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Abstract— Observability of all bus voltages in a power
network enables overall monitoring and fault detection of power
flow. Information on this voltage state is often a combina-
tion of voltage, current measurements obtained by Phasor
Measurement Units (PMUs) and voltage state estimation via
regression that uses admittance information of the connections
between nodes within the power network. Voltage state es-
timation is a challenge for a power network in which data
from limited PMUs is combined with partially known network
admittance information. The challenge lies in choosing locations
of PMUs such that full voltage state reconstruction is possible,
despite the lack of complete knowledge on network admittance
information. This paper proposes a methodology of placing
PMUs across a network with incomplete network admittance
information that guarantees comprehensive observability of
the voltage states. The method separates network nodes in
distinct nodal sets based on voltage, current and admittance
information. The permutations of these nodal sets are used
to establish the minimum number of PMUs required for full
voltage state observability for a power network with partially
known admittance information. Subsequently, an additional
optimal placement can be used to minimize the variance of
the estimated voltage states. The proposed PMU placement
approach is tested on a modified IEEE-14 bus with incomplete
network admittance information.

I. INTRODUCTION

Continuous monitoring of the voltage of every node in a
given power network is crucial in observing loading condi-
tions in each node and currents in each line of the network.
Since accurate monitoring of the network is directly related
to the accuracy of voltage state measurements used for
estimation [1], Phasor Measurement Units (PMUs) have been
increasingly popular in providing network monitoring due to
their higher sampling rate and accurate measurements over
traditionally used supervisory control and data acquisition
(SCADA) systems. PMUs provide both magnitude and phase
of the measured voltage and current, unlike SCADA.

A trivial solution for complete observability of the volt-
age state is to place PMUs at every node. This solution
is economically not feasible [2] as the cost of deploying
the PMUs scales with the network size. However, PMUs
also allow (multiple) current measurements which can be
combined with admittance information to reconstruct or
estimate voltages at neighboring nodes. If complete network
admittance information is available, PMUs can be installed
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on a few nodes measuring nodal voltages, and the voltages
of the rest of the nodes are obtained via state estimation
[3], [4] using regression techniques. Unfortunately, the line
admittance parameters that model the admittance connections
between nodes in a power network may be unknown or
subjected to uncertainty [5]. The placement of PMUs should
ensure complete voltage state estimation, even when the
power network admittance information is partially known.

Next to the problem of incomplete network admittance
information, PMU measurements are typically subjected to
noise [6] that can compromise the accuracy of the voltage
state estimates. The accuracy of voltage estimates is impor-
tant when estimating line impedance and detecting line faults
[7]. To minimize the effect of PMU measurement noise on
the voltage estimates, PMUs should be deployed strategically
over the network [8]. Such placement is however subjected to
the requirements of voltage state estimation in the presence
of incomplete power network admittance information.

Approaches that solve the Optimal PMU Placement (OPP)
problem often rely on Integer Linear Programming (ILP)
that guarantees complete observability of voltage states [9].
However, the assumption made for state estimation in ILP is
complete knowledge of network admittances. Recent work
on state estimation in partially known power networks is
demonstrated in [10] where a Kalman Filter - Simultaneous
Input and State Estimation (KF-SISE) technique is proposed
to estimate both the states and the unknown inputs of a
partially known power network. A different method in [11]
divides the network into known and unknown parts, and
uses a greedy PMU placement algorithm to minimize the
covariance of the estimation error and uses the KF-SISE for
state estimation.

Earlier work on minimizing the variance of the estimated
voltage states was presented in [8], but requires complete
knowledge of network admittance information. This paper
addresses the previously mentioned limitations of voltage
state estimation in partially known networks by adding the
following contributions in this paper:

• A new result on the minimum number of PMUs required
for complete observability of the voltage state in a
partially known network.

• an OPP solution for partially known network that mini-
mizes the effect of PMU measurement noise on voltage
estimates.

The voltage state estimation technique accommodates for
data from previously installed SCADA systems at certain
nodes for a given power network by categorizing them
as nodes with known voltages in the formulation of the
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regression problem. The proposed method is illustrated on
a modified version of the IEEE-14 bus circuit [12] with
assumptions of not knowing certain line admittance param-
eters. The results show that the proposed optimal placement
method guarantees complete observability of voltage states,
is obtained in a partially known network and minimizes
variance on the estimated states.

