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Abstract— Control systems are critical in ensuring the safety
of cyber-physical systems (CPS) across domains like airplanes
and missiles. Safeguarding CPS necessitates runtime method-
ologies that continuously monitor safety-critical conditions and
respond in a verifiably safe manner. Many real-time safety
approaches require predicting the future behavior of systems.
However, achieving this requires accurate models that can
operate in real time. Inspired by DeepONets, we propose a
novel approach that combines B-splines’ inductive bias with
data-driven neural networks (NNs). Our hybrid B-spline neural
operator serves as a universal approximator, validated on a 6-
DOF quadrotor.

I. INTRODUCTION

Control systems are crucial for ensuring the safety of
cyber-physical systems (CPS) like airplanes and missiles [1].
Because dynamic interactions with the environment make it
impossible to foresee all hazards, runtime approaches[2] are
required to continuously monitor safety conditions and react
safely. Many runtime approaches require accurate models of
system behavior in real time. This is exceedingly challeng-
ing for complex systems. The notable success of machine
learning (ML) techniques has drawn researchers’ attention
towards scientific ML (SciML) methods, which can learn
from governing equations and data [3][4] and provide real-
time solutions [5][6].

We are inspired by DeepONets [4], a NN architecture that
can be used to learn generalized non-linear operators. For an
autonomous system a NN could learn the operator that maps
initial conditions (IC) to unique trajectory that describes the
autonomous systems’ path to a desired end state.

DeepONets learn basis functions for approximated solu-
tions. While advantageous for complex systems, this ap-
proach introduces uncertainty due to stochastic models in
both the trunk net (where basis functions are learned) and
the branch net (where coefficients are learned). In contrast,
established methods like splines provide a well-researched,
continuous basis with an inductive bias. Our study combines
neural operator theory with B-splines as basis functions [7].

The key parameters that need to be learned when using
B-splines to approximate continuous functions are control
points. We train a NN to learn the mapping from a set of
differential equations’ initial conditions (ICs) to the control
points of a B-spline approximation. The general approach
of using B-spline functions to approximate the solutions of
PDEs in the field of Finite Element Methods (FEMs) is
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referred to isogeometric analysis (IGA). A similar solution
has been proposed in [8] where a NN generates the B-spline
coefficients for a parameterized family of vector fields to
reduce computational costs.

This paper’s contribution is an analysis of this approach
within the framework of deep neural operators, demonstrat-
ing its property as a universal approximator, and providing
bounds on the approximation error. These results are devel-
oped for a general nonlinear autonomous system, and the ap-
proach is tested on a controlled 6-degree-of-freedom (DOF)
quadrotor with a state space of 12 dimensions. Additionally, a
comparison between different network architectures, namely
fully connected neural networks (FCNN) and recurrent neu-
ral networks (RNN), is provided. We also highlight the
benefits of neural operators in reducing computational time
compared to classical methods for solving ODEs.

Proving uncertainty bounds is a challenge ML-based ap-
proaches. The method proposed opens new opportunities to
explore uncertainty quantification, which is fundamental in
all aspects of CPSs, including safety. We distinguish our
research focus from research that focuses on incorporat-
ing physics [6] for improved predictive performance and
other physics-based guarantees. The choice of B-splines is
motivated by several factors: B-splines are fully defined
by a finite number of control points, which can be used
for safety inference due to the convex-hull property (See
section II.D) [9]. In addition, splines are easy to extend
to higher dimensions, enabling a simple description of a
high-order smooth function to be derived from the NN1.
Finally, the relationship between B-splines and Gaussian
Process will facilitate inclusion of errors and uncertainty
associated with the underlying method of interpolation [10]
providing an avenue for future work to explore and refine
these connections.

The paper is organized as follows: Section II presents
the preliminaries needed to formulate the problem statement
(Section II.E). Section III presents the main theoretical re-
sults. Section IV details the experimental results, and Section
V offers the conclusions..

II. PRELIMINARIES

This section is divided in the following parts: nonlinear
systems [11], neural networks [12], the universal approxima-
tion theorem for nonlinear operators [13], B-splines functions
[9] and finally the problem statement. For further details
on the discussed topics, please refer to the aforementioned
references.

