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Abstract— It is shown that an LTI system is a relaxation sys-
tem if and only if its Hankel operator is cyclic monotone. Cyclic
monotonicity of the Hankel operator implies the existence of a
storage function whose gradient is the Hankel operator. This
storage is a function of past inputs alone, is independent of the
state space realization, and admits a generalization to nonlinear
circuit elements.

I. INTRODUCTION

Relaxation systems are a class of LTI systems which first
arose in the study of relaxation phenomena in viscoelastic
materials, and, in the finite dimensional case, correspond
to RC and RL circuits [1]. Relaxation systems are highly
structured. They correspond to systems with completely
monotonic impulse responses, with transfer functions which
are sums of first order lags [1]–[3] and it was shown by
Willems [4] that they admit state space realizations which
are both externally symmetric, corresponding to the circuit
property of reciprocity, and internally symmetric, encoding
the fact that all the energy storage elements are of the
same type. There has been a recent revival of interest in
relaxation systems [5]–[12]. For example, it was observed by
Pates et al. [5], [6] that they admit very simple H∞-optimal
controllers, with highly structured circuit realizations.

Dissipativity theory [13] connects the circuit theory of
passivity to the dynamical systems theory of stability via
the storage function, which represents the energy stored in
a system. For a relaxation system, there exists a storage
function which is completely determined by the Hankel
operator, that is, the future output in response to a past input
[4]. Relaxation systems therefore represent a class of systems
for which the storage can be defined externally, as a function
of past input only.

Existing characterizations of relaxation systems rely on
linearity and time invariance. We are motivated by a char-
acterization that is not limited to LTI systems. This paper
presents some preliminary steps in this direction, through
connections to monotone operator theory. The property of
monotonicity was originally introduced in efforts to gen-
eralize the property of passivity to networks of nonlinear
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resistors [14]–[17]. Monotone operator theory now forms a
pillar of convex optimization theory [18]–[21], owing to the
fact that the gradient of a convex function is a monotone
operator.

An early question in the theory of monotone operators was
when the converse is true, when is a monotone operator the
gradient of a convex function? This question was answered
by Rockafellar [22], [23], who showed that a stronger
property than monotonicity is required: cyclic monotonicity.

In this paper, we reconnect the property of cyclic mono-
tonicity with its circuit theoretic origins, showing that cyclic
monotonicity corresponds precisely to relaxation, that is,
to circuits with a single type of energy storage element.
Our main result shows that an equivalent characterization
of relaxation is that a system’s Hankel operator is cyclic
monotone. For single input, single output LTI operators, this
equivalence was shown independently in the recent work of
Yafaev [10], [11]. Our proof is MIMO, and uses a state space
representation. Cyclic monotonicity of the Hankel operator
implies that it is the gradient of some convex functional, and
we show that this convex functional is precisely the intrinsic
storage of a relaxation system observed by Willems. Because
cyclic monotonicity is not restricted to linear systems, our
characterization opens the way to a nonlinear concept of
relaxation.

Cyclic monotonicity has previously been studied in the
context of Lur’e systems [24], [25], multi-agent systems [26]
and recently in the context of incrementally port-Hamiltonian
systems [27], where it was shown that a port-Hamiltonian
system with a maximal cyclic monotone Dirac structure may
be defined in terms of a convex function of the state and
input. In contrast, we consider cyclic monotonicity of an
external map, the Hankel operator, that maps past inputs to
future outputs.