II. DEFINITIONS

A. Network Definitions

Consider a network N consisting of set of enumerated
nodes V with size N given by V = {1, 2, ..., N} and set of
edges which indicate connections between nodes given by
E . The set of edges E is written as

E = {(i, j)|∃ connection between node i and node j} (1)

For a power network N , the voltage at each node k is given
by Vk ∈ C and a nodal current flowing in each node k
is given by Ik ∈ C. If an edge (i, j) exists between two
nodes i and j of network N then the edge (i, j) represents
connection via an admittance yij ∈ C where |yij | ≠ 0. Note
that for any given edge (i, j), the admittance yij may or
may not be known and yij = yji. A compact notation for
connection between nodes of the network is given by the
adjacency matrix A where each element Aij in A is defined
by

Aij =

{
1, if ∃ yij s.t. |yij | ≠ 0

0, if (i, j) ̸∈ E
(2)

The information on connection between nodes is used to
define two additional sets of integers. For each node k =
1, 2, 3, ..., N the two sets of integers are defined as

K(k) = {j|Akj = 1} (3)

J (k) = {j|Akj = 1 and ykj is known} (4)

where the set K(k) denotes all nodes j connected to node k
and J (k) denotes all nodes j connected to node k, for which
the admittance ykj of the connections is known. It is to be
noted that the dk = length(K(k)) where dk is the connection
degree of the node i.e number of nodes to which the given
node k is connected. Similarly we define qk = length(J (k))
where qk is the knowledge degree of the node.

In general J (k) ⊆ K(k) and the following special cases
are distinguished.

• We use the notation J (k) = K(k) to indicate that all
edge admittances ykj , j ∈ K(k) of node k are known.

• We use J (k) ⊂ K(k) to indicate that some, but not all
edge admittances ykj , j ∈ K(k) are known.

• Finally J (k) = Φ is used to denote that none of the
edge admittance ykj , j ∈ K(k) of node k are known.

We use the notation j ∈ K(k) to select elements of K(k).

B. Set Definitions

Based on the availability of knowledge on nodal voltage
Vk, nodal current Ik and/or edge admittance ykj we now
define nodal sets that separate the nodes of the network
similar to the nodal sets in [8]. The line set Lb consists
of those branches where the branch currents are measured.
This separation is needed to group and characterize the
information available for each node that will lead to results
on the minimum number of PMUs to estimate nodal voltage
of all nodes in the network.

Definition 2.1 (S0,S1,S2,S3,Lb,S0,S1,S2,S3,Sr,Sr,S,S):
To group the nodes having J (k) = K(k), the following
nodal sets are defined:

• S0 : {k|J (k) = K(k), and Vk, Ik known}
• S1: {k|J (k) = K(k), and Vk known and Ik unknown}
• S2: {k|J (k) = K(k), and Vk unknown and Ik known}
• S3: {k|J (k) = K(k), and Vk, Ik unknown}

In addition we define Sm, m = 0, 1, 2, 3 for which J (k) ⊂
K(k). We define each S̄m as

• S0: {k|J (k) ⊂ K(k), and Vk, Ik known}
• S1: {k|J (k) ⊂ K(k), and Vk known and Ik unknown}
• S2: {k|J (k) ⊂ K(k), and Vk unknown and Ik known}
• S3: {k|J (k) ⊂ K(k), and Vk, Ik unknown}

From the set definitions the nodes of the network are broadly
classified into the following two sets

• S: {k|J (k) = K(k) ∀k ∈ V}
• S: {k|J (k) ⊂ K(k) ∀k ∈ V}
The information on measured branch current is stored in

line set:
• Lb: {(i, j)|Iij is measured}

This implies that if k ∈ Si for i = 0, 1, 2, 3 then k ∈ S,
similarly if k ∈ Si for i = 0, 1, 2, 3 then k ∈ S. The grouping
of nodes in sets defined in 2.1 is determined by the placement
parameter ρ.