1This may enable us to more easily evaluate the dynamics of the resulting
solutions and compare to physics-based constraints
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A. Nonlinear Systems

Consider a nonlinear system expressed in the state-space
form:

ẋ = f(t, x) (1)

where x ∈ Rn is the state vector with n components, and
the function f : R×Rn → Rn is Lipschitz on a ball around
the IC x0 ∈ Br = {x ∈ Rn : ∥x− x0∥ ≤ r} and for the time
interval [t0, t1]: ∥f(x)−f(y)∥ ≤ L∥x−y∥ for all x, y ∈ Br.
∥·∥ is the Euclidean norm. From the local Cauchy’s theorem,
there exists a unique solution on the time interval [t0, t0+ δ]
with a positive δ ∈ R. According to Peano’s theorem, the
solution can be written as:

x(t) = x0 +

∫ t

0

f(s, x(s))ds (2)

which is a continuous function x : R → Rn. Let us consider
the space of continuous functions over the time interval
[a, b], defined as X = C([a, b];Rn), which is a Banach
space with norm ∥x∥C = maxt∈[0,δ]∥x(t)∥. Considering
S = {x ∈ X : ∥x− x0∥C ≤ r} it is possible to show that
the right-hand side of (2) is a mapping P : S → S, and
moreover, this mapping is a contraction:

x(t) = P(x)(t) (3)

where the function x(t) is a fixed point.
We assume that the solution can be extended over the

time interval [0, T ] and the Lipschitz condition holds for a
compact set W ⊂ Rn. If the solution belongs to W for any
t > 0 then T can be arbitrarily large. Equation (1) is the
general representation of a non-autonomous system, where
the explicit dependence on time t can be due to an external
input u ∈ Rp:

ẋ = f(x, u)

If the input signal is a state feedback control law of the
form u = γ(x), where γ : Rn → Rp, the resulting closed-
loop system can be represented as an autonomous system of
the form

ẋ = f(x) (4)

Without loss of generality, we assume that x = 0 is an
equilibrium point (i.e., f(0) = 0) for (4), hence the origin is
contained in W .

B. Neural Networks

The fundamental element of a neural network is the
standard neuron, which takes n inputs {u1, u2, . . . , un},
where ui ∈ R, and transforms them into a scalar value y ∈ R.
The activation signal for the i-th neuron is computed as:

s = u1θi,1 + u2θi,2 + · · ·+ unθi,n + θi,0 (5)

where θi,j ∈ R with j = 1, . . . , n are the weights that need to
be estimated, and θi,0 is called the bias. The activation signal
(5) serves as the input to the activation function σ : R → R,
which is typically nonlinear (e.g., sigmoidal, ReLU, etc.).
Assuming we have a single-layer network with N parallel

neurons that use the same activation function, the output can
be expressed as:

y =

N∑
i=1

wiσ

 n∑
j=1

θi,juj + θi,0


=

N∑
i=1

wiσ
(
θTi u+ θi,0

) (6)

where θi = [θi,1, . . . , θi,n]
T , u = [u1, . . . , un]

T . If the output
layer has a dimension greater than one, (6) describes the m-
th component of the output vector:

ym =

N∑
i=1

wi,mσ
(
θi,m

Tu+ θmi,0

)
(7)

In the case of multi-layer networks known as feedforward
neural networks (FNNs), the output of one layer becomes
the input of the next one:

y[l+1]
m =

N∑
i=1

wi,mσ

(
θ
[l+1]
i,m

T
y[l] + θm

[l+1]

i,0

)
(8)

where [l + 1] indicates the (l + 1)-th layer, and y[l] is the
corresponding input vector, which is the output of the previ-
ous layer. Equations (7) and (8) illustrate how a single-layer
network with scalar output can be extended to handle vector
outputs and multi-layer FNNs. Consequently, the theory of
universal approximation of NNs primarily focuses on the
case described in (6). In the following section, we provide
basic definitions and results on the universal approximation
of nonlinear operators with NNs.

C. The Universal Approximation Theorem for Nonlinear
Operators

By considering a specific class of activation functions,
Tauber-Wiener (TW) functions, we present three main the-
orems from [13]. Theorems 1 and 2 deal with the approxi-
mation of functions and functionals with NNs, respectively.
Finally, Theorem 3 combines the two previous results to
approximate nonlinear continuous operators.