The remainder of this paper is structured as follows. In
Section II, we introduce the necessary preliminary material
from the theory of passivity and monotone operators. In Sec-
tion III, we give the first of our main results, that relaxation
is equivalent to cyclic monotonicity of the Hankel operator.
In Section IV, we introduce a new notion of an intrinsic
storage functional and show that the convex functional whose
gradient is the Hankel operator is the intrinsic storage of
Willems. Conclusions and directions for future work are
given in Section V.
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II. PRELIMINARIES

A. State space systems and Hankel operators

We study linear, time-invariant state space systems of the
form

ẋ(t) = Ax(t) +Bu(t) (1)
y(t) = Cx(t) +Du(t),

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp A ∈ Rn×n, B ∈
Rn×m, C ∈ Rp×n and D ∈ Rp×m. A system is said to be
stable if A is Hurwitz, and minimal if (A,B) is controllable
and (A,C) is observable. The transfer function of system (1)
is given by H(s) := C(sI − A)−1B +D, and the impulse
response is given by h(t) := Dδ(t) + CeAtB, where δ(t)
denotes the Dirac delta. We also define g(t) := CeAtB to
be the impulse response of the system with no feedthrough
term.

A complete inner product space is called a Hilbert space.
The space L2(R,Rn) is the set of signals u : R → Rn such
that ∫ ∞

−∞
u(t)⊤u(t) dt < ∞.

This space forms a Hilbert space of equivalence classes of
functions when equipped with the inner product

⟨u, y⟩ :=
∫ ∞

−∞
u(t)⊤y(t) dt,

which induces the norm ∥u∥ :=
√
⟨u, u⟩. We define

L2(R≥0,Rn) and L2(R≤0,Rn) similarly, but with time
axes of [0,∞) and (−∞, 0], respectively. We will use the
shorthand notation Ln

2 for L2(R≥0,Rn).
A stable system admits a Hankel operator, which maps

an input on L2(R≤0,R) to the corresponding output on
L2(R≥0,R), assuming zero input from time 0. Given an
impulse response h and input ū ∈ L2(R≤0,R), the output
of the Hankel operator Γh at time t is given by

y(t) =

∫ 0

−∞
h(t− τ)ū(τ) dτ.

Letting u(t) := ū(−t), the Hankel operator has the expres-
sion

(Γhu) (t) :=

∫ ∞

0

h(t+ τ)u(τ) dτ,

and defines an operator on L2(R≥0,R). If the system is
stable, the Hankel operator is continuous [28, Prop. 4.1].

For the remainder of this paper, we will consider systems
which are square, that is, the input dimension m is equal to
the output dimension p.

B. Passivity, reciprocity and relaxation

Passivity is a formalization of the notion that a system can
be realized without any internal power source. Central to the
theory of passivity is the storage function, which represents
the energy stored within a system. We recall the following
definition of passivity.

Definition 1 ([29, Def. 5]). A system of the form (1) is
said to be passive if, for any input/output trajectory (u, y)
of the system and t0 ∈ R, there exists a K ∈ R such that,
if (û, ŷ) is also an input/output trajectory of the system and
(û(t), ŷ(t)) = (u(t), v(t)) for all t < t0, then

−
∫ t1

t0

û(t)⊤ŷ(t) dt ≤ K

for all t1 ≥ t0. ⌟

It is shown in [29, Thm. 13] that, for a (not necessarily
minimal) system of the form (1), Definition 1 is equivalent
to the existence of a matrix Q = Q⊤ ⪰ 0 satisfying the
linear matrix inequality(

A⊤Q+QA QB − C⊤

B⊤Q− C −D −D⊤

)
⪯ 0. (2)

This is precisely the condition given by [4, Thm. 3] in the
context of minimal LTI state space systems.

A signature matrix is a diagonal matrix whose diagonal
entries are either 1 or −1.

Definition 2. A system of the form (1) is said to be
(externally) reciprocal with respect to the signature matrix
Σe if ΣeH(s) = ΣeH(s)⊤, where H(s) is the transfer matrix
of (1). ⌟

Reciprocal systems admit internally reciprocal state space
realizations.

Theorem 1 ([4, Thm. 6]). A system of the form (1) is
reciprocal if and only if it admits a state space realization
(A,B,C,D) such that(

Σi 0
0 Σe

)(
−A −B
C D

)
=

(
−A⊤ C⊤

−B⊤ D⊤

)(
Σi 0
0 Σe

)
,

where Σi is a signature matrix.

