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Abstract— Passivity-based controllers which ensure the
asymptotic stability of the closed-loop system can be developed
with the aid of the Krasovskii passivity notion. However,
there are no available design procedures to impose a set of
performances. The main focus of the current paper is to
formulate an optimization problem whose solution provides the
parameters of a Krasovskii passivity-based controller (K-PBC)
which ensures local exponential stability with a maximized
lower bound of the decay rate. After a convexification procedure
we obtain a linear programming problem with linear matrix
inequality constraints. The numerical example underlines the
advantage of the proposed method by emphasizing the differ-
ence between an optimized and a default controller obtained
without optimization.

I. INTRODUCTION

A. Literature Review

The class of bilinear systems represents a natural gener-
alization of linear systems, representing a gateway between
linear and nonlinear systems. Moreover, this framework is
able to provide a more accurate model in various domains,
such as transmission and power systems, or is used to
approximate the behaviour of switching systems [1]. Even
if the framework of bilinear systems has been studied since
1960s, there are recent papers which deal with this class of
problems as an intermediate step for approaching the more
general case of input-affine nonlinear systems [2]. Other
bilinear system applications can be found in [3] and [4].

The problem of finding a state feedback controller which
guarantees global asymptotic stability (GAS) has been stud-
ied for a particular case of bilinear systems in [5], while for
the more general drift-free case the problem has been solved
in [6] using linear matrix inequalities (LMIs). Another set of
conditions to find a static and a dynamic feedback controller
which ensures GAS of multi-input multi-output (MIMO)
bilinear systems with undamped natural response has been
developed in [7]. The problem of quadratic optimal control
for both finite-time and infinite-time cases are studied in [8].
A state-dependent switching controller for MIMO bilinear
systems with constant delays using Lyapunov-Krasovskii
functions has been proposed in [9]. The problem of uniform
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exponential stabilization of finite and infinite bilinear systems
with multiplicative control inputs was addressed in [10].
Furthermore, in [11] the authors propose a method to find
the least restrictive requirements to interconnect systems such
that the result maintains stability and dissipativity.

For the purpose of this paper we consider the passivity
notion to design a controller which ensures local exponential
stability. The passivity concept is a particular case of dissi-
pativity and is used to develop the so-called passivity-based
controllers (PBCs). The monograph [13] presents several
feedback passivation techniques to impose the passivity
property using analytic and geometric tools. A compact
overview of L2-gain theory and passivity concepts for a
general class of nonlinear systems is presented in [14]. The
recent paper [15] presents a method to find PBC using
the concept of Krasovskii passivity [16], and presents the
relations between this type of passivity and shifted passivity,
differential passivity [17], and incremental passivity [18]. A
less conservative set of sufficient conditions for guaranteeing
Krasovskii passivity for the case of input-affine systems with
polytopic cover has been showed in [19]. A passity index-
based approach to study and impose passivity of connected
two input feed-forward output-feedback systems is presented
in [20], while the letter [21] addresses the problem of max-
imizing the passivity level of the closed-loop system using
specified controller structures through numeric optimization.
Their solution works for both continuous and discrete cases.

B. Research Gaps and Contributions

The notion of Krasovskii passivity has been introduced
in the above mentioned papers, along with a possibility to
construct first-order and second-order Krasovskii passivity-
based controllers. However, from our findings, the problem
of designing the K-PBC’s parameters to impose a set of
performance indices has not been addressed. In [22] the
authors studied the problem in an preliminary version for
the first-order controller case using ad hoc root-locus-type
analysis and a metaheuristic approach. In the same paper it
was additionally proved that, even if the asymptotic stability
can be guaranteed, the state trajectories could be slower and
more oscillating if the controller’s parameters are not well
calibrated. As such, the main goal of the current paper is to
present a method to design the controller’s parameters which
guarantees exponential stability with an optimized decay rate.
The main contributions of the current paper are:

(i) to formulate an optimization problem in terms of the
K-PBC’s parameters for the general case of multi-input
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and multi-output bilinear systems in lower linear frac-
tional transform interconnection with first- and second-
order Krasovskii passivity-based controllers such that
the local exponential stability can be ensured and the
convergence rate is maximized;

(ii) to convexify the above mentioned optimization problem
using a variable change such that the final problems
from Section III become linear programming (LP) types
with LMI constraints;

(iii) to underline the importance of the proposed method
on a numerical example adapted from the literature
by comparing the behaviour of the closed-loop system
obtained using the controller by the proposed method
against possible behaviours without the optimization.

