρK ∈

⊗
i∈K Hi. It follows that

Q(u|ξ) =

p∏
j=1

QKj
(uKj

|ξKj
) =

∏
j

Tr(ρKj

⊗
i∈Kj

P (i)
ui

(ξi)).

(9)
Denote Q−Ki

=
∏
j 6=iQKj

(uKj
|ξKj

). We call such a
strategy Q P-quantum, and by QP ⊆ Q we denote the set of
such strategies. If an element of the partition P is singleton,
i.e. say Kj = {kj}, then we call the agent kj a classical
agent. QP is thus the set of decision strategies where agents
across different elements in the partition P do not share a
resource entangled across partitions. Notice that

J∗L(D) ≥ J∗QP
(D) := inf

Q∈QP

J(Q;D) ≥ J∗Q(D).

In the following proposition, we quickly show that it is
optimal for each classical agent to play deterministically.

Proposition 2.1: Consider a singleton element of the par-
tition P, say, K = {k} ∈ P. For each Q ∈ QP, there exists
a γ∗k : Ξk → Uk such that J(Q;D) ≥ J(Qγ∗k ;D) where
Qγ∗k (u|ξ) = δ(uk, γ

∗
k(ξk))Q(u−k|ξ−k).

Proof: Let Q ∈ QP. The result follows from linearity
of J(Q;D) in Q and structure (9). Fixing Q(u−k|ξ−k), the
cost is linear in Qk. It follows that a deterministic strategy
for the classical player k as required exists.

Let k-Q be the set of all quantum strategies where a subset
of k agents K ⊂ N share a quantum resource, and other
n − k agents are classical. Then k-Q =

⋃
PQP where the

union is over all partitions P with n− k singleton elements.

III. DECENTRALIZED ESTIMATION WITH INDEPENDENT
OBSERVATIONS

Consider a team of n agents where the agents ought
to collectively produce an estimate of a state ξW that is
partially observed by each of them. The cost of the problem
is given by the following general expression that penalizes
an incorrect estimate depending upon ξW

`(u, ξW ) := −l(ξW )δ(ξW , f(u)); l(ξW ) ≥ 0. (10)

where f : U → ΞW and l : ΞW → R. We assume that Ui ≡
Uj for all i, j and that f admits a permutation symmetry with
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respect to the agents so that if the tuple u′ is a permutation of
u, then f(u′) = f(u). It follows that `(u′, ξW ) = `(u, ξW ).
We also assume that irrespective of other agents’ actions,
each agent has a complete sway on their collective estimate
so that range(f(·, u−i)) = ΞW for all u−i ∈ U−i. In this
article, we work with Ui = ΞW = {0, 1}. It is easy to show
that it is sufficient to consider f(u) =

⊕
i ui upto relabelling

of agents’ actions. Each agent i records its observations ξi of
ξW through independent binary symmetric channels so that
the following hold for their joint prior:

P(ξi|ξW ) =

{
λi ξi = ξW

(1− λi) ξi 6= ξW
,

P(ξ, ξW ) = P(ξW )
∏
i∈N

P(ξi|ξW ), (11)

where 1/2 ≤ λi ≤ 1 for each i ∈ N . Without loss of
generality, we assume λ1 ≥ λ2 ≥ . . . ≥ λn so that the agent
1 is the most ‘well-informed’ agent. We now work with the
instance D = (N ,P,U ,Ξ × ΞW , `) with elements of the
tuple as described above.

A. Optimal strategies for classical agents.

The following lemma is a key ingredient of the rest of our
analysis. We find that over all no-signalling strategies it is
optimal for every classical agent except i = 1 to play the
constant, deterministic strategy: γi(ξi) ≡ 0.

Lemma 3.1: Let j ∈ N be a classical agent and consider
a joint strategy Q(u|ξ) = δ(uj , γj(ξj))Q−j(u−j |ξ−j) where
γj is a deterministic non-constant strategy,i.e., γj(0) 6=
γj(1). Then the cost of Q is bounded below as follows:
J(Q;D) ≥ −λj

∑
l(ξW )P(ξW ).