C. Definition of Placement Parameter ρ

Knowledge on nodal voltage Vk is obtained by placing a
PMU at a node k. The knowledge on nodal current Ik and
branch currents in branches connected to node k depends on
number of current measuring channels nc available on the
PMU. Given a finite number n of PMUs, there are N !

n!(N−n)!
possible combinations where PMUs could be placed in a
network with N nodes. For notation convenience, we intro-
duce a placement parameter ρ that defines the location of the
PMUs and which node or branch current are being measured.
The choice of placement parameter ρ will determine the sets
Sk and SK for k = 0, .., 3 according to Definition 2.1. We
use the notation ρ to indicate changes in the ordering of the
enumeration of nodes of the network.

D. Admittance Matrix Definition

The line connected between any two buses m, n ∈ V
where (m,n) ∈ E has the following admittance parameters

bmn line charging susceptance
ymn line admittance
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The network admittance matrix Y ∈ CN×N that comprises
of all admittance information of all the lines in the network
N is defined as

Y ij =

{
yi +

∑N
k=1,k ̸=i yik i = j

−yij i ̸= j
(5)

in which yi term on the diagonal element is defined as

yi = ysi +

N∑
k=1,k ̸=i

jbik
2

(6)

where ysi is the shunt admittance at Bus i.
Using the IEEE π-model [13] of transmission line and

Ohm’s law, the current in line (m,n) ∈ E is formulated as

imn =
jbmn

2
vm + ymn(vm − vn) (7)

Using (7), an equation between network branch current
vector Ib ∈ CL×1, where L is the total number of lines in
the network N , and all the nodal voltages V is formulated
based on Ohm’s law. The network branch current vector Ib

is given by

Ib =
[
i1m1

i1m2
. . i1mk

i2n1
. i2nk

. iNlk

]T
(8)

where (1,m1), (1,m2), .., (1,mk), (2, n1), .., (2, nk), .., (N, lk)
∈ E . Using Ohm’s law the branch current vectors is equated
to the nodal voltages by

Ib = BV (9)

where B ∈ CL×N is the branch admittance matrix. The n-th
row of branch admittance B that represents branch admit-
tance information for the n-th line (m,n) corresponding to
the current vector I(m,n) is given by

Bxy =


jbmn

2 + ymn y = m

−ymn y = n

0 y ̸= m, y ̸= n

(10)

For simplicity, the admittance matrices B and Y and the
complex vectors Ib, I and V are considered single phase
although these matrices and vectors can be extended to three-
phase. For the three-phase case, the admittance matrices
Y and B can be extended to accommodate three-phase
admittances. The estimation can be extended for unsymmet-
rical operation, by modeling the unsymmetric loads as shunt
resistance.

III. VOLTAGE ESTIMATION WITH INCOMPLETE
INFORMATION

Using the set definitions of S and S in Definition 2.1,
the relationship between the nodal voltages and the nodal
currents of these sets are written as[

IS
IS

]
=

[
YSS YSS

YSS YSS

] [
VS

VS

]
(11)

where admittance submatrices YSS , YSS , and YSS are com-
pletely known and YSS is partially known. This section gives
an overview on how the permutation of nodal sets are used to
compute the minimal number of PMUs for partially known
network and formulate an optimal voltage state estimation.

A. Permutation of Network Admittance Matrix

Based on the placement parameter ρ, the nodes are dis-
tributes into nodal sets SK or Sk as defined in Definition 2.1.
Taking the nodal sets into account, the network admittance
matrix is permuted by the placement parameter ρ via Ỹ(ρ) =
U(ρ)YU(ρ)T where U(ρ) is the unitary permutation matrix.
The permuted network admittance matrix is given by

Ỹ(ρ) =



Y00 Y01 Y02 Y03 Y00 Y01 Y02 Y03

Y10 Y11 Y12 Y13 Y10 Y11 Y12 Y13

Y20 Y21 Y22 Y23 Y20 Y21 Y22 Y23

Y30 Y31 Y32 Y33 Y30 Y31 Y32 Y33

Y00 Y01 Y02 Y03 Y00 Y01 Y02 Y03

Y10 Y11 Y12 Y13 Y10 Y11 Y12 Y13

Y20 Y21 Y22 Y23 Y20 Y21 Y22 Y23

Y30 Y31 Y32 Y33 Y30 Y31 Y32 Y33


(12)

where the matrix Ykj , k ̸= j, has the admittance of lines
connecting nodes from nodal set Sk to nodal set Sj , the
matrix Ykj has the admittance of lines connecting nodes from
nodal set Sk to nodal set Sj , and the matrix Ykk or the matrix
Ykk has the admittance of lines connecting the nodes inside
the nodal set Sk or Sk respectively.