Definition 1: A function σ : R → R is called a
Tauber-Wiener (TW) function if all linear combinations∑N

i=1 ciσ(λiz + θi), λi, θi, ci ∈ R, i = 1, 2, ..., N are dense
in every C([a, b];R).

Let g : K → R, where K ⊂ R is a compact set, U ⊂
C(K;R) is a compact set, and σ ∈ (TW ) is an activation
function.

Theorem 1: For any ϵ > 0, there exists a positive integer
N , θi0 ∈ R, θi ∈ Rn, i = 1, ..., N independent of g ∈
C(K;R), and constants ci(g), i = 1, ..., N depending on g
such that ∣∣∣∣∣g(z)−

N∑
i=1

ci(g)σ(θ
T
i z + θi0)

∣∣∣∣∣ < ϵ (9)

holds for all z ∈ K and g ∈ U . Moreover, each ci(g) is a
linear continuous functional defined on U .
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The last statement is due to the fact that in the proof, cj(g)
represents the Fourier coefficients of g. If g : R → R and
K = [a, b], it can be associated with a specific time interval.
Note that Rn with n ≥ 1 ∈ N is a Banach space.

Now, let X be a Banach space, K ⊆ X , V a compact set
in C(K;R), and g a continuous functional defined on V .

Theorem 2: For any ϵ > 0, there exist a positive integer
N , m points z1, ..., zm ∈ K, and real constants cj , ζj0 , ξi,j ,
i = 1, ..., N , j = 1, ...,m such that∣∣∣∣∣∣g(u)−

N∑
i=1

ciσ

 m∑
j=1

ξi,ju(zj) + ζj0

∣∣∣∣∣∣ < ϵ (10)

holds for all u ∈ V .
Now, let K1 ⊆ X , K2 ⊆ Rn be two compact sets, V

a compact set in C(K1;R), and G a nonlinear continuous
operator mapping V into C(K2;R).

Theorem 3: For any ϵ > 0, there exist positive integers
M , N , m, constants cki , ζjk0 , ξki,j ∈ R, points θk ∈ Rn,
zj ∈ K1, i = 1, ...,M , k = 1, ..., N , j = 1, ...,m such that∣∣∣∣∣∣G(u)(y)−

N∑
k=1

M∑
i=1

cki σ

 m∑
j=1

ξki,ju(zj) + ζjk0


·σ(θTk y + θk0 )

∣∣∣∣∣ < ϵ

(11)

holds for all u ∈ V and y ∈ K2.

D. B-splines

B-splines are piece-wise polynomial functions derived
from slight adjustments of Bezier curves, aimed at obtaining
polynomial curves that tie together smoothly. Here, we are
interested not in representing geometric curves, but functions
as in [9]. Therefore, we consider a parameter t ∈ K =
[a, b] ⊆ R, and (ci)

ℓ
i=1 ∈ R as a set of ℓ control points for

a spline curve s(t) of degree d, with non-decreasing knots
(t̂i)

ℓ+d+1
i=1 .

s(t) =

ℓ∑
i=1

ciBi,d(t) for t ∈ K ⊆ R, (12)

where Bi,d(t), d > 1, is given by the Cox-de Boor
recursion formula [7]:

Bi,d(t) =
t− t̂i

t̂i+d − t̂i
Bi,d−1(t) +

t̂i+d+1 − t

t̂i+d+1 − t̂i+1

Bi+1,d−1(t),

(13)
and

Bi,0(t) =

{
1, t̂i ≤ t < t̂i+1,

0, otherwise.
(14)

Property 1: Any value assumed by s(t), ∀t ∈ K, lies in
the convex hull of its ℓ control points (ci)

ℓ
i=1.

Property 2: Suppose that the number t̂i+1 occurs m times
among the knots (t̂j)

m+d
j=i−d with m an integer bounded by

1 ≤ m ≤ d + 1, e.g., t̂i < t̂i+1 = · · · = t̂i+m < t̂i+m+1,

then the spline function s(t) has a continuous derivative up
to order d−m at knot t̂i+1.

This property implies that the smoothness of the spline can
be adjusted using multiple knot points. A common choice is
to set m = d+1 multiple knot points for the initial and final
knot points. This way, Equation (12) assumes the first and
final control points as initial and final values.