Proof: Denote Q−j(u−j |ξ−j)P(ξ−j |ξW ) =:
R(u−j , ξ−j |ξW ). Clearly,

∑
u−j,ξ−j

R(u−j , ξ−j |ξW ) = 1.
Now notice that

J(Q;D) =∑
ξW ,ξ,u

P(ξW )`(u, ξW )P(ξj |ξW )δ(uj , γj(ξj))R(u−j , ξ−j |ξW ).

Now summing over ξj and using P(ξj = ξW |ξW ) = λj gives

J(Q;D)

=
∑

ξW ,u,ξ−j

P(ξW )(λjδ(uj , γj(ξW ))`(u, ξW )

+(1− λj)δ(uj , γj(ξW ))`(u, ξW )
)
R(u−j , ξ−j |ξW )

=
∑

ξW ,u−j ,ξ−j

P(ξW )(λj`(γj(ξW ), u−j , ξW )

+(1− λj)`(γj(ξW ), u−j , ξW )
)
R(u−j , ξ−j |ξW )

where we have used the definition of δ(·, ·) to sum over uj .
Now observe that

min
γj

λj`(γj(ξW ), u−j , ξW )+(1−λj)`(γj(ξW ), u−j , ξW )

= −λj l(ξW ) ∀u−j

since `(u, ξW ) ∈ {0,−l(ξW )}, γ(ξW ) 6= γ(ξW ) and
`(uj , u−j , ξW ) 6= `(uj , u−j , ξW ). Hence,

J(Q;D) ≥ −
∑

ξW ,u,ξ−j

P(ξW )R(u−j , ξ−j , ξW )λj l(ξW )

= −λj
∑
ξW

l(ξW )P(ξW ).

This completes the proof.
The first corollary of this lemma provides a classical

optimum for our problem.
Proposition 3.2: Let

Ĵ = min(−χ(0)P(0),−λ1

∑
ξW

P(ξW )χ(ξW ),−χ(1)P(1)),

(12)
Then an optimal classical strategy for D is given by:

γ∗i (ξi) ≡ 0 ∀ i 6= 1;

γ∗1(ξ1) =


0 if Ĵ = −P(0)χ(0)

1 if Ĵ = −P(1)χ(1)

ξ1 if Ĵ = −λ1

∑
ξW

P(ξW )χ(ξW ).

(13)

Moreover J∗L(D) = Ĵ .
Proof: To begin, one can verify that the specified

strategy γ∗ gives a cost exactly equal to Ĵ . Let Q be a
deterministic strategy Q(u|ξ) =

∏
i∈N δ(ui, γi(ξi)) where

γi : Ξi → Ui for each i. From Lemma 3.1, we know that for
any j, if γj(0) 6= γj(1) then

J(Q;D) ≥ −λj
∑
ξW

l(ξW )P(ξW )

≥ −λ1

∑
ξW

l(ξW )P(ξW ).

≥ Ĵ . On the other hand, if γj(0) = γj(1) for all j, then
J(Q;D) ∈ {−l(0)P(0),−l(1)P(1)}, thus J(Q;D) ≥ Ĵ .
Thus, the cost of all deterministic strategies is bounded below
by Ĵ , which is achieved by γ∗.

The following proposition eases our subsequent analy-
sis when dealing with optimality in quantum settings. We
quickly state and prove it.

Proposition 3.3: Consider a partition P of N with {j}
as its singleton element and suppose that J∗QP

(D) <
J∗L(D). Then for each Q ∈ QP of the form Q(u|ξ) =
δ(uj , γj(ξj))Q(u−j |ξ−j) that obeys J(Q;D) < J∗L(D),
there is a Q′ ∈ QP of the form Q′(u|ξ) =
δ(uj , 0)Q′(u−j |ξ−j) such that J(Q′;D) ≤ J(Q;D).