C. Paper Structure and Notations

The paper is organized as follows: in Section II some
preliminary results from the literature regarding Krasovskii
passivity are presented; Section III formulates the problem of
designing first-order and second-order Krasovskii controller
parameters to ensure exponential stability, along with a step-
by-step convexification procedure to formulate a convex
optimization problem for maximizing the convergence rate;
the main theoretical contributions of the paper are illustrated
through a numerical example in Section IV, while Section V
presents the conclusions.

Notations: S+n is the set of symmetrical and positive
definite real matrices of order n. For P ∈ S+n we consider
the induced norm ∥x∥P =

√
x⊤Px. Sym(A) = 1

2 (A+A⊤)
is the symmetrical part of a matrix A ∈ Rn×n.

II. KRASOVSKII PASSIVITY FOR BILINEAR SYSTEMS

In this section we briefly overview the main results re-
garding Krasovskii passivity presented in [15] for the par-
ticularized case of bilinear systems, with a less conservative
set of conditions for Krasovskii passivity underlined in [19].

Definition 1: An input-affine nonlinear system of order n
having the state vector x ∈ Rn:ẋ = g0(x) +

nu∑
i=1

gi(x)ui ≡ f(x,u);

y = h(x),

(1)

is called bilinear if the functions gi : Rn → Rn can be
written as gi(x) = Aix+bi, Ai∈Rn×n and bi∈Rn, i=1, nu.

Passivity is a particular case of the dissipativity notion
introduced in [12], and consists in finding a storage function
S : Rn → R+ of class C1 such that:

∂S(x)

∂x
f(x, u) ≤ y⊤ · u, (∀) (x,u) ∈ Dx ×Du, (2)

where Dx is the reachable domain of the state vector x
and Du is the admissible inputs domain. However, there
are cases when the input-output pairs for which the system
is passive do not include control inputs, so the passivity-
based controller cannot be computed. A solution consists in

extending the system as follows:
ẋ = g0(x) +

nu∑
i=1

gi(x) · ui;

u̇ = ud;

yd = hK(x̃),

(3)

resulting in a new state vector x̃ =
(
x⊤ u⊤)⊤ ∈ Rn+nu ,

while hK : Rn×Rnu → Rnu is an auxiliary output function
of class C1 and ud is the new input vector. The extended
system has been used to define the Krasovskii passivity of
system (1) in terms of the passivity of the extended system:

Definition 2 ([15]): System (1) is called Krasovskii pas-
sive at a given forced equilibrium point (x⋆, u⋆) if there
exists a class C1 storage function SK : Rn×R → R+ such
that SK(x⋆, u⋆) = 0 and:

∂SK(x, u)

∂x
f(x, u) +

∂SK(x, u)

∂u
ud ≤ ud · yd, (4)

for each (x, u) ∈ Dx ×Du and ud ∈ Dud
.

A set of necessary and sufficient conditions for a system
to be Krasovskii passive consists in:

Lemma 1 ([15]): System (1) is Krasovskii passive at a
given forced equilibrium point (x⋆, u⋆) if and only if there
exists a class C1 function SK : Rn × R → R+ such that
SK(x⋆, u⋆) = 0 and:

∂SK(x,u)

∂x
f(x, u) ≤ 0

∂SK(x,u)

∂u
= h⊤

K(x)
, ∀(x,u) ∈ Dx ×Du. (5)

For the special case of the storage function:

SK(x,u) = ∥f(x, u)∥2Q = ∥ẋ∥2Q, Q ∈ S+n , (6)

then the output function hK ensures the passivity of the
extended system (3) and, by default, the Krasovskii passivity
of the system (1), can be constructed as follows:

hK(x,u) =

 x⊤A⊤
1 + b⊤1
...

x⊤A⊤
nu

+ b⊤nu

 ·Q · ẋ, (7)

if the matrix Q satisfies the first condition from (5). For the
case of bilinear systems, the said condition is equivalent to
the following infinite set of LMIs:

QA0 +A⊤
0 Q+

nu∑
i=1

(
QAi +A⊤

i Q
)
ui ≤ 0, (∀) u ∈ Du.