Property 3: the B-spline basis functions are continuous in
t, Bi,d(t) ∈ C(K;R), and bounded [14].

By defining the vectors

c ≜ [c1 c2 . . . cℓ]
T

Bd(t) ≜ [B1,d(t)B2,d(t) . . . Bℓ,d(t)]
(15)

(12) can be rewritten as s(t) = Bd(t)c.
B-splines are generally used to represent curves. However,

our problem is a function of time. This can be conceptualized
as a 2D curve. Therefore, each control point should be a 2D
point. To ensure that s(t) is indeed a function of time, we
associate the parameter t with the time variable that varies
within the interval [a, b]. We enforce that the position of each
control point along the axis representing time t remains fixed
by partitioning the interval [a, b] into ℓ− 1 equispaced sub-
intervals. By doing so, we obtain the formulation presented
in (15), where each control point is associated with only a
scalar coefficient.

In this paper we are interested in the B-spline represen-
tation for the approximation of the solution of (4) where
x ∈ Rn consists of a set of n scalar B-splines, one for each
component of the state vector. In general, this B-spline is
represented as

s(t) = Bd(t)c (16)

where s : R → Rn, and

Bd(t) ≜ diag[Bd(t)] (17)

c ≜
[
cT1 , · · · , cTn

]T
(18)

ci ≜ [ci1, · · · , ciℓ]T . (19)

The index i indicates the i-th components of the multidimen-
sional B-spline s.

E. Problem Statement

Our focus is on providing future state estimation of non-
linear closed-loop systems of the form (4) by approximating
the operator P(x)(t) (3) via a deep operator network that
combines deep NNs and B-spline functions. By momentarily
assuming that (4) is scalar, our goal is to approximate
P(x)(t) as follows:

x(t) = P(x)(t) ≈ P̂(x)(t) =

ℓ∑
i=1

ci(x0)Bi,d(t) (20)

for t ∈ [0, T ], where the coefficients ci(x0) represent
the B-spline’s control points along the time interval [0, T ],
determining the shape of x(t) depending on the IC x0.
The ci(x0) is a functional as depending of the IC x0

which is approximated by a deep NN. Building upon the
theoretical framework established in [13], we extend the

3613



theory to encompass (20). Subsequently, we delve into the
multidimensional scenario, where x ∈ Rn, particularly when
addressing error bounds.

III. B-SPLINE-BASED DEEP NEURAL OPERATOR

Let us consider the same conditions of Theorem 3, mod-
ified for the problem of finding an approximating operator
(20) for the scalar case. We consider X = C([0, T ];R) as a
Banach space with the norm ∥x∥C = maxt∈[0,T ] ∥x(t)∥. Let
S ⊆ X be a compact set, and the operator P(x)(t) maps an
element of S into itself. The scalar IC x0 = x(0) ∈ S.

Theorem 4: For any ϵ > 0, there exist positive integers
M , ℓ, constants cki , ζjk0 , ξki ∈ R, functions Bk,d(t) ∈
C([0, T ],R), and x0 ∈ S such that∣∣∣∣∣P(x)(t)−

ℓ∑
k=1

M∑
i=1

cki σ
(
ξki x0 + ξik0

)
·Bk,d(t)

∣∣∣∣∣ ≤ ϵ (21)

holds for all x0 ∈ S and t ∈ K2.
Proof: To prove this theorem, we adopt a high-

level approach similar to that used in [4], omitting a de-
tailed proof for brevity. In this case, the branch network∑M

i=1 c
k
i σ

(
ξki x0 + ξik0

)
is expressed in the same form as

in Theorem 3, except the trunk network is replaced by
the B-spline basis functions Bk,d(t). Recalling the proof of
Theorem 3 (Theorem 5 in [13]), we need to show that we
can write ∣∣∣∣∣P(x)(t)−

ℓ∑
k=1

ck(P(x))Bk,d(t)

∣∣∣∣∣ ≤ ϵ/2 (22)

Theorem 1 cannot be used since Bk,d(t) is a polynomial
function. Instead, we use the Weierstrass approximation
theorem [15]. This theorem is proven by using a linear
combination of Bernstein polynomials used as basis func-
tions. This linear combination of polynomials is also used
to generate Bézier curves which are a particular subtype
of B-spline functions [16]. In particular, it is possible to
transform a Bézier curve into a B-spline and vice-versa [14],
therefore we can switch from a representation with B-spline
basis function Bk,d(t) to Bernstein polynomials and vice-
versa. This implies that we can use B-splines as universal
approximators of functions, and for this reason, (22) holds.