B. Line currents and Branch Admittance Matrix

Since estimating voltage vectors v2, v3, v2, and v3

requires branch current and branch admittance information,
the admittance matrix relating voltages and branch currents
is formulated as a matrix of smaller admittance matrices
corresponding to each set S and S as defined in Definition
2.1. Depending on the nodes, the line currents be classified
into the following:

• if the current in branch (i, j) of known admittance is
measured and i, j ∈ S then Iij ∈ b0,b0 ∈ Cnb×1.
Note that the length of the array is nb.

• if the current in branch (i, j) of known admittance is
measured and if i ∧ j ∈ S then the current in branch
Iij ∈ b0 ∈ Cnb×1. Note that the length of the array is
nb.

The array of measured currents [b0 b0]
T is related to the

node voltages by using the equation [b0 b0]
T = B(ρ)v,

where the branch admittance matrix B(ρ) is given by[
b0

b0

]
=

[
B0 B1 B2 B3 B0 B1 B2 B3

B̂0 B̂1 B̂2 B̂3 B̂0 B̂1 B̂2 B̂3

] [
Vs

Vs

]
(13)

where[
Vs Vs

]T
=

[
v0 v1 v2 v3 v0 v1 v2 v3

]T
(14)

The sub-matrices of branch admittance matrices are catego-
rized into these four groups

• Bk, k = 0, 1, 2, 3 are the matrix coefficients for voltages
vk corresponding to branch currents in b0.

• Bk, k = 0, 1, 2, 3 are the matrix coefficients for voltages
vk corresponding to branch currents in b0.
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• B̂k, k = 0, 1, 2, 3 are the matrix coefficients for voltages
vk corresponding to branch currents in b0.

• B̂k, k = 0, 1, 2, 3 are the matrix coefficients for voltages
vk corresponding to branch currents in b0.

The defined sub-matrices of the admittance matrices will be
used in the formulation of the regression equation to estimate
the voltage vectors v2, v3, v2, and v3.

C. Voltage state estimation

For a given placement parameter ρ, the state estimation
aims at estimating voltages v2, v3, v2, and v3 of the nodes
in S2, S3, S2, and S3. To estimate the voltages the following
regression is used

ΦY (ρ)
[
v2 v3 v2 v3

]T
= I (15)

where vector I is given by

I =
[
b0 b0 i0 i2

]T −ΨV (ρ)
[
v0 v1 v0 v1

]T
(16)

and the measured voltage-admittance matrix ΨV (ρ) is given
by

ΨV (ρ) =


B0 B1 B0 B1

B̂0 B̂1 B̂0 B̂1

Y00 Y01 Y00 Y01

Y20 Y21 Y20 Y21

 (17)

The regressor matrix ΦY (ρ) in (20) is given by

ΦY (ρ) =


B2 B3 B2 B3

B̂2 B̂3 B̂2 B̂3

Y02 Y03 Y02 Y03

Y22 Y23 Y22 Y23

 (18)

where the regressor matrix ΦY (ρ) ∈
C(nb+nb+n0+n2)×(n2+n3+n2+n3) and the voltage-admittance
matrix ΨV (ρ) ∈ C(nb+nb+n0+n2)×(n0+n1+n0+n1).