Proof: Since J(Q;D) < J∗L(D), from Proposition
3.2 we also have J(Q;D) < −λ1

∑
P(ξW )l(ξW ) ≤

−λj
∑

P(ξW )l(ξW ) (recall λj ≤ λ1 for all j). We can
conclude from Lemma 3.1 that γj(0) = γj(1).

If γj ≡ 0, then we are done. Otherwise if γj(0) = 1, pick a
K ∈ P such that |K| > 1. Then Q decomposes as Q(u|ξ) =
δ(uj , 1)Q−K∪{j}(u−K∪{j}|ξ−K∪{j})QK(uK |ξK) where
for some state ρK ∈

⊗
r∈K Hr and projectors

{P rur
(ξr)}r,ur,ξr ,

QK(uK |ξK) = Tr

(
ρK
⊗
r

P rur
(ξr)

)
.
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Now, pick a k ∈ K and define P k′uk
(ξk) =

P kuk
(ξk) for all uk, ξk ∈ {0, 1} (recall uk is the

negation of uk). Further define Q′K(uK |ξK) :=
Tr(ρKP

k′
uk

(ξk)
⊗

r 6=k P
r
ur

(ξr)), and Q′(u|ξ) :=
δ(uj , 0)Q−K∪{j}(u−K∪{j}|ξ−K∪{j})Q′K(uK |ξK).

It follows that `(1, uk, u−{j,k})Q(uj = 1, uk, u−{j,k}|ξ)
= `(0, uk, u−{j,k})Q

′(uj = 0, uk, u−{j,k}|ξ) and
Q(uj = 1, uk, u−{j,k}|ξ) = Q′(uj = 1, uk, u−{j,k}|ξ) = 0.
for all uk ∈ {0, 1}.
Hence

∑
uj ,uk

`(u, ξW )δ(uj , 0)Q′−j(u−j |ξ−j) =∑
uj ,uk

`(u, ξW )δ(uj , 1)Q−j(u−j |ξ−j).
It follows that,

J(Q′;D)

=
∑

ξW ,ξ,u−{j,k}

P(ξ, ξW )
∑
uj ,uk

`(u, ξW )δ(uj , 0)Q′−j(u−j |ξ−j)

=
∑

ξW ,ξ,u−{j,k}

P(ξ, ξW )
∑
uj ,uk

`(u, ξW )δ(uj , 1)Q−j(u−j |ξ−j)

= J(Q;D).

This completes the proof.

IV. NON-CLASSICAL RESOURCES AND AGENT
INFORMATION.

A. Allocation of a k-partite non-classical resource.

We now come to main theoretical contributions of the
paper, namely the optimal allocation of quantum resources.
Suppose that the agents have the assistance of a k-partite
quantum resource. Thus their strategy is chosen from the
set k-Q :=

⋃
PQP where the union is over all partitions

P with n − k classical agents and a k-partite quantum
resource shared amongst the remaining k agents. Denote,
J∗k-Q(D) := infQ∈k-Q J(Q;D).

We show that an optimal allocation of this resource
corresponds to the k agents with most information (agents
1 to k) sharing the resource and the other n − k agents
playing classically. In other words if one has access to a k-
partite quantum resource it can be best exploited by agents
that are most informative. This illustrates a simple role of the
agents’ information in the allocation problem for the assumed
correlation structure of observations (11). Although our result
is limited to a particular setting, we find it nontrivial that the
value of this resource in a team is largest when given to best
informed.

The following lemma is a precursor to the proposition that
follows. It shows that the cost improves when a less informed
agent with access to a shared quantum resource is replaced
by a more informed agent.

Lemma 4.1: Consider a partition P where a set K of k
agents share a k-partite quantum resource and all other agents
are classical. Consider an arbitrary strategy Q ∈ QP and let
agent j ∈ K If i /∈ K is such that λi ≥ λj , then define
K ′ = (K \ {j}) ∪ {i}. Let P′ be another partition such that
such that the k agents in K ′ share the quantum resource. We
claim that there is a Q′′ ∈ conv(QP′) such that J(Q;D) ≥
J(Q′′;D) and hence it holds that J∗QP′

(D) ≤ J∗QP
(D).

