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Abstract— In this paper, we study discrete-time linear
switched systems by leveraging tools from symbolic dynamics
and language theory. More specifically, viewing path-complete
Lyapunov functions (PCLF) associated with the switched system
as finite automata, we investigate the coverings of bi-infinite
words generated via a PCLF and develop a framework for
comparing two different PCLFs via these coverings. However,
in most of the cases PCLFs are not comparable with regards to
one corresponding to a better stability criterion than the other.
For this purpose, we utilize the notion of support sets, which is
a subset of paths in a PCLF that is sufficient to obtain the same
performance index as that of the entire set of bi-infinite words
generated by the PCLF, to obtain partial relations between two
coverings. We also illustrate a numerical example to justify the
study of support sets via the covering framework.

Index Terms— finite automata, graph theory, switched sys-
tems, multiple Lyapunov functions.

I. INTRODUCTION

Switched systems form an important class of hybrid
systems providing suitable complexity for numerous mathe-
matical models like consensus in social networks [3], smart
sustainable buildings [17], digital circuits [9], robotics [20]
etc. Pertaining to the involved structure of hybrid systems,
Lyapunov methods have proved to be crucial in providing
tools for understanding the stability of switched systems [1],
[15], [19]. One such method involving multiple Lyapunov
functions was introduced in [2] comprising of a directed
labelled graph with each edge representing an inequality
between two Lyapunov functions and the labels on the
edges denoting different modes of the switched system. By
construction these graphs are strongly connected and are
commonly referred to as path-complete graphs (see Section
II for formal definition and formulation of Lyapunov criteria
via these graphs). The graph theoretic structure allows for
construction of Lyapunov criteria with added versatility.
Efforts have been made in the recent past to systematically
characterize these path-complete graphs based on the per-
formance of the corresponding candidate Lyapunov criteria
provided. For example, in [14] combinatorial techniques are
used to obtain an ordering between path-complete graphs
based on the ability of the corresponding criteria to show
stability for a large class of switched systems. However, in
practice we need to define a template of Lyapunov functions
along with the labelled directed graph setup to comment on
the conservativeness of a criterion. For this purpose, template
dependent ordering of path-complete graphs has been studied
in [22] and [23] for polytopic templates and templates closed
under addition respectively.
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In this paper, we propose a language theory based frame-
work for comparison of path-complete graphs for the pur-
pose of understanding the stability properties of a linear
discrete-time switched system. More specifically, the strong
connectivity in path-complete graphs allocates them to finite
automata generating regular languages (we refer the readers
to [7] for a comprehensive study on regular languages),
which allows us to associate a subset of bi-infinite words
from a regular language to a particular node of the path-
complete graph. A collection of such subsets is denoted by “a
covering” and is formally defined in Section II. This in turn
enables us to study ordering between path-complete graphs
from a set-theoretic perspective. However, in most scenarios,
the path-complete graphs are not comparable in the sense
that for some cases, a graph G1 provides a better stability
criterion than another graph G2, while for some other cases
G2 provides a better stability criterion than G1. Taking this
into account, in this paper, we establish a weaker form of
ordering between graphs which relies on the construction of
suitable support sets (described in Section IV).

This paper is organised as follows: In Section II, we
provide the necessary preliminaries and definitions required.
In Section III, we establish a relationship between coverings
of path-complete graphs obeying simulation relation. We
define the notion of support set on these graphs in Section IV
and furthermore analyze the structural properties of graphs
constructed via these support sets. In Section V, we use the
concept of support sets to establish a more relaxed notion
of simulation between graphs and obtain a relation between
corresponding coverings. To provide a rationale for the study
of support sets and coverings of path-complete graphs, we
give a numerical example for the same in Section VI. Finally,
conclusions and future work are stated in Section VII.