We now define relaxation systems, the main subject of this
paper.

Definition 3. A system of the form (1) is said to be a
relaxation system if D = D⊤ ⪰ 0 and g(t) = CeAtB is
a completely monotonic function for t ∈ [0,∞):

g(t) = g(t)⊤ for all t ≥ 0,

(−1)k
dk

dtk
g(t) ⪰ 0 for all k = 1, 2, . . . and t ≥ 0. ⌟

Relaxation systems first arose in the context of viscoelas-
tic materials [1], and, in the context of electrical circuits,
correspond to the impedances of RC circuits and the admit-
tances of RL circuits. Several equivalent characterizations of
relaxation systems are known in the literature [1], [2], [4],
[30]–[32], which we collect in the following theorem.

Theorem 2. Consider a system of the form (1). Then the
following are equivalent:

1) the system is a relaxation system.
2) H(s) admits the form

H(s) = G0 +
G1

s
+

n∑
i=2

Gi

s+ λi
,
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where Gi = G⊤
i ⪰ 0 for all i and 0 ≤ λ0 < λ1 <

. . . < λN , for some N ∈ Z≥0.
3) H(s) admits a minimal state space realization

(A1, B1, C1, D1) such that

A1 = A⊤
1 ⪯ 0

B1 = C⊤
1

D1 = D⊤
1 ⪰ 0.

4) D ⪰ 0,
CB CAB . . . CAn−1B
CAB CA2B . . . CAnB

...
...

. . .
...

CAn−1B CAnB . . . CA2n−2B

 ⪰ 0


CAB CA2B . . . CAnB
CA2B CA3B . . . CAn+1B

...
...

. . .
...

CAnB CAn+1B . . . CA2n−1B

 ⪯ 0,

and all three of these matrices are symmetric.

C. Cyclic monotonicity

In this section, we introduce the notions of monotonicity
and cyclic monotonicity, for operators on a Hilbert space H.

Definition 4. Given an operator A : H → H, the graph of
A is the set gra (A) ⊆ H×H defined by

gra (A) := {(u, y) | u ∈ H, y = A(u)}. ⌟

Definition 5. An operator A : H → H is said to be monotone
if, for all u1, u2 ∈ H, y1 = A(u1), y2 = A(u2),

⟨u1 − u2, y1 − y2⟩ ≥ 0. (3)

If gra (A) is not properly contained within the graph of any
other monotone operator, A is said to be maximal monotone.

⌟

Definition 6. An operator A : H → H is said to be n-cyclic
monotone if, for all sets of input/output pairs {(ui, yi) | ui ∈
H, yi = A(ui), i = 0, . . . , n},

⟨y0, u0 − u1⟩+ ⟨y1, u1 − u2⟩+ . . .+ ⟨yn, un − u0⟩ ≥ 0.

If A is n-cyclic monotone for all n ≥ 1, A is said to be cyclic
monotone. If gra (A) is not contained within the graph of
any other monotone operator, A is said to be maximal cyclic
monotone. ⌟

Maximality is guaranteed for continuous operators [19,
Cor. 20.25], so the Hankel operators associated with the sta-
ble linear operators considered in this paper are automatically
maximal.

Definition 7. An operator A : H → H is said to be self-
adjoint if, for all u, y ∈ H,

⟨A(u), y⟩ = ⟨u,A(y)⟩ . ⌟

Asplund [33] gives the following characterization of the
cyclic monotonicity of a linear operator. Given a linear

operator A : H → H, we define the complexification of
A, denoted Ac, by

Ac(u+ jw) := A(u) + jA(w).

This operates on the complexification of H, denoted Hc. We
endow this space with the inner product

⟨u+ jw, y + jv⟩c := ⟨u, y⟩+ ⟨w, v⟩+ j(⟨w, y⟩ − ⟨u, v⟩).

