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Abstract—This paper proposes a model-free predictive con-
trol method for nonlinear systems based on a data-driven
representation of the system behavior and a predictive control
formulation similar to other designs using Willems’ Funda-
mental Lemma. To select a subset of available trajectories for
representing the system behavior, we use a feature selection
algorithm inspired by Lasso regression. This algorithm prevents
interferences between control objectives and predictions and is
well-suited for nonlinear systems. The construction is supported
by a simple theoretical analysis, and simulation-based exper-
iments demonstrate that the proposed approach can control
nonlinear systems.

Index Terms—Data-driven Control, Model-free Control, Pre-
dictive Control, Feature Selection

I. INTRODUCTION

A. Background and Motivation

Model Predictive Control (MPC) is a widely used tech-
nique in control systems, where a model is employed to
predict the future behavior of a given system and optimize
the control input sequence, satisfying constraints while min-
imizing a cost function [1]. A major challenge in deploying
MPC is finding an accurate model of the system, in particular
for nonlinear and stochastic systems. An inaccurate model
may lead to inaccurate predictions, especially over long time
horizons, and result in poor control solutions.

To address this challenge, data-driven approaches have
been proposed that do not require a state-space representation
or a one-step ahead model of the system dynamics. One such
approach is Subspace Predictive Control (SPC) [2], which
uses a linear multi-step predictor obtained by projecting the
data onto a low-dimensional subspace. SPC requires only
past input-output trajectories and works best for LTI systems.
Other approaches to data-driven predictive control, e.g. [3],
[4], lean on the Fundamental Lemma introduced by Willems
et al. [5], which states that the future output of a system can
be expressed as a linear combination of past input-output
trajectories.

In particular after the introduction of DeePC [6], which
blends control objective and system identification in a single
Optimal Control Problem (OCP), the community found re-
newed interest in data-driven predictive control, with recent
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theoretical discussions addressing closed-loop robustness [7],
application to nonlinear systems [8] or noise mitigation [9].
Different contributions recently established the equivalence
between DeePC and SPC [9], [10], and compared DeePC-like
approaches to classic system identification and control [11],
[12], possibly using linear regression or subspace identifi-
cation [13]. The necessary predictor updates in closed-loop
control are an open problem [14].

A core ingredient of DeePC is the regularization of the
linear combination of past trajectories. A prominent choice
in this context is the `1-norm or Least Absolute Shrinkage
and Selection Operator (LASSO) [15] on the weights of the
linear combination. This promotes sparsity of these weights,
resulting in the selection of a small subset of trajectories
to construct the prediction, referred to as feature selection
in the machine-learning community. However, this subset
selection is not guaranteed to produce good predictions, as
we discuss in more detail in Section II. The cross-effect
between identification and control, intrinsic to DeePC, is
another issue [11] and a proper tuning of the regularization
can be challenging or even impossible in practice [16].
Other types of regularization terms such as `2-norm or
hybrid formulations are not free of these issues [12]. Finally,
the computational demand of the resulting control scheme
increases dramatically with the size of the data set, which
is a general problem for data-driven approaches. Given that
nonlinear systems require increasing amounts of data to
capture their behavior, alternative approaches are necessary.

B. Contribution and Outline

In this paper, we present a modified version of DeePC
that is specifically designed to tackle nonlinear problems in
a more efficient manner. Our approach involves two simple
yet crucial changes that make a significant impact. Firstly,
we pre-select past trajectories based on their proximity to
the current system trajectory and optimality with respect to
the chosen control objective. We employ a convex heuristic
for subset selection to ensure that the control scheme operates
on a local representation of the system behavior. This process
can be seen as a feature selection, as well as an implicit lin-
earization, enabling more meaningful predictions. Secondly,
we ensure that the prediction is an interpolation from the data
rather than an extrapolation, thereby guaranteeing the validity
of the local approximation constructed from the pre-selection
process.
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One of the advantages of our approach is that the compu-
tational demand of the resulting control scheme is limited by
the size of the pre-selected set. Although the pre-selection
process has its own computational demand, it is limited to
evaluating basic functions on the data, such as norms and
stage costs, as well as sorting procedures. We show that the
prediction error is dominated by the distance between the
system’s current input-output data and the input-output data
in a dictionary used to form predictions. Another important
factor is the curvature of the map from past input-output
data and future input data to the system’s future output data,
i.e. the nonlinearity of the system dynamics. The simulation-
based experiment shows that the proposed approach produces
accurate predictions for a nonlinear system which is not
possible with the classic DeePC approach.