II. PRELIMINARIES AND DEFINITIONS

Throughout the paper, we consider the following formu-
lation for a linear discrete-time switched system:

x(t+ 1) = Aϕ(t)x(t) for all t ∈ Z, (1)

where the state x(t) ∈ Rn for all time instances t ∈ Z,
ϕ(t) : Z → {1, · · · ,M} is the switching signal with M
modes and Ai are fixed n×n matrices for i ∈ {1, · · · ,M}.
For convenience of notation, for two modes we denote the
switching signal by ϕ(t) : Z → {a, b}. The system (1) is
said to be globally asymptotically stable if for any initial
state x(0) ∈ Rn, and any switching signal ϕ(t), we have
limt→∞ x(t) = 0. This stability problem has been widely
studied via the joint spectral radius which was introduced in
paper [8] and is defined as follows:
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Definition 1: (Joint Spectral Radius). Given a finite set of
square matrices A := {A1, · · · , AM} having same size, the
joint spectral radius (JSR) of the set A is given by:

ρJSR(A) := lim
k→∞

max
ϕ(i)∈{1,··· ,M}

1≤i≤k

||Aϕ(k) · · ·Aϕ(1)||
1
k , (2)

where, ||.|| is a matrix norm and ρJSR(A) does not depend
on the norm.
It is well-known that system (1) is globally asymptotically
stable if and only if the joint spectral radius of the set
A := {A1, A2, · · · , AM} is strictly less than one. However,
the problem of verification of JSR being less than one given a
set of matrices A is undecidable. Several Lyapunov methods
have been proposed to study the stability property of system
(1). We refer the readers to [6] for an extensive survey of
various Lyapunov criteria developed for stability analysis of
switched systems. In this paper, we focus on analyzing the
performance of different path-complete Lyapunov functions
which serve as stability criteria for system (1). To this end,
we state all the graph theoretic preliminaries required to
formally define path-complete Lyapunov criteria for switched
systems.

Definition 2: (Labeled Graphs on Σ). Given a set Σ, a
labeled graph on Σ is defined by a directed graph G =
(S,E), where S is a finite set of nodes and E ⊆ S×S×Σ
is the set of labeled edges. Given e ∈ (s, q, i) ∈ E, s and q
are the starting and arrival nodes of e respectively.

Definition 3: (Paths on G). Given G = (S,E) and a
tuple ı̂ = (i0, · · · , iK−1) ∈ ΣK , a path on G labeled by
ı̂ is a sequence of consecutive edges ē = e1, · · · , eK =
(s0, s1, i0), (s1, s2, i1), · · · , (sK−1, sK , iK−1) ∈ EK la-
beled by ı̂. s0 and sK are the starting and arrival node of
this path respectively. Given a path ē, we denote its label
sequence by L(ē) := i0i1 · · · iK−1.

Definition 4: (Path-Complete Graph) A directed and la-
belled graph G = (S,E) is said to be path-complete if and
only if for any given sequence of labels (i0, i1 · · · iK−1) ∈
ΣK , there exists a path in G with label sequence
i0i1 · · · iK−1.
We now state the formulation of path-complete Lyapunov
functions as given in [2].

Definition 5: (Path-Complete Lyapunov Function) Given
a linear discrete-time switched system with modes A =
{A1, A2, · · · , AM}, a path-complete Lyapunov function
(PCLF) for A on a directed graph G = (S,E) labelled by
Σ = {1, 2, · · · ,M} is given by V := {Vs |s ∈ S} such
that each Lyapunov function Vs : Rn → R is continuous,
positive, homogeneous and the following inequalities are
satisfied:

Vb(Aix) ≤ Va(x) for all (a, b, i) ∈ E, x ∈ Rn. (3)

The set V is said to be admissible for graph G and set of
matrices A.
In order for inequalities in (3) to be tight, we can presume
that the graph G is strongly connected. Furthermore, for the
convenience of notation, we denote a PCLF criterion V by
the underlying path-complete graph G hereafter. As shown

in paper [2], the existence of a PCLF on A guarantees
the global asymptotic stability of its associated switched
system. However, a given PCLF criteria can happen to be
too stringent or conservative depending on the set of matrices
A. In this paper, we want to analyze the quality of different
PCLFs by exploiting the underlying graph structure. To this
end, we state the definition of performance index for a PCLF
as given in [18].