Proof: Let Q be as in the statement of the lemma. First
consider the case where J(Q;D) = J∗L(D). It suffices to
take Q′′ as the optimal classical strategy specified by Propo-
sition 3.2. Clearly Q′′ ∈ QP′ and J(Q;D) ≥ J(Q′′;D) by
hypothesis. This shows the existence of the Q′′ ∈ QP′ as
required by the statement of the lemma.

Now consider J(Q;D) < J∗L(D). Following
Proposition 3.3 Q is in the form Q(u|ξ) =
δ(u−K , 0) Tr

(
ρK
⊗

r∈K P
r
ur

(ξr)
)

for some state
ρK ∈

⊗
rHr and respective projectors {P rur

(ξr)}r,ur,ξr .
This assumption is without loss of generality because if Q
is not in this form, we can leverage Proposition 3.3 and find
another Qo ∈ QP in the desired form.

We define two strategies Q̂ and Q̃ ∈ conv(QP′) using Q
as follows. In defining Q̂, we simply exchange the agents i
and j in Q. So

Q̂(u|ξ) = δ(u−K′ , 0) Tr

(
ρ̂K′

⊗
r∈K′

P̂ rur
(ξr)

)

where ρ̂K′ = ρK ∈
⊗

r∈K′ Ĥr with Ĥr ≡ Hr, P̂ rur
(ξr) ≡

P rur
(ξr) for all r ∈ K ′ \ {i} and Ĥi = Hj , P̂ iui

(ξi) =

P juj
(ξj). By construction, Q̂ ∈ QP′ .

In defining Q̃, we exchange the agents i
and j with a small modification. So Q̃(u|ξ) =

δ(u−K′ , 0) Tr
(
ρ̃K′

⊗
r∈K′ P̃

r
ur

(ξr)
)

where ρ̃K′ = ρK ∈⊗
r∈K′ H̃r with H̃r ≡ Hr, P̃ rur

(ξr) ≡ P rur
(ξr) for all

r ∈ K ′ \ {i} and H̃i = Hj , P̃ iui
(ξi) = P juj

(ξj). Again, by
construction, Q̃ ∈ QP′ . Now we expand the costs of each
of these two (We denote the tuple wi = ξi, ui for compact
presentation). Summing J(Q̂;D) over ξi,

J(Q̂;D) =
∑

ξW ,w−i,ui

P(ξW )`(u, ξW )(λiQ̂(u|ξW , ξ−i)

+ (1− λi)Q̂(u|ξW , ξ−i)) (14)

Notice by construction that Q̂(u|ξi, ξ−i) = Q̃(u|ξi, ξ−i)
holds. Hence, summing J(Q̃;D) over ξi and substituting Q̂
in place of Q̃:

J(Q̃;D) =
∑

ξW ,w−i,ui

P(ξW )`(u, ξW )[λiQ̃(u|ξW , ξ−i)

+ (1− λi)Q̃(u|ξW , ξ−i)]

=
∑

ξW ,w−i,ui

P(ξW )`(u, ξW )[λiQ̂(u|ξW , ξ−i)

+ (1− λi)Q̂(u|ξW , ξ−i)] (15)

Define pij := (λi+λj−1)/(2λi−1). Since 1/2 ≤ λj ≤ λi,
it holds that 0 ≤ pij ≤ 1. Also then, 1 − pij = (2λj −
1)/(2λi − 1) ∈ [0, 1]. It is easy to verify

pijλi + (1− pij)(1− λi) = λj

pij(1− λi) + (1− pij)(λi) = 1− λj (16)

Now, define Q′(u|ξ) = pijQ̂(u|ξ) + (1 − pij)Q̃(u|ξ). By
definition, Q′ ∈ convQP′ . Now we have from construction
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of Q̂,

Q̂(ui = a, uj = b, u−{i,j}|ξi = x, ξj = y, ξ−{i,j})

= δ(uj = a, u{−K,j}, 0) Tr(ρKP
i
b (y)