The remainder of the paper is organized as follows. In Sec-
tion II, we provide a brief overview of the DeePC approach
and discuss its limitations. In Section III, we qualitatively
analyze the effect of the nonlinearity of the system on the
prediction error and provide a solution idea on how to reduce
it. We present our approach in Section IV and discuss the
details of the pre-selection process. Section V presents the
results of a simulation-based experiment, and we conclude
the paper in Section VI.

II. BACKGROUND

For an LTI system with inputs u ∈ Rm and output y ∈ Rp,
at any time k, the future output trajectories of the system, i.e.
yf
k =

[
y>
k ... y>

k+N

]>
are given by

yf
k = ϕ

(
uf
k,u

p
k,y

p
k

)
, (1)

where yf
k are the N future outputs, yp

k, u
p
k denote recent past

output and input data, and

uf
k =

[
u>
k ... u>

k+N

]>
(2)

denotes the future inputs to the system. The function ϕ
is linear, and requires the past input-output data to be of
sufficient length L to describe the future output of the system,
i.e.

yp
k =

[
y>
k−L ... y>

k−1

]>
(3a)

up
k =

[
u>
k−L ... u>

k−1

]>
. (3b)

The linearity of ϕ in (1) naturally entails that yf
k, u

f
k, y

p
k, u

p
k

are jointly restricted to a specific subspace that includes all
input-output trajectories of the system. Consequently, there
is a vector α with elements αi such that:

up
k

yp
k

uf
k

yf
k

 =
∑
i∈D

αi


up
i

yp
i

uf
i

yf
i

 (4)

where D is a set of (time) indices of past trajectories. These
past trajectories ought to be selected such that they span the
space of all possible trajectories of the system (subject to
specified L, N ). In particular, [5] showed that it is sufficient

to select these past trajectories such that they form the
columns of a Hankel matrix. A rank condition on that matrix
ensures that the set of past trajectories is sufficient to span
the full trajectory space. If the set of past trajectories is
not sufficient to span the full trajectory space, the solutions
are restricted to the subspace spanned by this limited set of
trajectories, which means that the solution in general does
not match the full system behavior.

DeePC approaches commonly formulate predictive control
schemes based on (4) for given up

k, y
p
k as

min
α,uf

k,y
f
k

Jctrl(u
f
k, y

f
k) + λ · Jid(α) (5a)

s.t. (4), yf
k ∈ Y, uf

k ∈ U , (5b)

where Jctrl(u, y) defines the control objective of the predic-
tive control problem, and Jid(α) is a regularization term that
is required for practical purposes, i.e. to mitigate the effect of
noise and to make the solution α unique. Different Jid terms
have been proposed in the literature, e.g., Jid(α) = ‖α‖1
in [6], Jid(α) = ‖α‖22 in [11], or hybrid formulations [11],
possibly including orthogonal projections.

One ought to observe that, if omitting Jctrl from (5), the
predictions obtained from (5) using Jid(α) = ‖α‖22 are
equivalent to predictions obtained via a linear least squares
regressor that minimizes the prediction errors on the training
data. Using Jid(α) = ‖α‖1 instead, the predictions are
equal to a linear regressor estimated using least squares,
but with the additional feature that only a small subset of
the training data is used for the estimation. Both cases are
discussed in [12]. In either case, it is questionable whether
the predictions are better than those obtained by Subspace
Identification [13] or by a linear least squares regressor. Per-
forming the regression outside the predictive control scheme
is typically computationally more efficient than the mixed
objective formulation (5), hence allowing for larger datasets
to be used.

The `1-norm regularization may help in the nonlinear case
to favor data that is close to the current state of the system,
and some empirical examples support this claim. However, it
is straightforward to construct simple examples where the `1-
norm regularization does not select such data, see Fig. Fig. 1
for a sketch of this issue.