To estimate the unmeasured voltages v2, v3, v2, and v3,
a least squares problem is formulated as

min
[v2 v3 v2 v3]T

||ΦY (ρ)[v2 v3 v2 v3]
T − I||22 (19)

where the regressor matrix ΦY (ρ) is known. The solution to
(19) is given as[

v2 v3 v2 v3

]T
= ΦY (ρ)

†I (20)

where ΦY (ρ)
† = (ΦY (ρ)

TΦY (ρ))
−1ΦY (ρ)

T . Unique
determination of the voltage vectors v2, v3, v2 and v3

in (20) implies the regressor matrix ΦY (ρ) having linearly
independent columns. It should be noted that the size of
ΦY (ρ) depends on the number of PMUs available on the
network, while rank properties depend on where PMUs are
placed indicated by the placement parameter ρ.

D. Minimum number of PMUs

Consider a power network N with N nodes where n
PMUs (n < N ) are to be placed with each measuring nc

nodal/branch currents (nc ≥ 1).
Definition 3.1: The node voltages of the network are

observable if the regression matrix ΦY (ρ) in (15) has full
column rank.

Lemma 3.1: For a given network N , there exists a place-
ment parameter ρ for minimum number of PMUs Nmin

pmu

which makes the voltage states of the network observable
according to Definition 3.1 where

Nmin
pmu = min

ρ
⌈N − n2(ρ) + n0(ρ)

nc + 1
⌉ (21)

where n2(ρ) is the size of nodal set S2, n0(ρ) is the size
of nodal set S0 and ⌈.⌉ is defined as ⌈x⌉ = a such that a ∈
Z+ and x+ 1 ≥ a ≥ x.
Compared to the minimum PMU lemma in [8] for network
with complete admittance information given by

Nmin
pmu = ⌈N − n2

nc + 1
⌉ (22)

It is observed that more PMUs are required for the same
network when partial admittance information is available.

E. Proof of Lemma 3.1

For complete observability, the regressor matrix ΦY(ρ)
should be full column rank from Definition 3.1. Since the
regressor matrix ΦY (ρ) is a function of the placement
parameter ρ, we can choose a ρ such that the regressor matrix
ΦY (ρ) has full column rank for complete observability as
per Definition 3.1. This implies that n2 + n3 + n2 + n3

columns of regressor matrix ΦY are linearly independent
having dimension nb + nb + n0 + n2. This is possible when

nb + nb + n0 + n2 ≥ n2 + n3 + n2 + n3 (23)

The PMU on buses in S1 and S1 will measure nc branch
currents, and the PMU on buses in S0 and S0 will measure
nc−1 branch currents, hence the number of measured branch
currents is given by

nb = nc × (n1 + n1) + (nc − 1)× (n0 + n0) (24)

Hence the inequality is expressed as

nc × (n1 +n1)+ (nc − 1)× (n0 +n0)+n0 +n2 ≥ n2 +n3

where the number of PMUs Npmu = n1(ρ)+n0(ρ)+n1(ρ)+
n0(ρ) because the PMUs will either be installed on nodes in
S0, S1, S0, or S1. Hence the inequality is written as

nc ×Npmu − n0 − n0 + n0 + n2 ≥ n2 + n3 + n2 + n3

nc ×Npmu + n2 ≥ N − (n0 + n1 + n0 + n1)

Npmu ≥ N − n2 + n0

nc + 1

Since the nodal sets S2 and S0 are determined by the
placement parameter ρ, the respective sizes of the nodal sets
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are a function of ρ as well and are denoted by n2(ρ) and
n0(ρ). Hence the minimum number of PMUs is given by

Nmin
pmu = min

ρ
⌈N − n2(ρ) + n0(ρ)

nc + 1
⌉ (25)

IV. MINIMIZING ESTIMATION VARIANCE

Although Lemma 3.1 states the minimum number of
PMUs required for complete observability for any given
network with partial network admittance information, it does
not state where the PMUs should be placed. The goal is
to have better estimates of the unmeasured voltages as the
PMUs placed on nodes belonging to nodal sets S0, S1, S0,
and S1 will have measurement noise.

The noise due to PMU measurements of voltages in v0,
v1, v0, and v1 and currents in b0, b0, i0 and i2 can result
in inaccurate voltage estimates. Hence, it is important to
minimize variance of voltages in v2, v3, v2, and v3 induced
by PMU measurement noise. This is done by formulating
the variance of the estimated states as a function of PMU
measurement noise parameters and placement parameter ρ
and then finding the optimal placement parameter ρ that
minimizes the noise of the estimates.