For the case of x ∈ Rn, it is possible to redefine Theorem
4 as Theorem 2 in [4]. Specifically, we need to define one
B-spline for each component of the state, and the input to
the network is a vector x0 ∈ Rn, where for each neuron i,
we have σ

(∑n
j=1 ξ

k
i,jx

j
0 + ζik0

)
.

A. IC and control points mapping

Let us assume that for a specific IC x0 ∈ W ⊆ R we
compute the particular solution x(t) for t ∈ [0, T ]. We can
take N samples of the solution x(t) by properly choosing a
sampling step h and we can form a vector of measurements
ym = [x(0), x(h), x(2h), ..., x((N − 1)h)]T where in this

case the values of x(h) are scalar values. From (15), we can
write

ym = Cmcx0 ; Cm =


Bd(0)
Bd(h)

...
Bd((N − 1)h)

 ∈ RN×ℓ.

(23)
where ℓ is the number of control points. The vector of
control points defined in (15) is renamed cx0 to indicate
the solution to a specific trajectory x(t) generated from x0.
From the B-spline properties, the rank of Cm is equal to
ℓ. It is possible to find the vector of control points cx0

by
using the pseudo inverse cx0

= (CT
mCm)−1CT

mym which
minimizes ∥ym −Cmcx0∥2 (see [17]). As a consequence of
the Weierstrass approximation theorem, it follows that by
appropriately choosing values for ℓ and h, the error can be
reduced to a desired level.

|x(t)−Bd(t)cx0
| < ϵ.

For any given IC x0 ∈ W we find a unique sequence of
control points. In fact, the first control point of the sequence
corresponds with the IC itself. This means that there is a
mapping M that associates to each IC x0 ∈ W a sequence
of ℓ control points.

From Theorem 4 it follows that

M(x0) ≈ M̂(x0) =


∑M

i=1 c
1
iσ(ξ

1
i x0 + ζi10 )

...∑M
i=1 c

ℓ
iσ(ξ

ℓ
ix0 + ζiℓ0 )

 (24)

where the NN is used to approximate the mapping M. In
this way, thanks to the B-spline representation, an infinite
dimensional problem has been reduced to a finite one. The
use of B-splines guarantees that the approximation of the
solution of x(t) is a continuous function defined for any
t ∈ [0, T ]. In the next subsection we define the problem for
the multidimensional case x ∈ Rn, formalize the existence
of the mapping M, and provide some error bounds.

B. Multidimensional Solution and Error Bounds

For the general problem where P̂(x) approximates the
solution of n dimensional ODEs such as (4), (20) can be
written as

P̂(x)(t) = Bd(t)M̂(x0) (25)

where Bd(t) ∈ Rn×(n·ℓ) accordingly with (16), and the
network M̂ : Rn → Rn·ℓ has n inputs and n · ℓ outputs.

Lemma 1: For the autonomous system described by (4),
where x0 denotes the IC in W ⊂ Rn, and x(t) denotes a
solution for the time interval [0, T ], with h > 0 representing
a sampling time and ℓ > 0 indicating the number of B-spline
control points for each component of the state x, there exists
a mapping M : Rn → Rn·ℓ and a positive scalar ϵ such that

∥x(t)−Bd(t)M(x0)∥ ≤ ϵ (26)

where, Bd(t) ∈ Rn×(n·ℓ).
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Proof: For each i-th component of a solution x(t)
obtained for a specific IC x0 ∈ W , we can formulate the
least squares problem (23), where ym,i = Cmci,x0 . Here,
we define:

y
m

=
[
yTm,1, · · · , yTm,n

]
, Cm = diag[Cm]

and cx0
=

[
cT1,x0

, · · · , cTn,x0

]T
. This problem assumes the

least squares form y
m

= Cmcx0
, which can be solved

using the pseudo-inverse. As Cm is a block diagonal matrix
where each block has ℓ independent columns, a unique
sequence of control points is generated by the least squares.
Consequently, there exists a mapping M that maps any x0

into the B-spline control points domain, ensuring (26) holds.