The numerical range of an operator Ac on Hc is defined as

W (Ac) :=

{
⟨Ac(z), z⟩c

∥z∥

∣∣∣∣ z ∈ dom (Ac) , ∥z∥ ≠ 0

}
.

Theorem 3 (Asplund [33, Thm. 3]). A linear operator A on
H is n-cyclic monotone if and only if, for all z ∈ W (Ac),
arg z ≤ π/n.

For the limiting case of cyclic monotonicity, we have the
following corollary.

Corollary 1. A linear operator A on H is cyclic monotone
if and only if it is self-adjoint and, for all u ∈ dom (A),
⟨A(u), u⟩ ≥ 0.

Proof. n-cyclic monotonicity for all n implies that arg z = 0
for all z ∈ W (Ac). Equivalently, arg ⟨Ac(z), z⟩ = 0 for all
z = u + jw ∈ dom (Ac) , ∥z∥ ̸= 0. Expanding the inner
product:

arg(⟨u,A(u)⟩+ ⟨w,A(w)⟩+
j(⟨w,A(u)⟩ − ⟨u,A(w)⟩)) = 0

so ⟨u,A(u)⟩+ ⟨w,A(w)⟩ ≥ 0

and ⟨A(w), u⟩ = ⟨w,A(u)⟩ .

Definition 8. A function f : H → R ∪ {∞} is said to
be proper if its value is never −∞ and is finite somewhere,
closed if its epigraph is closed and convex if, for all x, y ∈ H
and ϑ ∈ (0, 1),

f(ϑx+ (1− ϑ)y) ≤ ϑf(x) + (1− ϑ)f(y). ⌟

Our interest in cyclic monotonicity stems from the follow-
ing theorem of Rockafellar.

Theorem 4 (Rockafellar’s theorem [22], [23]). A continuous
operator A : H → H is maximal cyclic monotone if and only
if it is the gradient of a closed, convex and proper function
from H to (−∞,∞]. Moreover, this function is uniquely
determined by A up to an additive constant.

III. RELAXATION AND CYCLIC MONOTONICITY

In this section, we establish the relationship between
relaxation systems and cyclic monotone operators, and add
a fifth equivalence to Theorem 2: relaxation is equivalent to
cyclic monotonicity of the Hankel operator. The following
theorem generalizes [10, Cor. 1.2] to multiple input, multiple
output operators, assuming a finite-dimensional state space
realization.

Theorem 5. Consider the system (1) and assume that A is
Hurwitz. The system is a relaxation system if and only if its
Hankel operator Γh is cyclic monotone and D = D⊤ ⪰ 0.
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Proof. We begin by showing that relaxation implies cyclic
monotonicity of the Hankel operator (the condition on D
being immediate from the definition of relaxation). By
Corollary 1, cyclic monotonicity of Γh is equivalent to the
following two conditions, for all u,w ∈ Lm

2 :

⟨Γhw, u⟩ = ⟨w,Γhu⟩ (4)
⟨u,Γhu⟩ ≥ 0. (5)

We begin by showing (4). Note that relaxation implies
reciprocity with respect to Σe = I , and this in turn implies
symmetry of the impulse responses h(t) and g(t).

We also note that, for any u,w ∈ Lm
2 ,∫ ∞

0

u(t)⊤
(∫ ∞

0

h(t+ τ)w(τ) dτ

)
dt

=

∫ ∞

0

u(t)⊤
(∫ ∞

0

g(t+ τ)w(τ) dτ

)
dt. (6)

Indeed,∫ ∞

0

u(t)⊤
(∫ ∞

0

h(t+ τ)w(τ) dτ

)
dt

=

∫ ∞

0

u(t)⊤
∫ ∞

0

CeAteAτBw(τ) +Dw(τ)δ(t+ τ) dτ dt

=

∫ ∞

0

u(t)⊤
(∫ ∞

0

CeAteAτBw(τ) dτ

)
dt

+

∫ ∞

0

u(t)⊤Dw̄(t) dt, (7)

where

w̄(t) :=

{
w(t) t = 0

0 otherwise.