(8)
However, in the practical case of considering a bounded input
domain Du = [u1, u1]×· · ·×[unu

, unu ], the previous infinite
set of LMIs can be converted, due to its convex nature, into
the following 2nu LMIs:

QA0 +A⊤
0 Q+ (9)

nu∑
i=1

(
ei
(
QAi +A⊤

i Q
)
ui + (1− ei)

(
QAi +A⊤

i Q
)
ui

)
≤ 0,

for each e =
(
e1 . . . enu

)
∈ Znu

2 .
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Considering this type of passivity, a methodology to de-
sign first- and second-order type Krasovksii passivity-based
controllers (K-PBCs) has been introduced in [15]. The state
vector is given by xc = u− u⋆. The first-order structure is:

yc = ẋc = − (K1xc +K2uc) ≡ fc,1(xc,uc), (10)

where uc and yc are the input and output signals, respec-
tively. For the second-order type K-PBC we have:

yc = ẍc = −(K3ẋc +K1(u−u⋆) +K2uc) ≡ fc,2(xc,uc).
(11)

In both cases, the terms K1,K2,K3 ∈ S+nu
are the con-

troller parameters which ensure their Krasovskii passivity.
By considering the classical lower linear fractional transform
(LLFT) interconnection between the plant and the controller,
i.e. yc ≡ ud and uc ≡ yd, the resulting closed-loop system
is also Krasovskii passive.

It was proved in [15] that the Krasovskii passivity along
with detectability of the closed-loop with two sets of outputs
system are sufficient conditions for asymptotic stability. Re-
call one of the main results from [15]. The above mentioned
output signals are:{

y1 = ∂SK(x,u)
∂x f(x,u);

y2 = K1(u− u⋆) + yd.
(12)

Lemma 2: The detectability condition for the particular
case of bilinear systems is equivalent to having the matrix

A0 +

nu∑
i=1

Aiu
⋆
i Hurwitz.

Proof: From y2 ≡ 0 and u = u⋆ we have yd =
hK(x,u⋆) = 0. Moreover, for considering u = u⋆ we have:

ẋ− 0 =(A0x+ b0) +

nu∑
i=1

(Aix+ bi)u
⋆
i−

− (A0x
⋆ + b0)−

nu∑
i=1

(Aix
⋆ + bi)u

⋆
i ,

which implies:

ẋ =

(
A0 +

nu∑
i=1

Aiu
⋆
i

)
(x− x⋆) ,

and the condition lim
t→∞

x(t) = x⋆ is equivalent to having the

matrix

(
A0 +

nu∑
i=1

Aiu
⋆
i

)
Hurwitz.

III. EXPONENTIAL STABILITY ANALYSIS

Definition 3: A nonlinear system having the form (1) is
global exponentially stable at x⋆ if there exist two real
constants α, β > 0 such that, for each initial point x0 ∈ Rn,
the state trajectory starting from x0, denoted by ξ(x0, t),
fulfills the inequality:

∥ξ(x0, t)− x⋆∥ ≤ α · e−β·t∥x(0)− x⋆∥. (13)

Furthermore, the term β is called the exponential decay rate.
However, sometimes the behaviour is valid in a certain

region around the equilibrium point, the system being locally

exponentially stable. For such cases, the domain of the initial
points for which this property is valid should be estimated.