A. PMU measurement noise model
As assumed in [8], all PMU measurement noise are zero

mean and have a given variance uncorrelated to each other.
Based on the assumptions, the measurement noise of voltages
v0, v1, v0, and v1 has the following variance-covariance
matrix 

Λn0×n0
0n0×n1

0n0×n0 0n0×n1

0n1×n0
Λn1×n1

0n1×n0
0n1×n1

0n0×n0
0n0×n1

Λn0×n0
0n0×n1

0n1×n0
0n1×n1

0n1×n0
Λn1×n1

 (26)

where Λk×k for k = n0, n1, n0, n1 is the diagonal variance
matrices for nodal sets S0, S1, S0, and S1. respectively. The
diagonal entries of Λk×k for k = n0, n1, n0, n1 are λS0

i , λS1
i ,

λS0
i , and λS0

i for nodal sets S0, S1, S0, and S1. respectively
where i is the corresponding node in the nodal sets. In (26),
the 0m×n is a zero matrix of size M×N . The measurement
noise of current measurements b0, b0, i0, and i2 has the
same variance-covariance matrix structure as in (26) and is
given by 

µnb×nb
0nb×nb

0nb×n0
0nb×n2

0nb×nb
µnb×nb

0nb×n0
0nb×n2

0n0×nb
0n0×nb

µn0×n0 0n0×n2

0n2×nb
0n2×nb

0n2×n0 µn2×n2

 (27)

where the diagonal matrices µnb×nb
, µnb×nb

, µn0×n0
, and

µn2×n2 are the variance matrices of measured current vectors
b0, b0, i0 and i2 with diagonal entries µb0

i , µb0
i , µS0

i , and
µS2
i where i is the corresponding node. It is assumed that

all installed PMUs have the same noise characteristics with
λ and µ ∈ R as the voltage and current noise variance
respectively. To find the optimal placement parameter ρ, the
variance of the estimated voltages v2, v3, v2, and v3 has to
be formulated as the function of the voltage noise variance
λ and current noise variance µ.

B. Estimated Voltage Variance

The variance of the estimated voltages is given by

var(
[
v2 v3 v2 v3

]T
) = ΦY(ρ)†(var(I))(ΦY(ρ)†)T

(28)
where var(.) represents the variance of the vector. The
variance of I is written as

var(
[
b0 b0 i0 i2

]T
)+ΨV (var(

[
v0 v1 v0 v1

])
)ΨT

V (29)

since the noise model assumes no correlation between volt-
ages and currents. Based on (26) and (27), the variance in
(29) is formulated as the function voltage noise variance λ
and current noise variance µ as the following

var(I) = µInb+nb+n0+n2
+ΨV (ρ)(λIn0+n1+n0+n1

)ΨV (ρ)
T

(30)
where Im×m is an m×m identity matrix. Substituting (30)
in (28), the variance of estimated voltage states is formulated
as the function of noise in the following way

var(
[
v2 v3 v2 v3

]T
) = ΦY(ρ)†(µInb+nb+n0+n2

+

ΨV (ρ)(λIn0+n1+n0+n1)ΨV (ρ)
T )(ΦY(ρ)†)T

(31)

In (31), the variance of the estimates is a function of the
placement parameter ρ. To determine the optimal placement
parameter ρ which will define optimal PMU placement to
minimize the variance on the estimated states, the following
optimization criterion is used

min
ρ

tr(ΦY(ρ)†(µInb++nb+n0+n2+

ΨV (ρ)(λIn0+n1+n0+n1)(ΨV (ρ))
T )((ΦY(ρ))†)T )

s.t. rank(ΦY(ρ)) ≥ n2 + n3 + n2 + n3

(32)

where tr(.) denotes the trace of the matrix and rank(.)
denotes the rank of the matrix. As given in Definition 3.1, the
rank of ΦY(ρ) must be at least n2+n3+n2+n3 for complete
observability. Clearly, the constraint rank(ΦY(ρ)) = n2 +
n3 + n2 + n3 in (32) gives the minimum number of PMUs
for complete observability and their optimal placements for
the least variance for those number of PMUs. Since both the
regressor matrix ΦY(ρ) and the voltage-admittance matrix
ΨV (ρ) are a function of the placement parameter ρ, optimal
placement parameter ρ will lead to the optimal placement of
PMUs.