We then have ∫ ∞

0

u(t)⊤Dw̄(t) dt = 0,

so (7) implies (6). Using symmetry of the inner product, (4)
is equivalent to∫ ∞

0

u(t)⊤
(∫ ∞

0

g(t+ τ)w(τ) dτ

)
dt

=

∫ ∞

0

w(t)⊤
(∫ ∞

0

g(t+ τ)u(τ) dτ

)
dt. (8)

To show that g(t) = g(t)⊤ implies (8), take the left hand
side of (8), transpose and apply Fubini’s theorem:∫ ∞

0

u(t)⊤
(∫ ∞

0

g(t+ τ)w(τ) dτ

)
dt

=

∫ ∞

0

(∫ ∞

0

w(τ)⊤g(t+ τ)⊤ dτ

)
u(t) dt

=

∫ ∞

0

(∫ ∞

0

w(τ)⊤g(t+ τ)⊤u(t) dt

)
dτ

=

∫ ∞

0

w(t)⊤
(∫ ∞

0

g(t+ τ)u(t) dt

)
dτ.

We next show that relaxation implies (5). Let
(A1, B1, C1, D1) be a state space realization of the

form of Theorem 2, 3), with impulse response h(t). Then,
using (6),

⟨u,Γhu⟩ =
∫ ∞

0

u⊤(t)

∫ ∞

0

h(t+ τ)u(τ) dτ dt

=

∫ ∞

0

u⊤(t)

∫ ∞

0

C1e
A1teA1τB1u(τ) dτ dt (9)

=

(∫ ∞

0

eA1tB1u(t) dt

)⊤ ∫ ∞

0

eA1tB1u(t) dt

≥ 0.

This establishes that relaxation implies cyclic monotonicity
of the Hankel operator.

We now show the converse, that cyclic monotonicity of the
Hankel operator and D = D⊤ ⪰ 0 together imply relaxation.
We begin by showing that (8) implies symmetry of g(t) for
all t ≥ 0. Indeed, let v(τ) = δ(τ)ej and u(t) = δ(t− t0)ei,
where t0 ∈ [0,∞), ei denotes the ith canonical basis vector of
Rn and δ denotes the Dirac delta. Substituting these signals
into (8) gives

e⊤i g(t0)ej = e⊤j g(t0)ei,

that is, g(t0) is symmetric for all t0 ∈ [0,∞), which is
equivalent to symmetry of h(t) under the assumption D =
D⊤. This in turn is equivalent to reciprocity with respect to
Σe = I .

Finally, we show that reciprocity, (5) and D = D⊤ ⪰ 0
imply relaxation. Let be a stable system with D̂ = D̂⊤ ⪰ 0
and Hankel operator Γh which satisfies (5) and (8). Let
(Â, B̂, Ĉ,D) be a minimal system with transfer function
equal to Dδ(t) + CeAtB. By reciprocity, it follows from
[4, Lem 3] that there exists a unique, invertible, symmetric
matrix T such that

Â⊤T = TÂ

T B̂ = Ĉ⊤.

We claim that T ≥ 0. Suppose, on the contrary, that T has a
negative eigenvalue. Let x0 be a corresponding eigenvector.
Let ū : (−∞, 0] → Rn be an input that drives the system
from x = 0 at t = −∞ to x(0) = x0. Such an input exists,
as (Â, B̂) is controllable. Let u(t) = ū(−t). By positivity of
Γh, we have