Definition 4: The initial points for which the inequality
(13) is valid is called the region of attraction (RoA) of rate
β and is denoted by D(β)

x .
According to Lemma 3.2 from [12], D(β)

x is an open,
connected and invariant set. However, each RoA can be
generally estimated instead of being explicitly computed. In
order to study the local exponential stability at x⋆ we use
the following result:

Theorem 1: A system (1) is locally exponentially stable at
x⋆ with respect to a RoA Dx if there exists a continuously
differentiable function V : Rn → R+ and three constants
a, a, a3 > 0 such that:

a∥x∥2 ≤ V (x) ≤ a∥x∥2, ∀x ∈ Dx, (14a)

V̇ (x) < −a3∥x∥2, ∀x ∈ Dx, (14b)

the exponential decay rate being lower bounded by a3

2a .

A. First-Order Controller

Considering the bilinear system (1) in the extended form
(3) and the first-order K-PBC from (10), the closed-loop
system can be written as follows:

ẋ = (A0x+ b0) +

nu∑
i=1

(Aix+ bi)ui;

u̇ = −K1u−K2


x⊤A⊤

1 + b⊤1
...

x⊤A⊤
nu

+ b⊤nu

 ·Q · ẋ+K1u
⋆.

(15)
For the remainder of the paper, consider the next shorthand

notation to consistently describe the functions gi, i=1, nu:

g(x) =
(
A1x+ b1 . . . Anux+ bnu

)
. (16)

The gradient of the closed-loop state function (15) is:

∂fo
∂xo

=

A0 +

nu∑
i=1

Aiui g(x)

−K2 · a⊤(Q) −K1 −K2Π(Q)

 , (17)

where:

Π(Q) =
(
(Aix+ bi)

⊤Q(Ajx+ bj)
)
1≤i,j≤nu

(18)

and
a(Q) =

(
a1(Q) . . . anu(Q)

)
, (19)

ai(Q) = A⊤
i Q(A0x+ b0) +A⊤

0 Q(Aix+ bi)+ (20)
nu∑
j=1

(
A⊤

j Q(Aix+ bi) +A⊤
i Q(Ajx+ bj)

)
uj .

To study the exponential stability of the closed-loop sys-
tem, we consider the function V (x) = 1

2∥x∥
2
P as a Lyapunov

function, having the following structure:

P =

(
P11 O
O P22

)
, P11 ∈ S+n , P22 ∈ S+nu

. (21)
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Sym


P11

(
A0 +

nu∑
i=1

Aiui

)
P11g(x)

−P22K2 · a⊤(Q) −P22K1 − P22K2Π(Q)


 < −

1

2
a3I, ∀x ∈ Dx. (22)

Sym


P11

(
A0 +

nu∑
i=1

Aiui

)
P11g(x)

−K̃2 · a⊤(Q0) −K̃1 − K̃2Π(Q0)


 < −

1

2
a3I, ∀x ∈ V {Dx} . (23)

The second condition of the exponential stability of the
closed-loop system presented in Theorem 1 is shown in (22).

But, relation (22) represents an infinite set of nonlinear
linear matrix inequalities. Therefore, a convexification pro-
cedure becomes necessary. First, it can be noticed that the
following substitution should be performed to remove a part
of the nonlinearities:

K̃1 = P22K1 ∈ S+nu
and K̃2 = P22K2 ∈ S+nu

. (24)

To remove the remaining nonlinearities, i.e. those that
appear in K̃2 ·a⊤(Q) and K̃2Π(Q), consider matrix Q as the
solution Q0 of the LMI feasibility problem described in (9).
Using the above mentioned variable changes and solution Q0

instead of Q, the nonlinear infinite set of matrix inequalities
from (22) becomes an infinite set of LMIs. To solve the final
difficulty of having an infinite set, consider only the vertices
V {Dx} of the RoA Dx. Now, the second condition of the
exponential stability can be written as in (23).

After all these considerations, the following linear pro-
gramming optimization problem with LMI constraints can
be formulated:

Problem 1: Given a bilinear system with a forced equilib-
rium point (x⋆,u⋆), a desired region of attraction Dx, and
two real parameters 0 < a < a, the exponential decay rate
can be maximized by solving the following problem:

max a3 (25)
s.t. (23) and

aI ≤ P11 ≤ aI, K̃1, K̃2 ∈ S+nu
, a3 > 0.