Definition 6: (Performance index of path-complete graph)
Given a set of matrices A and a path-complete graph G =
(S,E) in which the associated Lyapunov functions in the
set V = {Vs |Vs ∈ S} follow a template T , we define
the performance index of G (denoted by ρG,T (A)) as the
infimum over all non-negative real ρ such that G has an
admissible solution for set A/ρ := {Ai/ρ |Ai ∈ A}.
It is shown in paper [2, Theorem 2.4], that the performance
index provides an upper bound on the trajectories of system
(1) and thus smaller the performance index ρG,T (A), better
is the stability criteria provided by the path-complete graph
G for the set of matrices A and template T .

Furthermore, from language theory perspective, given a set
of finite modes of the switched system Σ := {1, · · · ,M}, we
want to study the bi-infinite sequences (ϕ(t))t∈Z as elements
of a full-Σ shift space which is formally defined as:

ΣZ := {(zi)i∈Z | zi ∈ Σ,∀i ∈ Z}. (4)

We refer to the set Σ as the alphabet of a language. A K-
length word of Σ is a finite sequence of elements from Σ
of length K > 0 and is given by ı̂ := (i0, · · · , iK−1) ∈
Σ⋆ :=

⋃
K∈N ΣK(the Kleene closure of Σ). We denote the

length of word ı̂ by |̂ı|. We further define the shift function
σ : ΣZ → ΣZ as follows:

σ(z) = ω such that ωk = zk+1 for all k ∈ Z (5)

Definition 7: (Bi-infinite walks on G). Given a bi-infinite
sequence z̄ = (· · · , z−1, z0, z1, · · · ) ∈ ΣZ, a bi-infinite walk
labeled by z̄ is a bi-infinite sequence of consecutive edges
π̄ = (· · · , e−1, e0, e1, · · · ) ∈ EZ, such that L(ek) = zk for
all k ∈ Z (where, L : E → Σ is the labeling function defined
in Definition 3).
Given a labeled graph G = (S,E) on an alphabet Σ, we
define the following two subsets of the full-Σ shift space:

Z(G) := {z̄ ∈ ΣZ | ∃ a bi-infinite walk π̄ in G labeled
by z̄}, (6)

Z(G, s) := {z̄ ∈ ΣZ | ∃ a bi-infinite walk π̄ in G labeled
by z̄ starting at s}, (7)

where s ∈ S. We denote Z(G) to be the graph presentation
of the labelled graph G. It is easy to see by Definition 4, that
for a path-complete graph G we have Z(G) = ΣZ.

Definition 8: (Cylinder sets in ΣZ) Given a finite word
ω ∈ Σl of length l ∈ Z>0, a cylinder set is defined via ω as
follows:

[ω]n,n+l−1 = {z ∈ ΣZ | zn = ωn, · · · , zn+l−1 = ωn+l−1}.
(8)
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Definition 9: (g-covering of a path-complete graph).
Given a path-complete graph G with a graph presentation
Z(G), a collection of sets C = {C1, · · · , CK} ⊆ P(ΣZ)
(where P(Z) denotes the power set of Z) is said to be graph-
induced covering (g-covering) of G if

Cj = Z(G, sj) for all sj ∈ S, and
⋃

Ci∈C
i∈{1,··· ,K}

Ci = ΣZ.

Note that, by definition there is a bijection between the
elements of the set of nodes S of the graph presentation
and elements of the covering induced by this graph.

We say that a covering C is non-redundant when Ci∩Cj =
∅ for all elements Ci, Cj ∈ C. For a non-redundant covering,
there always exists a unique graph presentation (we refer
the readers to [11], Lemma 4 for proof). Going forward in
this paper, we only study path-complete graphs which induce
non-redundant coverings. The investigation of graphs that
generate redundant coverings is left to future work.

III. COVERING BASED SIMULATION RELATIONS
BETWEEN PATH-COMPLETE GRAPHS

In this section, we present the definition of simulation
between graphs and derive a relationship between non-
redundant coverings of two graph presentations when a simu-
lation relation exists between them. The following definition
of simulation between two directed labelled graphs is derived
from the notion of simulation between two automata as
defined in [4, pp. 91-92].