Independent of the specific choice of Jid, it is an open
debate in the community whether the mixed objective for-
mulation (5) is a benefit or a source of difficulties. Some
argue for the former via stating that the mixed objective
formulation amounts to control-tailored system identification,
though a formalization of that statement is arguably lacking.
Counterarguments are based on the observation that – in
the presence of noise, disturbances or nonlinearities – the
mixed objective can corrupt the original control objective and
renders the resulting input-output sequences either subopti-
mal (corrupted control sequence for better prediction accu-
racy) or inaccurate (corrupted prediction sequence for better
control performance). The compromise between control and
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prediction performance is typically achieved by tuning the
weight λ in (5). Examples for such a trade-off for varying
λ are given in [11], showing that the effect of inaccurate
predictions for low λ and the effect of suboptimal control
for high λ can be severe, i.e. in the range of 8000%-14000%
error with respect to the baseline optimal solution for the
original control problem. Even in the optimal band of λ
values, the relative error is close to 1000% and hence the
mixed objective is an issue for all regularizations.

A. Regularization via exact penalties

Among the possible choices of regularization Jid in (5),
regularizations based on exact penalties, such as the `1-norm
deserve a special attention. Indeed, exact penalties on the
vector α will promote sparsity in the solution α produced
by solving (5), see e.g. [17]. In particular, the choice of
the LASSO, i.e. `1-regularization, is typically described
as a convex relaxation of the subset selection regression
problem [15]. In that context, (5) with Jid based on the `1-
norm can be construed as selecting the least amount of past
trajectories necessary to satisfy (4). The Machine Learning
or statistical learning communities regard that as a feature
selection, where the features are past trajectories to be used
to explain future ones.

It has been observed in some simulation-based studies, see
e.g. [6], [11], that using the `1-norm for Jid in (5) can deliver
good results when applied to nonlinear systems. In this paper,
we aim at building an understanding why this observation can
sometimes hold, and at improving the performance of this
approach by performing a genuine feature selection rather
than using an indirect, heuristic approach based on the `1-
norm.

III. FEATURE SELECTION FOR NONLINEAR PROBLEMS

We ought to observe first that relationship (1) is not neces-
sarily limited to linear systems. Indeed, the observability of
the system state from the input-output sequences up

k, y
p
k is a

sufficient condition for (1) to hold. However, relationship (4)
is tied to the linearity of function ϕ and therefore does
not apply in general for nonlinear systems. Nonetheless, (4)
can capture ϕ locally even for nonlinear systems, provided
that it obeys some basic properties. In order to make these
statements more specific, let us consider uf

k, u
p
k, y

p
k provided

as linear combinations of the data, i.e.up
k

yp
k

uf
k


︸ ︷︷ ︸
:=pk

=
∑
i∈D

αi

up
i

yp
i

uf
i


︸ ︷︷ ︸
:=di

(6a)

yf
k = ϕ

(
uf
k,u

p
k,y

p
k

)
:= φ (pk) = φ

(∑
i∈D

αidi

)
, (6b)

where we define φ as a short notation for ϕ with uf
k,u

p
k,y

p
k

stacked together as a single argument. When ϕ and hence φ

φ(d)

d1 d2d3 d4
pk

0.5(φ(d1) + φ(d2))

0.5(φ(d3) + φ(d4))

yf
k

d

yf

Fig. 1. Sketch of the problem of predicting the output of a nonlinear system
from its recent past input/output data using LASSO regression. The recent
data and future control input sequence are collected in the vector pk which
produces the future output yf

k through the nonlinear function φ. The LASSO
regression problem is to find the coefficients αi that minimize the sum
of the absolute values of the coefficients, i.e. the `1 norm. For the given
example, pk =

∑
i αid holds for both α = [0.5, 0.5, 0, 0] and α =

[0, 0, 0.5, 0.5], with equal `1 norm. However, d1, d2 are closer to pk
than d3, d4 are, hence the `1 norm does not reflect the proximity of the
data to pk . The similarity to the current trajectory in a behavioral sense
propagates to the predicted output. Consequently, the prediction based on
0.5(φ(d1)+φ(d2)) can be expected to be more accurate than the prediction
based on 0.5(φ(d3)+φ(d4)). We propose to pre-select the trajectories di

that are close to pk and to use them to form the prediction.

are linear, (4) becomes a consequence of (6) as φ trivially
satisfies the homogeneity property

φ

(∑
i∈D

αidi

)
=
∑
i∈D

αiφ (di) (7)

which allows for the use of (4) to form exact predictions in
the absence of stochasticity. However, when ϕ and φ are non-
linear, (7) does not hold in general. In this case, the prediction
accuracy of (4) may be very poor for a wide domain of input-
output trajectories. It is possible to show that (4) can still be
used to predict the output of a nonlinear system, provided
that the library of trajectories D is sufficiently close to the
recent history of past input/output data up

k, y
p
k of the system.