⊗
r∈K\i

P rur
(ξr))

= Q(ui = b, uj = a, u−{i,j}|ξi = y, ξj = x, ξ−{i,j}) (17)

and permutation symmetry of the cost with respect to the
agents,

`(ui = a, uj = b, u−{i,j}, ξW )

= `(uj = a, ui = b, u−{i,j}, ξW ). (18)

Now, from equations (14), (15) and (16), we have
J(Q′;D) =∑

ξW ,ξ−i,ui

P(ξW )`(u, ξW )[λjQ(u|ξW , ξ−i)

+ (1− λj)Q(u|ξW , ξ−i)]

Exchanging i and j in (19), it holds from equations (17) and
(18) that J(Q′;D)

=
∑

ξW ,ξ−j ,uj

P(ξW )`(u, ξW )[λjQ̂(u|ξW , ξ−j)

+ (1− λj)Q̂(u|ξW , ξ−j)] = J(Q;D). (19)

Since Q′ ∈ convQP′ , it holds because of linearity of the cost
in Q′ that ∃Q′′ ∈ QP′ such that J(Q′′;D) ≤ J(Q;D). This
completes the proof.

We now show our main quantum resource allocation result.
Proposition 4.2 (Resource Allocation): Let P∗ =

{{1, · · · , k}, {k + 1}, · · · , {n}} be a partition on N where
K∗ := {1, · · · , k} is the set of agents that share a k-partite
quantum resource. Then J∗QP∗

(D) = J∗k-Q(D).
Proof: Let P be a partition with n−k singleton elements

and K ∈ P such that it contains the other k elements of N .
Indeed then |K| = k. Hence QP ∈ k-Q. Now notice that
since |K∗| = |K| = k and K∗ is the set of k minimum
elements in N , we construct a bijection g : K → K∗ such
that g(i) ≤ i , i.e. λi ≤ λg(i) for all i ∈ K, and g(i) = i
for all i ∈ K ∩K∗. Denote κ := K \ (K∗ ∩K) and κ∗ :=
K∗ \ (K∗ ∩K). Let g(i) = i for all i ∈ K∗ ∩K. Order κ
and κ∗ in ascending order such that κ := {i(1), · · · , i(m)}
and κ∗ := {j(1), · · · , j(m)} and let g(i(r)) = j(r) for all
r ∈ {1, · · · ,m}. This defines the desired bijection g.

Define K0 = K, and Kr = (Kr−1 \ {i(r)}) ∪ {g(i(r))}
for r ≤ m. Clearly, Km = K∗. Also define P(r) such that
QP(r) ∈ k-Q with Kr ∈ P(r). Now apply Lemma 4.1 by
assigning the following values to variables in its statement
: i = g(i(r)), j = g(i(r)), P = P(r−1) and P∗ = P(r).
The lemma asserts that J∗Q

P(r)
(D) ≤ J∗QP(r−1)(D) holds

for each r ∈ 1, · · · ,m. Inductively, it holds that J∗QP′
=

J∗Q
P(m)

(D) ≤ J∗QP
(D). Since P was arbitrary, the inequality

holds for all partitions with n−k elements and the proposed
is established.
Thus, the maximum advantage possible over all quantum
resources shared amongst arbitrary subsets of k agents is

availed when the k most informed agents share these re-
sources. Although the above result talks of the lowest cost
over all resources, from the proof of Lemma 4.1 it can be
seen that the same can be claimed for any fixed resource.

V. CONCLUDING REMARKS

We initiated a study on allocation of limited quantum
resources amongst a team of n agents constrained by a
static information structure. We showed that when agents
are informed of a binary source through independent binary
symmetric channels, and faced with homogeneous estimation
error, any k-partite quantum resource must be allocated to
the top k most informed players, i.e., the players with the
channels with top k least noisy channels. We also showed
cut-offs, that is ranges on the reliabilities of the channels
beyond which the allocation of the resource produces no
advantage over classical strategies. Extending this result to
more general costs is a problem for the future.
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