Definition 10: (Simulation between graphs) Consider two
path-complete graphs G1 = (S(1), E(1)) and G2 =
(S(2), E(2)) defined on the same alphabet Σ. We say that
G1 simulates G2 if there exists a function R : S(2) → S(1)

such that for any edge (s, q, σ) ∈ E(2), there exists an edge
(R(s), R(q), σ) ∈ E(1).
It is easy to see that if G1 = (S(1), E(1)) simulates G2 =
(S(2), E(2)), then given an admissible solution V = {Vs |s ∈
S(1)} of G1, the set of Lyapunov functions U = {VR(s) |s ∈
S(1)} is an admissible solution for G2 (where R is the
simulation relation). Therefore, a solution for G1 implies a
solution for G2 which implies that the performance index
of G2 is at most as large as the performance index of G1

indicating that G2 is a better criteria than G1. We next show
that in the case of graph presentations of non-redundant
coverings, one graph simulates another if and only if the g-
covering of the latter is finer than the former. Before stating
the main theorem, we present the formal definition of one
covering being finer than the other and a prerequisite lemma
required in the proof of the main result.

Definition 11: (ordering between coverings) Given two
graph-induced coverings (g-coverings) C1 and C2 of ΣZ, the
covering C2 is said to be finer than C1 when for all elements
C2 ∈ C2, there exists an element C1 ∈ C1 such that C2 ⊆ C1.

Lemma 1: Given a non-redundant g-covering C with
graph presentation G, the set of all bi-infinite sequences Z(G)
is in bijection with the set of all bi-infinite walks on G.

Proof 1: We first note that by Definition 7, the function
which associates, to a given bi-infinite walk on G, its bi-
infinite sequence of labels, is surjective on Z(G). Now,

suppose to the contrary that there exists a bi-infinite sequence
z̄ ∈ Z(G) such that there are two bi-infinite walks on
G denoted by π̄1 = (· · · , e(1)−1, e

(1)
0 , e

(1)
1 , · · · ) and π̄2 =

(· · · , e(2)−1, e
(2)
0 , e

(2)
1 , · · · ) such that π̄1 ̸= π̄2. Let z̄ ∈ C,

where C ∈ C. Since C is a g-covering, C = Z(G, s)
for some node/state s of the graph presentation G. Due
to non-redundancy of the covering C, z̄ /∈ Z(G, r) for all
nodes r ̸= s, i.e., the bi-infinite walk z̄ can only start at
node/state s. Hence, if we denote e

(1)
1 := (s(1), q(1), i) and

e
(2)
1 := (s(2), q(2), i

′
), then s(1) = s(2). Moreover, since π̄1

and π̄2 are labelled by the same bi-infinite word z̄, we have
i = i

′
= z0. The existence of edges e

(1)
1 and e

(2)
2 implies

that σ(z) ∈ Cq(1) and σ(z) ∈ Cq(2), which is a contradiction
because Cq(1) ∩ Cq(2) = ∅ (where, Cq(1) and Cq(2) are the
covering elements corresponding to nodes q(1) and q(2)).
Hence, q(1) = q(2) which implies e

(1)
1 = e

(2)
1 . We can now

use the same argument recursively to show that e(1)j = e
(2)
j

for all j ∈ Z.
We now show the main result for non-redundant g-coverings
and simulation relation.

Theorem 1: Given two graphs G1 = (S(1), E(1)) and
G2 = (S(2), E(2)) inducing non-redundant coverings C1 and
C2 of ΣZ respectively, G1 simulates G2 if and only if C2 is
finer than C1. Moreover, in this case the simulation relation
R : S(2) → S(1) is given by

R(C
(2)
k ) = {C(1)

l } for C
(2)
k ⊆ C

(1)
l . (9)

Proof 2: Given that both C1 and C2 are non-redundant,
and C2 is finer than C1, the function R in (9) is well defined.
In order to show that G1 simulates G2, we need to show that
definition 10 hold true for the function R in (9). Consider
an edge (C

(2)
k , C

(2)

k′ , i) ∈ E(2). There exist unique elements
C

(1)
l , C

(1)

l′
∈ C1 such that C(2)

k ⊆ C
(1)
l and C

(2)

k′ ⊆ C
(1)

l′
i.e.,

R(C
(2)
k ) = C

(1)
l and R(C

(2)

k′ ) = C
(1)

l′
.