Similarly to the approach in [18], where a FNN is employed
to approximate the one-step evolution function, we utilize a
generalization of Theorem 1 in [19] to establish the following
proposition:

Proposition 1: Considering the conditions of Lemma 1
and a mapping M satisfying (26), there exists an FNN M̂
such that

∥M(·)− M̂(·)∥ ≤ γ (27)

for any x0 ∈ W .
We define x̂(t) ≜ Bd(t)M̂(x0) and x̃(t) ≜ Bd(t)M(x0),

where M and M̂ retain their meanings from Proposition 1.
Lemma 2: Under the conditions of Lemma 1, for the

problem of finding P̂(x), there exists a finite M > 0 such
that

∥x(t)− x̂(t)∥ ≤ ϵ+Mγ (28)

for any t ∈ [0, T ], where ϵ and γ are the bounds related to
the least squares and FNN approximation, respectively.

Proof: For any t ∈ [0, T ], we can write

∥x(t)− x̂(t)∥ = ∥x(t)− x̂(t) + x̃(t)− x̃(t)∥
≤ ∥x(t)− x̃(t)∥+ ∥x̃(t)− x̂(t)∥

(29)

From (26) of Lemma 1, we have ∥x(t)− x̃(t)∥ ≤ ϵ, whereas

∥x̃(t)− x̂(t)∥ = ∥Bd(t)(M(x0)− M̂(x0))∥
≤ ∥Bd(t)∥∥M(x0)− M̂(x0)∥ ≤ Mγ

(30)

where γ results from Proposition 1, and M results from the
boundedness of the B-spline basis functions [14].

IV. EXPERIMENTS

We demonstrate the value of this technique through several
experiments with a quadrotor with nonlinear dynamics and
controlled with a linear quadratic regulator (LQR) controller
[20]. The input in every experiment was the 12-dimensional
IC, consisting of the 3-D position, velocity, angular orien-
tation, and angular velocity. The output is a set of control
points for a known sampling interval and time horizon.

We randomly selected ICs within a 12-dimensional ball: 2
meters in each spatial dimension, 2 meters per second in
velocity, π

4 radians in angular dimensions, and 5 radians
per second in angular velocity. These conditions defined
trajectories assuming an equilibrium point at 0⃗ (referred to

as xeq). We calculated control points for each trajectory
using least squares fitting and a 3rd-order B-spline (d =
3). Our training dataset included 5000 ICs. To enhance
rotational equivariance, we rotated randomly generated ICs
by π, −π

2 , −π
4 , −π

6 , π
4 , π

3 , and π
2 radians around the Z-

axis. In our initial experiment, we used 50 control points
with a 2.5-second time horizon. Our network was a simple
fully-connected neural network (FCNN) with 12 layers, each
containing 120 neurons. In order to examine model variance,
training was reinitialized 10 times and training was stopped
after 2 hours or when the loss had reached about 10−5,
which condition was satisfied first. One model out of the
10 attempts did not converge within this loss condition and,
thus, was not used in the subsequent analysis.

A FCNN does not exploit the physical properties of the
system. In our second experiment we combined a gated
recurrent unit (GRU) in combination with a FCNN in a
recurrent neural network (RNN) architecture. Both the GRU
and the subsequent fully connected layers had a width of 120.
The fully connected layers had a depth of 3. This resulted in
a lower validation loss (mean squared error) for fewer than
half as many parameters, as can be seen in Table I.

V. RESULTS

We used the trajectories and control points found using
least squares fitting via singular value decomposition in
training the NNs. In order to evaluate and compare across
experiments, we evaluated against a test set containing 1000
new ICs. In Table I we compare the timing between different
experiments and the ODE Solver We find that the FCNNs
is 5 times faster than least squares fitting and the RNN
is 5 times slower than SciPy ODE solver. The increase
in evaluation time between the FCNN and the RNN is a
consequence of a for-loop required to calculate the entire
trajectory. Notably, the ODE solver used is a python wrapper
around a ODEPACK library whereas the NNs were built us-
ing PyTorch. Therefore, we advise caution when comparing
these evaluation times.