0 ≤ ⟨u,Γhu⟩

=

∫ ∞

0

u(t)⊤
∫ ∞

0

ĈeÂ(t+τ)B̂u(τ) dτ dt

=

∫ ∞

0

u(t)⊤ĈeÂt

∫ 0

−∞
e−Âτ B̂ū(τ) dτ dt

=

∫ ∞

0

u(t)⊤ĈeÂtx0 dt

=

∫ ∞

0

u(t)⊤B̂⊤TeÂtx0 dt

=

∫ 0

−∞
ū(t)⊤B̂⊤e−Â⊤t dtTx0

= x⊤0 Tx0 < 0,
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which is a contradiction. Hence T ≥ 0. It follows from
Lemma 3 in the Appendix that the system is passive. It
then follows from [4, Thm. 7] that there exists a minimal
realization (A1, B1, C1, D1) of the system which satisfies

ΣiA1 = A⊤
1Σi

C⊤
1 = −ΣiB1

D1 = D⊤
1 ⪰ 0,

where Σi is a signature matrix. It follows from Equation (9)
and positivity of Γh that∫ ∞

0

u(t)⊤C1e
At dt

∫ ∞

0

eA1τB1u(τ) dτ ≥ 0 (10)

for all u. Hence

−
∫ ∞

0

u(t)⊤B⊤
1 e

A⊤
1 t dtΣi

∫ ∞

0

eA1τB1u(τ) dτ ≥ 0

for all u. Suppose that Σi has entry (j, j) equal to 1. By
controllability of (A1, B1), we can choose an input such that∫ ∞

0

eA1τB1u(τ) dτ = ej .

But then −e⊤j Σiej ≺ 0, which contradicts (10). Hence Σi =
−I , so the system is of the relaxation type.

IV. INTRINSIC STORAGES FOR RELAXATION SYSTEMS

Theorem 5 establishes the equivalence of relaxation and
cyclic monotonicity of the Hankel operator. It then follows
from Rockafellar’s theorem that the Hankel operator is the
gradient of a closed, convex and proper functional mapping
Lm
2 → R. It turns out that this convex functional is precisely

the input/output storage observed by Willems [4, §10].
Before formalizing this result, we show that passivity is

guaranteed by the existence of a nonnegative functional of
the past input to the system. We call this object an intrinsic
storage functional. We then give a simple, illustrative exam-
ple.

Proposition 1. Consider a system of the form (1). Given a
signal u ∈ L2(R,Rm) and time t ∈ R, denote by ut the
truncation of u to the time axis (−∞, t]. If there exists a
functional V mapping a truncated signal ut into R≥0 and
satisfying

dV

dt
(ut) ≤ u(t)⊤y(t), (11)

for all t ∈ R and input/output trajectories (u, y) of the
system, then the system is passive.

Proof. Let t0, t1 ∈ R, t1 ≥ t0. Integrating (11) from t0 to
t1 gives

V (ut0)− V (ut1) ≥ −
∫ t1

t0

u(t)⊤y(t) dt.

Passivity then follows from nonnegativity of V (ut1), with K
in Definition 1 equal to V (ut0).

Example 1. Consider the linear RC circuit shown in Figure 1.
Denoting the voltage on the capacitor by vc, we have the
following state space model for the impedance of the circuit:

d

dt
vc =

−1

R1C
vc +

(
1
C

1
C

)(i1
i2

)
,(

v1
v2

)
=

(
1
1

)
v2 +

(
0 0
0 R2

)(
i1
i2

)
.

We consider the following experiment: time-varying current

i2

+

−

v1

i1

R1 C

+

−

v2

i1 i2

R2

Fig. 1. A two-port RC circuit.

sources, ī1t(·) and ī2t(·), are attached to the ports from time
−∞, when there is no charge on the capacitor, to time t ∈ R.
The current sources are then replaced by voltmeters, which
read voltages v̄1(·) and v̄2(·). We define int(τ) = īnt(t− τ)

and vn(ζ) = v̄n(ζ + t) for n = 1, 2. Define v =
(
v1 v2

)⊤
and it =

(
i1t i2t

)⊤
. Solving the state space model gives

the Hankel operator

v(ζ) =

∫ ∞

0

(
1
1

)
e

−1
R1C (ζ+τ) ( 1

C
1
C

)
it(τ) dτ,

plus an additional term R2i2t(0) when ζ = 0. Computing
the inner product (1/2) ⟨it, v⟩ over L2 gives