We now show that (C(1)
l , C

(1)

l′
, i) ∈ E(1) by contradiction.

Suppose that (C(1)
l , C

(1)

l′
, i) /∈ E(1), then ∀z ∈ C

(1)
l such that

z0 = i, σ(z) /∈ C
(1)

l′
which implies that σ(z) /∈ C

(2)

k′ . But
since this holds for all z ∈ C

(1)
l such that z0 = i, it holds

for all z ∈ C
(2)
k such that z0 = i. Hence, for all z ∈ C

(2)
k

such that z0 = i, we have that σ(z) /∈ C
(2)

k′ implying that
(C

(2)
k , C

(2)

k′ , i) /∈ E(2), which is a contradiction. Therefore,

(C
(2)
k , C

(2)

k′ , i) ∈ E(2) ⇒ (R(C
(2)
k ), R(C

(2)

k′ ), i) ∈ E(1),

and hence G1 simulates G2.
To show the converse statement, let us consider a sim-

ulation relation R : S(2) → S(1). We will show that for
all s ∈ S(2), we have C

(2)
s ⊆ C

(1)
R(s). Choose a bi-infinite

sequence z̄ ∈ C
(2)
s , where C

(2)
s ∈ C2. By Lemma 1, there

exists a unique bi-infinite walk π̄ = (· · · , e−1, e0, e1, · · · )
labelled by z̄ starting at the node s (where the node s in G2

corresponds to the element C(2)
s of the covering C2). Since

G1 simulates G2, there exists a bi-infinite walk labelled by
z̄ in G1 given by R(π̄) := (· · · , R(e−1), R(e0), R(e1), · · · )
such that R(ej) = (R(sj), R(qj), i) for ej = (sj , qj , i) for
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ΣZ ΣZa a

b

b

(a) Graph Presentation G1

[a]−1,−1 [b]−1,−1a b

b

a

(b) Graph Presentation G2

Fig. 1: The covering C2 = {[a]−1,−1, [b]−1,−1} is finer than
the redundant covering C1 = {ΣZ,ΣZ} but G1 does not
simulate G2. Therefore, Theorem 1 cannot be extended to
redundant coverings.

all j ∈ Z. Therefore, z̄ ∈ R(s) which implies C
(2)
s ⊆ C

(1)
R(s).

Hence C2 is finer than C1.
Remark 1: Theorem 1 does not hold when even one

of the coverings C1 and C2 is redundant. In this remark,
we illustrate a counterexample for the same. Consider an
alphabet Σ = {a, b} and two g-coverings C1 = {ΣZ,ΣZ} and
C2 = {[a]−1,−1, [b]−1,−1}. We represent graph presentations
of these coverings in Figure 1. Since, C1 is redundant, the
graph presentation G1 is not unique. On the other hand C2 is
non-redundant and hence G2 is a unique graph presentation.
C2 is finer than C1 but G1 does not simulate G2 i.e., one
cannot construct a mapping R : S(2) → S(1) as defined in
Definition 10.

IV. ON SUPPORT SETS OF PATH-COMPLETE GRAPHS

In this section, we employ the same support set structure
for path-complete graphs, i.e., for all the constraints given by
(3), we consider a subset of constraints which is sufficient to
achieve the same performance. The motivation behind find-
ing support sets for path-complete graphs is to obtain a less
stringent simulation relation between graphs as compared to
Definition 10. To this end, we give the formal definition of
support set (as stated in [18]) of a path-complete graph G.