B. Second-Order Controller

In a similar manner with the case of the first-order con-
troller type, this subsection extends the results for the second-
order type controller. The resulting closed-loop system in this
case can be written as:

ẋ = (A0x+ b0) +

nu∑
i=1

(Aix+ bi)ui;

u̇ = ud;

u̇d = −K3ud −K1u−K2 · g⊤(x) ·Q · ẋ+K1u
⋆.

(26)
The gradient of the closed-loop state function is given by:

∂fo
xo

=


A0 +

nu∑
i=1

Aiui g(x) O

O O I
−K2 · a⊤(Q) −K1 −K2Π(Q) −K3

 ,

(27)

where Π(Q) and a⊤(Q) are defined in (18) and (19),
respectively. For the control Lyapunov function we consider
the following structure V (x) = 1

2∥x∥
2
P , with:

P =

P11 O O
O P22 O
O O P33

 , P11 ∈ S+n , P22, P33 ∈ S+nu
,

(28)
and the second condition of the exponential stability can be
written in a similar manner to (22) in relation (29).

Therefore, we obtain another infinite set of nonlinear
matrix inequalities, which requires a convexification proce-
dure. This procedure can be performed in a similar way by
considering the following variable changes:

K̃1 = P33K1, K̃2 = P33K2, and K̃3 = P33K3. (31)

Additionally, the variable Q will be set to the solution Q0

of the LMI feasibility problem (9), which guarantees the
Krasovskii passivity of the bilinear system. The issue of
having an infinite set of LMI conditions can be fixed by
considering the vertices of the region of attraction of the
equilibrium point Dx. As such, the second condition of the
local exponential stability from Theorem 1 consists in having
a solution of the LMI problem (30).

The problem of maximizing the lower bound of the
convergence decay rate can be formulated as a linear pro-
gramming problem having constraints expressed in terms of
linear matrix inequalities:

Problem 2: Considering a bilinear system with a forced
equilibrium point (x⋆,u⋆), a desired region of attraction Dx,
and two real parameters 0 < a < a, the exponential decay
rate can be maximized by solving the following problem:

max a3 (32)
s.t. (30) and

aI ≤ P11, P22 ≤ aI, K̃1, K̃2, K̃3 ∈ S+nu
, a3 > 0.

IV. NUMERICAL EXAMPLE

To illustrate the relevance of the proposed analysis, we
consider the following bilinear system with two inputs:

ẋ1 = −x2 + x2u2 + u1;

ẋ2 = x1 − x1u2 − x3u2;

ẋ3 = −x4 + x2u2 + u1;

ẋ4 = x3 − x4.

(33)

The forced equilibrium point considered for the experi-
ments presented in this section is:

x⋆ =
(
0.25 0.5 0.5 0.5

)⊤
and u⋆ =

(
1
3

1
3

)⊤
. (34)
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Sym



P11

(
A0 +

nu∑
i=1

Aiui

)
P11g(x) O

O O P22

−P33K2 · a⊤(Q) −P33K1 − P33K2Π(Q) −P33K3


 < −

1

2
a3I, ∀x ∈ Dx. (29)

Sym



P11

(
A0 +

nu∑
i=1

Aiui

)
P11g(x) O

O O P22

−K̃2 · a⊤(Q0) −K̃1 − K̃2Π(Q0) −K̃3


 < −

1

2
a3I, ∀x ∈ V {Dx} . (30)

In order to prove that the given bilinear system is
Krasovskii passive at (x⋆,u⋆), we consider the local input
domain Du⋆ = [0, 0.7] × [0, 0.7]. By solving the set of 4
LMIs from (9), the storage function which guarantees the
Krasovskii passivity is:

SK(x,u) =
1

2
∥ẋ∥Q, Q = 3424.85 · I4. (35)

Due to the homogeneity of the LMIs set (9), we can also
select the matrix Q = I4. In this case, the output function
hK(x,u) can be written as:

hK(x,u) =

(
1 0 1 0
x2 −(x1 + x3) x2 0

)
· ẋ. (36)