1

2

∫ ∞

0

it(ζ)
⊤
∫ ∞

0

(
1
1

)
e

−1
R1C (ζ+τ) ( 1

C
1
C

)
it(τ) dτ dζ

=
1

2C

(∫ ∞

0

(i1t(ζ) + i2t(ζ))e
−1

R1C ζ dζ∫ ∞

0

(i1t(τ) + i2t(τ))e
−1

R1C τ dτ

)
=

1

2C
qc(0)

2,

where qc = 1
C vc is the charge on the capacitor and the last

line follows by solving the state space equations with zero
initial condition. This expression is the energy stored in the
capacitor at time τ = 0. Taking the derivative with respect
to time gives

d

dt

1

2
⟨it, v⟩ =

1

C
qc(0)

d

dt
qc(0).

Let η(t, τ) := t− τ . Then

d

dt
int =

d

dt
īnt(η(t, τ)) =

dīnt
dη

dη

dt
= ī′nt(t− τ)

and
d

dτ
int =

d

dτ
īnt(η(t, τ)) =

dīnt
dη

dη

dτ
= −ī′nt(t− τ),

so d
dt int = − d

dτ int. We then have:

d

dt
qc(0) =

∫ ∞

0

e
−1

R1C τ d

dt
(i1t(τ) + i2t(τ)) dτ

= −
∫ ∞

0

e
−1

R1C τ d

dτ
(i1t(τ) + i2t(τ)) dτ.
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Integrating by parts then gives
d

dt
qc(0) = −

[
e

−1
R1C τ (i1t(τ) + i2t(τ))

]∞
0

− 1

R1C

∫ ∞

0

e
−1

R1C τ (i1t + i2t)(τ) dτ

= i1t(0) + i2t(0)−
1

R1C
qc(0), so

d

dt

1

2
⟨it, v⟩ = vc(0)(i1t(0) + i2t(0))−

1

R1C2
qc(0)

2

≤ vc(0)(i1t(0) + i2t(0)) +R2i2t(0)
2

= v̄(t)̄it(t).

The variables v̄ and īt correspond to a particular experiment,
however, the right hand side of this dissipation inequality
only involves the value of īt and v̄ at time t, the instant
in the experiment when both the current source and the
voltmeter are connected. These can thus be considered sam-
ples of an arbitrary current/voltage trajectory. The functional
(1/2) ⟨it, v⟩ is thus an intrinsic storage functional for the
system, and is expressed purely in terms of the input i
and output v. Furthermore, the derivative of this functional
with respect to it is the Hankel operator of the system.
The quantity (1/R1C

2)qc(0)
2 is the instantaneous power

dissipated by the resistor R1. ⌟

In order to generalize the construction of the intrinsic
storage in Example 1 to arbitrary relaxation systems, we
require a notion of gradient on Lm

2 . This is given by the
functional derivative, ∂V/∂u, which we define via the first
variation: 〈

∂V

∂u
, ϕ

〉
:=

[
d

dε
(V (u+ εϕ))

]
ε=0

.

Lemma 1. Let h be the impulse response of a relaxation
system, and Γh be the corresponding Hankel operator. Then
Γh is the functional derivative of

V (u) :=
1

2
⟨u,Γhu⟩ .

Proof. Computing the functional derivative gives〈
∂V

∂u
, ϕ

〉
=

1

2

[
d

dε
⟨u+ εϕ,Γh(u+ εϕ)⟩

]
ε=0

=
1

2
⟨ϕ,Γhu⟩+

1

2
⟨u,Γhϕ⟩

= ⟨Γhu, ϕ⟩ ,

where the final inequality follows from self-adjointness of
Γh. It then follows that ∂V/∂u = Γh.

The following theorem establishes that the function of
Lemma 1 is in fact an intrinsic storage functional.