Definition 12: (Support sets) Given a set of matrices A, a
path-complete graph G = (S,E) and a template T associated
with the Lyapunov functions, we say that a set Π of paths
in G is a support set with respect to A and T if the graph

GΠ := (S, {(v, v′, L(π)) |π ∈ Π is a path from v to v′}),
(10)

has the same performance index as G for a set of matrices
A and template T . Furthermore, we say that a support set Π
is strict if any proper subset of Π is not a support set. Note
that given a path-complete G, its support set is not unique.

The usefulness of the concept of support set is that it
removes edges that are irrelevant for the specific set of
matrices at stake. Thus, it allows to characterize an ordering
relation that would not hold in general between two graphs,
but that holds for a specific case. In the theorem below, we
establish some structural properties of these support sets.

Theorem 2: Given a path-complete graph G with strictly
positive performance index ρ and a support set Π of G, the
graph GΠ must contain a cycle.

Proof 3: Suppose to the contrary that the graph GΠ is
a directed acyclic graph (DAG), then there exists at least
one topological ordering on GΠ such that for every directed
edge u → v, we have u > v in the ordering (we refer the
readers to [5], section 2.2.3 for a detailed description on
topological ordering/sorting of DAGs). Choose a vertex s1
in this ordering such that there is no other vertex v in the
graph such that v > s1. We choose an edge (s1, s2, L(π)),
where L(π) := i1i2 · · · in is the label on the edge and π ∈ Π
(note that without loss of generality, we can assume that
s2 exists, because otherwise s1 would be an isolated vertex
which cannot have a self loop due to GΠ being acyclic and
hence can be removed from GΠ).

By definition of a support set, G and GΠ have the same
performance index which we denote by ρ, and hence the
constraint corresponding to the edge (s1, s2, L(π)) is given
by:

Vs2(Ain · · ·Ai2Ai1x) ≤ ρnVs1(x) for all x ∈ Rn. (11)

If we define Ṽs1(x) := Vs1(2
Px) = 2PdVs1(x) for all x ∈

Rn (where d is the degree of homogeneity of Vs1 and P is
a positive integer greater than the number of edges in GΠ),
ρ̃ := ρ/2 and Ṽs2(x) := Vs2(2

P−1x) = 2(P−1)dVs2(x) for
all x ∈ Rn, then using (11), we have

Ṽs2(Ain · · ·Ai2Ai1x) ≤ ρ̃nṼs1(x) for all x ∈ Rn.
(12)

We now choose a vertex s3 such that s2 > s3. The constraint
corresponding to the directed edge from s2 to s3 with label
j1, j2, · · · , jm is as follows:

Vs3(Ajm · · ·Aj2Aj1x) ≤ ρmVs2(x) for all x ∈ Rn.
(13)

Similar to the construction in (12), if we define, Ṽs3(x) :=
Vs3(2

P−2x) = 2(P−2)dVs3(x) for all x ∈ Rn, then from
(13):

Ṽs3(Ajm · · ·Aj2Aj1x) ≤ ρ̃mṼs2(x) for all x ∈ Rn.
(14)

We can iterate this construction of Lyapunov functions on
every path with strict ordering of vertices s1 > s2 > · · · >
sN . Since GΠ is a finite acyclic graph with no isolated
vertices, any path with strict ordering is of finite length and
union of all the paths with strict ordering contains the entire
vertex set. Therefore, (Ṽs1 , Ṽs2 , · · · , ṼsN ) is an admissible
solution for GΠ with performance index ρ̃ < ρ which is a
contradiction because by definition G and GΠ have the same
performance index. Hence, GΠ must contain a cycle.