V. APPLICATION TO IEEE-14 BUS

To demonstrate the OPP method, the IEEE-14 bus model
[12] is chosen as an example which has no nodal current be-
ing injected at Bus 7 and the lines (1, 2), (4, 7), (5, 6), (6, 12)
and (13, 14) have unknown admittances. As given in [6], the
values of the PMU measurement noise parameters, voltage
noise variance and current noise variance are λ = 3.8×10−5

and µ = 2.7× 10−5 respectively. Single channel PMUs are
considered for placement, which measure current in one line
and voltage at a bus.
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TABLE I
NODAL SETS DEFINED BY THE OPTIMAL PLACEMENT PARAMETER ρopt

S0 { } S0 { 7}
S1 { 3,10} S1 { 2, 5, 6, 12, 14}
S2 { } S2 { }
S3 { 8, 9, 11} S3 { 1,4,13}

A. Optimal placement of PMUs

Based on the optimization criterion in (32), the optimal
placement parameter ρopt has defined the nodal sets and
branch sets in Table I. The line currents being measured by
the PMUs are given by the current vectors b0 = [I10,11]
and b0 = [I2,4, I3,4, I5,1, I6,11, I7,8, I12,13, I14,9].
The placement parameter ρopt places the PMUs
on eight buses 3, 10, 7, 2, 5, 6, 12, 14 measuring lines
(3, 4), (10, 11), (7, 8), (2, 4), (5, 1), (6, 11), (12, 13), (14, 9)
respectively. This confirms Lemma 3.1 of placing 7 PMUs.

B. Voltage state estimation

Based on (19), the estimates of v3 and v3 are computed for
the optimal placement ρopt. To illustrate how (32) minimizes
the effect of PMU measurement noise on the estimates, a
sub-optimal placement ρsub opt is considered where S0 = {},
S1 = {3, 9, 10}, S2 = {},S3 = {8, 11},S0 = {7},S1 =
{1, 2, 6, 12},S2 = {}, and S3 = {13, 4, 5, 14} where 8
PMUs are deployed at buses 3, 9, 10, 7, 1, 2, 6 and 12. It
is to be noted that the placement ρsub opt also guaran-
tees complete observability of voltage states according to
Definition 3.1. The plots in Fig.1 shows that the optimal

Fig. 1. Estimated V11 comparison for optimal placement ρopt in blue and
sub-optimal placement ρsub opt in green. For illustration purpose, the noise
parameters λ and µ are multiplied by 10.

placement significantly reduces the effect of PMU noise on
the estimated voltage states. The average variance on the
estimated voltage states for placement ρopt is 3.13 × 10−5

whereas for placement ρsub opt is 3.45 × 10−5. Hence the
estimates optimal placement ρopt is 10% better than the sub-
optimal placement ρsub opt.

VI. CONCLUSIONS
This paper proposed a novel PMU placement method

for power networks with partial admittance information

that guarantees complete observability and minimizes the
effect of PMU measurement noise on the estimated voltage
states. Eight nodal sets are defined, categorizing the network
nodes based on the information available on nodal voltage,
nodal current, and the admittance information on the lines
connected to the node. A defined placement parameter ρ
determines the locations of the PMUs. The proposed least
squares estimation solution estimates the unmeasured voltage
where the regressor matrix and the voltage-admittance matrix
are functions of the placement parameter ρ. Based on the
definition of voltage state observability, a proposed lemma
states the minimum number of PMUs required for complete
observability for a given partially known network as function
of the placement parameter ρ. The optimal placement for the
minimum number of PMUs is the solution of an optimization
criterion with the objective function as a function of the
PMU measurement noise parameters. The proposed method
determines the minimum number of single current measuring
channel PMU on a modified IEEE-14 bus network to be 8.
The optimal placement of the PMUs reduced the variance on
the estimates by 10% compared to a sub-optimal placement
of the PMUs.
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