Theorem 6. Let h be the impulse response of a relaxation
system, and Γh be the corresponding Hankel operator. Then
the system is passive with intrinsic storage functional

V (u) :=
1

2
⟨u,Γhu⟩ .

The proof of Theorem 6 makes use of the following
lemma, which establishes a recursive property of relaxation

systems with respect to the derivative. This is a generalization
of the fact that the power dissipated by the resistor R1 in
Example 1 is positive.

Lemma 2. Let g(t) = CeAtB be the impulse response of a
relaxation system, without the direct component Dδ(t). Then
any system with impulse response − d

dtg is also a relaxation
system.

Proof. By Definition 3, g is completely monotonic, so

(−1)k
dk

dtk
g(t) ≥ 0

for all k = 1, 2, . . . This implies complete monotonicity of
− d

dtg.

Proof of Theorem 6. Nonnegativity of V follows from posi-
tivity of Γh (Theorem 5). It remains to show that V satisfies
the dissipation inequality (11). Let the input trajectory be
ū ∈ L2(R,Rm) and define the past input corresponding to
time t ∈ R by

ut(τ) := ū(t− τ), τ ∈ [0,∞).

Let η(t, τ) := t− τ . Then

d

dt
ut(τ) =

d

dt
ūt(η(t, τ)) =

dūt

dη

dη

dt
= ū′

t(t− τ)

and
d

dτ
ut =

d

dτ
ūt(η(t, τ)) =

dūt

dη

dη

dτ
= −ū′

t(t− τ),

so
d

dt
ut = − d

dτ
ut. (12)

We then have
dV

dt
(ut) =

〈
∂V

∂u
(ut),

∂ut

∂t

〉
=

∫ ∞

0

∫ ∞

0

ut(τ)
⊤h(ζ + τ) dτ

∂ut

∂t
(ζ) dζ

= −
∫ ∞

0

y(ζ)⊤
∂ut

∂ζ
(ζ) dζ,

where the final line uses Lemma 1 and Equation (12).
Integration by parts then gives

dV

dt
(ut) = −

[
y(ζ)⊤ut(ζ)

]∞
0

+

∫ ∞

0

d

dζ
y(ζ)⊤ut(ζ) dζ

= y(0)⊤ut(0)+∫ ∞

0

∫ ∞

0

ut(τ)
⊤ dh

dζ
(τ + ζ) dτut(ζ) dζ, (13)

where (13) uses (6) in the proof of Thm. 5. Denote dg/dζ
by g′. Then the rightmost term in (13) can be written as

−
〈
Γ(−g′)ut, ut

〉
≤ 0, (14)

where the inequality follows from the fact that that Γ(−g′) is
the Hankel operator of a relaxation system (Lemma 2), hence
cyclic monotone (Theorem 5). Substituting in (13) gives

dV

dt
(ut) ≤ ut(0)y(0) = ūt(t)

⊤ȳ(t).

A consequence of Rocakfellar’s theorem is that the storage
V (ut) is uniquely determined by the Hankel operator Γh, up
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to an additive constant. It was observed in [4] that this same
storage is also uniquely determined by the requirements of
passivity and internal reciprocity.

V. CONCLUSIONS

We have shown that a system being of the relaxation type
is equivalent to cyclic monotonicity of the Hankel operator.
Rockafellar’s theorem allows us to construct a convex storage
functional, whose gradient is the Hankel operator, which is
completely determined by input/output measurements.

Cyclic monotonicity is equally well-defined for the Han-
kel operators of nonlinear systems, and this allows us to
construct intrinsic storages for nonlinear systems. This will
be a topic of future research.

APPENDIX

The proof of the following lemma can be found in the
arxiv version of this paper.

Lemma 3. Consider a stable system of the form (1). Suppose
that D = D⊤ ⪰ 0 and there exists a matrix T = T⊤ ⪰ 0
such that

A⊤T = TA

TB = C⊤.

Then the system is passive.
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