Remark 2: Using a similar reasoning as in the proof of
Theorem 2, it is easy to see that for a strict support set Π,
the graph GΠ does not contain any degree one node with an
incoming edge (i.e., a node with indegree one and outdegree
zero) because if such a node (say s1) would exist with the
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incoming edge (s2, s1, j1j2 · · · jK), then we would have the
following Lyapunov inequality:

Vs2(AjK · · ·Aj2Aj1x) ≤ ρKVs1(x) for all x ∈ Rn,

and since there is no Lyapunov function in the admis-
sible solution set which bounds Vs1 , by the same con-
struction as presented in the proof of Theorem 2, we can
replace (Vs1 , Vs2 , · · · , VsN ) by another admissible solution
(Ṽs1 , Ṽs2 , · · · , ṼsN ) and ρ by ρ̃ such that ρ̃ < ρ which is a
contradiction.
Note that, we did not address the case when ρ = 0 in
the proof of Theorem 2, because within the framework of
comparing graphs based on their performances, a graph G
with performance index 0 always provides a better criterion
than any other graph and hence for the sake of brevity, we
can set any support set of G to be an empty set in this case.

V. COVERING BASED PARTIAL SIMULATION RELATIONS
BETWEEN PATH-COMPLETE GRAPHS

The construction of the graph GΠ for a support set Π along
with Theorem 2 in Section IV enables us to examine the
covering generated by the paths in Π which in turn allows
us to establish a more relaxed version of Theorem 1. For
this purpose, we state the definition of Partial Simulation
between graphs, as given in [18].

Definition 13: (Partial Simulation between Graphs) We
say that G1 = (S(1), E(1)) partially simulates G2 =
(S(2), E(2)) with respect to set of matrices A and template T
if there exists a support set Π for G2 and simulation function
FΠ : S(2) → S(1) such that for any π ∈ Π,

π = (s0, s1, i0), (s1, s2, i1), · · · , (sK−1, sK , iK−1) ∈ E(2)K ,

there exists a path FΠ(π) ∈ E(1)K given by:

FΠ(π) =(FΠ(s0), FΠ(s1), i0), (FΠ(s1), FΠ(s2), i1),

· · · , (FΠ(sK−1), FΠ(sK), iK−1).

We denote this partial simulation ordering by G1 <(A,T ) G2.
As shown in [18], a partial simulation allows to establish a
performance ordering between two graphs for a specific set
of matrices A , even if this ordering does not hold in general:

Theorem 3: (Theorem 14 in [18]) Consider two graphs
G1 = (S(1), E(1)) and G2 = (S(2), E(2)), a template T and
a set of matrices A. If there exists a support set Π of G2

with respect to A,T and a partial simulation FΠ as defined
in Definition 13, then ρG2,T (A) ≤ ρG1,T (A).
We now establish the formulation of partial simulation be-
tween graphs through coverings.

Definition 14: (covering restricted to a set of paths) Given
a graph G = (S,E) and a set of paths Π on G, we denote the
covering restricted to Π by CΠ and it is defined as follows:

CΠ := {z ∈ C|there exists a bi-infinite walk labelled by
z in GΠ}. (15)

Theorem 2 ensures that the set CΠ as defined in (15) is non-
empty. Similar to Theorem 1, we now obtain a relationship
between the coverings of two non-redundant graph presenta-
tions when a partial simulation relation exists between them.

Theorem 4: Given a set of matrices A, a template T and
two path-complete graphs G1 = (S(1), E(1)) and G2 =
(S(2), E(2)) inducing non-redundant coverings C1 and C2
respectively, G1 <(A,T ) G2 if and only if there exists a
support set Π of G2 such that C2,Π (the covering C2 restricted
to the elements of the language generated by Π) is finer than
C1.

Proof 4: The proof is almost analogous to the proof of
Theorem 1. We omit the proof here due to space limitation.
Using Theorem 3 and Theorem 4, we obtain a relationship
between performances of graphs which are induced by non-
redundant coverings as follows:

Corollary 1: Given a set of matrices A, a template T ,
and two path-complete graphs G1 and G2 induced by non
redundant coverings C1 and C2 respectively. If there exists a
support set Π of G2 with respect to A and T such that C2,Π
is finer than C1, then ρG2,T (A) ≤ ρG1,T (A).

VI. A NUMERICAL EXAMPLE

s1

s2s4

s3

a b

b

aa

b

ab

(a) Graph Presentation G3

q1 q2 q3 q4a b

b b b

a

a

a

(b) Graph Presentation G4

Fig. 2: The graph G3 statistically has a better performance
than G4.