In both cases, the error is correlated with the IC, parame-
terized by the ’radius’ in the 12-D ball of the IC, as seen in
Figure 1. This result is aligned with several factors: 1) Since
xeq is asymptotically stable, the radius of the IC in the unit
ball serves as a measure of the distance the quadrotor is
from it; 2) Our ICs were randomly sampled within the cube
of the radius to balance comprehensive sampling throughout
the volume and sampling at different radii. Consequently, the
training points density decreases with IC radius.

Summary statistics can only provide a partial understand-
ing of prediction accuracy. We chose four specific ICs to
analyze qualitatively by varying the IC in a single dimension.
These are shown in Figure 2. The ICs we considered were
(with all unspecified values set to zero): xy

0 = (0.8m, 1.2m)
- Red (solid and dotted) lines indicate the least-squares
(”ground truth”) trajectories and the pink shading indicates
the range of the respective neural-network approximated
trajectories.; xy

0 = 1.0m,xdy
0 = (0.8 m/s, 1.2m/s) -

Blue lines and shaded regions; xy
0 = −1.0m,xdθ

0 =
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TABLE I: Time comparisons for different methods.

Method T[sec] ℓ # Parameters Mean Final MSE (Loss) # Models Evaluation Time [sec]
ODE solver 2.5 50 - - - 0.0049± 0.0015

FCNN 2.5 50 219360 1.4± 0.2× 10−5 9 0.00097± 0.00023
RNN 2.5 50 78732 2.9± 0.6× 10−6 10 0.028± 0.003

Fig. 1: (top) FCNN and (bottom) RNN root mean squared
error versus IC radius. The error is positively correlated
with distance. The profile histogram (right) shows the overall
error.

(4 rad/s, 6 rad/s) - Green lines and shaded regions; xy
0 =

−1.0m, x
dθy
0 = 5 rad/s, x

θy
0 = π/16 · (3, 5) - Orange lines

and shaded regions; x0 = R/2 where R is the maximum
value in any dimension, except for xz = −R/2. Black lines
and gray shaded regions. In this case, all directions were
varied slightly.

This study examines per-trajectory fit, comparing variation
due to network architecture and training with variation in
ICs. Both NN approximations (shaded regions) and least
squares fits of spline control points (lines) show the impact
of IC variation. However, the shaded regions also account for
model stochasticity. Notably, IC variance dominates, except
in the final case where all dimensions are far from zero.
Additionally, the least squares trajectory consistently falls
within the range found by the NN, although only four of
twelve dimensions are shown.

Fig. 2: (top) FCNN and (bottom) RNN predicted and least-
squares fitted trajectories for sets of IC, varied about a central
value as indicated on the legend. Only four dimensions are
shown to conserve space.
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Fig. 3: ICs are sampled at 85 angles about Z axis from
π/8 to 15π/8. The neural operators (here, FCNN, the RNN
behaves similarly) should display axial symmetry. The root
mean squared trajectory difference vs. IC radius is shown.

We consider rotations of the ICs and the symmetries that
should be present. Figure 3, shows the root mean squared
difference between our original testing dataset and the test
dataset rotated to 85 evenly spaced angles between π/8
and 15π/8 and the resulting trajectory, rotated back. An
ideal equivariant operator has the property RT

θ P(Rθx0) =
RT

θ RθP(x0) = P(x0) and the root mean squared difference,
⟨(RT

θ P(Rθx0)−P(x0))
2⟩1/2 = 0. We find that this deviation

is comparable to the overall error exhibited by the respective
NNs.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a theoretical framework that combines NN
and B-splines as universal approximates of operators. The
B-splines basis was motivated by the ability to exploit
control points for fast safety assurance and its relation to
Gaussian Process Regression, which we believe may provide
mechanisms of quantifying uncertainty. As a result of this
work, we will explore the connection between uncertainty
quantification and control points in order to take advantage of
the convex-hull property of the B-splines to assess safety. We
will also explore using this approach with physics informed
training methods to influence training with an informed
bias. Additionally, exploring adjustments to the network
architecture and training could enhance performance. In
addition, follow-on work involves developing a framework
to estimate and fine-tune the NN errors by leveraging the
B-spline convex hull property. Ensuring that the actual state
trajectory resides within the convex hull of the control points
enables real-time evaluations of safety violations. Finally, we
wish to extend this framework to non-autonomous systems
to advance the development of NN-based controllers.
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