Moreover, the given bilinear system is detectable at
(x⋆,u⋆), according to Lemma 2 being sufficient to have
A0 + A1u

⋆
1 + A2u

⋆
2 Hurwitz. Therefore, the closed-loop

system is asymptotically stable at the forced equilibrium
point (x⋆,u⋆) for each K1,K2,K3 ∈ S+2 . To underline
the relevance of the proposed method, we impose several
configurations for the K-PBC’s parameters obtained with
the random generator mechanism from MATLAB. Figure 1
are depicts the four closed-loop trajectories obtained using
the randomly generated matrices K1 and K2 against those
obtained with the optimal values K⋆

1 and K⋆
2 . As noticed, the

optimized trajectories present a significantly faster conver-
gence rate, even though the asymptotic stability is guaranteed
by all controller configurations.

To find the parameters K⋆
1 and K⋆

2 which maximize the
lower bound of the convergence rate, Problem 1 has been
solved using the mincx from the LMI Solvers contained
in the Robust Control Toolbox in MATLAB. The following
hyperparameters were used: a = 10−3, a = 109 and the
RoA Dx = [0.2, 0.3]× [0.3, 0.7]× [0.3, 0.7]× [0.3, 0.7]. The
Lyapunov function which guarantees the local exponential
stability of the forced equilibrium point is:

P11 = 108×


2.1353 −0.4589 0.1515 0.6211
−0.4589 2.4671 −1.4968 0.6062
0.1515 −1.4968 1.4747 −0.6276
0.6211 0.6062 −0.6276 0.8518

 ,

(37)
while for P22 we consider the identity matrix times the
maximum eigenvalue of P11 to obtain K⋆

1 = K̃1

⋆
/λmax(P11)

and K⋆
2 = K̃2

⋆
/λmax(P11). The optimal parameters are:

K⋆
1 =

(
1.8217 0.7233
0.7233 1.0783

)
(38)

Fig. 1. The influence of the controller parameters to the convergence rate of
the closed-loop system: the trajectories with blue, red, yellow and purple are
represented with random parameter configurations, which still guarantee the
asymptotic stability, while the black cases denote the optimized trajectories
in terms of convergence rate.

and

K⋆
2 =

(
0.3321 0.4234
0.4234 0.5479

)
. (39)

The resulting lower bound of the convergence rate is
0.0167. The settling time of the optimized trajectories is
about 20[s], as noticed in Figure 1. Moreover, four simula-
tions considering multiple starting points from the admissible
input domains are illustrated in Figure 2, where the settling
time limit is depicted with a vertical strip.

A natural question is about the robustness of the proposed
controller in terms of equilibrium point changes. We consider
several equilibrium points for performing said analysis:

(x(1),u(1)) =
(
0.16 0.4 0.4 0.4 0.286 0.286

)⊤
;

(x(2),u(2)) =
(
0.2025 0.45 0.45 0.45 0.31 0.31

)⊤
;

(x(4),u(4)) = (0.3025 0.55 0.55 0.55 0.355 0.355)
⊤
;

(x(5),u(5)) =
(
0.36 0.6 0.6 0.6 0.375 0.375

)⊤
,

while (x(3),u(3)) ≡ (x⋆,u⋆). As noticed, pairs (x(1),u(1))
and (x(5),u(5)) are not in the imposed RoA Dx of the forced
equilibrium point. The set Dx contains a smaller RoA for the
forced equilibrium points (x(2),u(2)) and (x(4),u(4)), all of
them containing the starting point:

(x0,u0) =
(
0.2 0.6 0.6 0.4 0 0

)⊤
.
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Fig. 2. Multiple starting points for the closed-loop system simulated with
the optimized first-order K-PBC. The settling time limit is depicted with
the black vertical strip.