In this section, we highlight the importance of analyzing
coverings of path-complete graphs and identifying suitable
support sets for path-complete graphs by numerically com-
paring two graphs which do not have a simulation relation (as
per Definition 10) but one graph is more likely to outperform
the other. We demonstrate a numerical comparison between
the graphs G3 := (S(3), E(3)) and G4 := (S(4), E(4)) which
are given in Figure 2. The graph G3 is commonly referred
to as the “two-step” memory De Bruijn graph (We refer
the readers to the paper [16] for a complete formulation of
generalized De Bruijn graphs) and its corresponding non-
redundant covering is as follows:

C3 : = {Cs1 , Cs2 , Cs3 , Cs4}
= {[ab]−2,−1, [bb]−2,−1, [ba]−2,−1, [aa]−2,−1}.
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The non-redundant covering for G4 is as follows:

C4 : = {Cq1 , Cq2 , Cq3 , Cq4}
= {[a]−1, [ab]−2,−1, [abb]−3,−1, [bbb]−3,−1}.

Note that neither C3 is finer than C4, nor C4 is finer than
C3, and therefore due to Theorem 1, there is no simulation
between the two graphs. Hence, the graphs are incomparable
in terms of performance. However, one can see that C3 is
closer to being finer than C4. The only element of C3 which
is not contained in any element of C4 is [bb]−2,−1. However,
if we remove the cylinder sets [abb]−3,−1 or [bbb]−3,−1 from
[bb]−2,−1 (which amounts to removing a cylinder of measure
1/8 with respect to the standard Cantor measure [12]), then
this restricted covering of C3 will be finer than C4. On the
contrary, to make a restricted covering of C4 finer than C3,
one must remove the cylinder set [ba]−2,−1 or [aa]−2,−1

from the first element of C4 which are of measure 1/4 each.
Thus, we expect G3 to give a statistically better performance
than G4.

For the numerical experiment, we sample 104 random
pairs of 2× 2 matrices A = {Aa, Ab}, where {a, b} are the
two modes of the linear discrete-time switched system (1).
Each entry of the matrix is uniformly sampled in the interval
[−10, 10]. We compute the performance index (as defined in
Definition 6) for G3 and G4 in each sample for the template
of quadratic functions Q := {

√
x⊤Qx : Rn → R|Q ≻ 0}

using Mosek solver [13] from the Yalmip toolbox [10]
in MATLAB. The code for generating simulation results
is available in [21]. We observe in simulation results that
out of 10000 samples, G3 performs better (i.e. has lower
performance index) than G4 in 768 samples, whereas G4

performs better than G3 in 627 samples. On the remaining
8605 samples, both the graphs have equal performance.
One can see why G3 is better prone to good performance
than G4 based on their respective coverings. For instance,
consider a set of paths Π

′
, contains all the edges from G3

except (s1, s2, b). If Π
′

happens to be a support set of G3,
then the covering C3 restricted to Π

′
is finer than G4. The

corresponding partial simulation FΠ′ : S(3) → S(4) is given
by: F (s3) = q1, F (s4) = q1, F (s1) = q2 and F (s2) = q4.
On the contrary, any support set of G4, such that G3 partially
simulates G4 will have to exclude at least two edges from the
edge set of G4. Further analysis is required on support sets for
obtaining a numerical estimate of the relative performance
between two graphs, but the above discussion provides a
quantitative explanation.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a framework for obtaining a
simulation relation between path-complete Lyapunov func-
tions (PCLF) via their induced coverings. We further utilized
the concept of support sets to develop a weaker notion
of simulation between PCLFs for the purpose of compar-
ing their performances. We also demonstrated a numerical
comparison between two PCLFs to show the utility of
support sets and coverings. Future work includes analysis of
graphs with redundant coverings, and obtaining a quantitative

estimate of the relative performance of two graphs, i.e.,
computing a priori the comparison statistics for an arbitrary
experiment. This contains several challenges, like predicting
the frequency of support sets for a given graph, by taking
into account the measure of sampled set of matrices.
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