Fig. 3. The robustness of the proposed controllers in terms of variations
of the forced equilibrium points: Dx is a RoA for ((x(i),u(i))), i = 2, 4,
which contains the starting point, while (x(1),u(1)), (x(5),u(5)) ̸∈ Dx.
The lower bound of the convergence rate is checked by ((x(i),u(i)))∈Dx,
i = 2, 4, and, additionally, for (x(5),u(5)) ̸∈ Dx.

The closed-loop trajectories starting from (x0,u0) are
depicted in Figure 3. As noticed, the exponential stability is
fulfilled with the same convergence rate for the equilibrium
points (x(2),u(2)), (x(3),u(3)), (x(4),u(4)), and additionally
for (x(5),u(5)) (without having mathematical guarantees),
while for (x(1),u(1)) the lower bound estimation is not sat-
isfied. As such, if a larger RoA is considered, the robustness
problem can be addressed in terms of variations of the forced
equilibrium points.

V. CONCLUSIONS AND FUTURE WORK

The problem of designing a Krasovskii passivity-based
controller which ensures the asymptotic stability has been
already addressed in the literature. The current paper pro-
poses a mechanism to formulate the problem of designing K-
PBC parameters which ensure the local exponential stability
of a finite dimensional MIMO bilinear system having an
optimized lower bound of the convergence decay rate. The
initial infinite set of nonlinear matrix inequality constraints

have been successfully converted into a finite set of LMI-
based constraints, resulting a linear programming optimiza-
tion problem with LMI constraints, which is convex. More-
over, the proposed controller ensures robustness in terms of
variations of the considered forced equilibrium point.

The main research directions consist in (i) analyzing more
general input-affine nonlinear system classes, starting from
our previous results on local polytopic bounded systems [19];
(ii) to encompass uncertainties; (iii) to design an observer for
obtaining the auxiliary output function hK(x).

REFERENCES

[1] D.L. Elliott, Bilinear Control Systems, Springer, 2009.
[2] H. Omran, L. Hetel, M. Petreczky, J.-P. Richard, F.L.-Lagarrigue,

Stability analysis of some classes of input-affine nonlinear systems
with aperiodic sampled-data control, Automatica, vol. 70, pp. 266–
274, August 2016, doi:10.1016/j.automatica.2016.02.013.

[3] R. Cisneros, M. Pirro, G. Bergna, R. Ortega, G. Ippoliti, M. Molinas,
Global Tracking Passivity-based PI Control of Bilinear Systems and
its Application to the Boost and Modular Multilevel Converters, IFAC-
PapersOnLine, vol. 48, no. 11, pp. 420–425, 2015.

[4] B. Zitte, B. Hamroun, D. Astolfi, F. Couenne, Robust Control of a
Class of Bilinear Systems by Forwarding: Application to Counter
Current Heat Exchanger, 21st IFAC World Congress: Berlin, Germany,
11–17 July 2020, doi:10.1016/j.ifacol.2020.12.603.

[5] H. Jerbi, Global Feedback Stabilization of New Class of Bilinear
Systems, Systems and Control Letters, vol. 42, pp. 313–320, 2001.

[6] F. Amato, C. Cosentino, A. Merola, Stabilization of Bilinear Systems
via Linear State Feedback Control, IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 56(1), pp. 76-80, 2009.

[7] G. Lu, Y. Zheng, C. Zhang, Dynamical Output Feedback Stabilization
of MIMO Bilinear Systems with Undamped Natural Response, Asian
Journal of Control, vol. 5(2), pp. 251–260, 2003.

[8] S. Yahyaoui, M. Ouzahra, Quadratic optimal control and feedback
stabilization of bilinear systems, Opt. Ctrl. App. Meth., pp. 1–13, 2021.

[9] T. Sanchez, A. Polyakov, E. Fridman, L. Hetel, A Switching Controller
for a Class of MIMO Bilinear Systems With Time Delay, IEEE
Transactions on Automatic Control, vol. 65(5), 2020.

[10] M. Ouzahra, Exponential Stabilization of Unstable Bilinear Systems
in Finite- and Infinite-Dimensional Spaces, IEEE Transactions on
Automatic Control, vol. 66(12), pp. 5982-5989, 2021.
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