The following proposition provides qualitative conditions for
(4) to be an accurate predictor, and establishes a bound on
the prediction error when using it for nonlinear systems. Note
that we aim at providing a conceptual analysis supporting the
proposed construction, and not necessarily a methodology to
be used in practice.

Proposition 1: Let us consider construction (4) based on
the trajectories of a nonlinear system obeying (1), i.e.

up
k

yp
k

uf
k

ŷf
k

 =
∑
i∈D

αi


up
i

yp
i

uf
i

yf
i

 (8)
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such that the output prediction is provided by:

ŷf
k =

∑
i∈D

αiφ (di) (9)

with α satisfying (6a). Let us further assume that conditions∑
i∈D

αi = 1, αi ≥ 0 (10)

hold on α, and that φ is at least twice continuously differ-
entiable. Then the error between the prediction ŷf

k and the
true trajectory yf

k, i.e.

eφ(D,α) = yf
k − ŷf

k, (11)

is bounded by

‖eφ(D,α)‖ ≤ max
v∈CD(α)

∥∥∇2φ (v)
∥∥VD (α) . (12)

In (12), CD (α) is the convex hull of the past trajectories di

with associate αi > 0, and

VD (α) = max
v,w∈CD(α)

‖v −w‖2

is an indicator of the size of CD, and therefore of how close
the selected past trajectories di are to each other.

Proof: Consider a quadratic approximation of φ centered
at pk:

φ (di) ≈ φ (pk) +∇φ (pk) (di − pk) +
1
2∇

2φ(pk) (di − pk)
2 .

(13)
Using (13) and (9) for output predictions results in

ŷf
k =

∑
i∈D

αiφ (pk) +
∑
i∈D

αi∇φ (pk) (di − pk) (14)

+
1

2

∑
i∈D

αi∇2φ(pk) (di − pk)
2
.

Under conditions (6a) and (10) equation (14) can be rewritten
as

eφ(D, α) := φ (pk)− ŷf
k = −1

2

∑
i∈D

αi∇2φ(pk) (di − pk)
2
.

(15)

Because of conditions (10) and pk ∈ CD (α), the error term
is bounded by

‖eφ(D,α)‖ =

∥∥∥∥∥−1

2

∑
i∈D

αi∇2φ(pk) (di − pk)
2

∥∥∥∥∥ (16)

≤ max
v,w∈CD(α)

∥∥∥∇2φ (v) (v −w)
2
∥∥∥ (17)

≤ max
v∈CD(α)

∥∥∇2φ (v)
∥∥VD(α) (18)

A. Discussion of Proposition 1

While fairly straightforward, Proposition 1 points to criti-
cal aspects for predictions in the form (4) to work effectively
for nonlinear systems. More specifically:

1) The past trajectories used as data in linear combination
(4) ought to be in proximity to the prediction delivered
by (4), such that VD is small. Note that proximity here
is in the space spanned by the past input and outputs
and the future inputs, i.e. up

i , y
p
i , u

f
i. This suggests

that the α used in the linear combination (4) ought to
be non-zero only for trajectories up

i , y
p
i , u

f
i that are

close to the predicted one, i.e. up
k, y

p
k, u

f
k. Note that

while VD can be made small by choosing trajectories
in D that are close to each other, they also need to be
close to the recent history of the system to make sure
the prediction starts from similar initial conditions.

2) Conditions (10) ought to hold on α, such that the
linear combination (4) seeks predictions by interpolat-
ing from previous trajectories rather than extrapolating
from them. Indeed, an interpolation between neigh-
boring trajectories will remain in that neighborhood;
however, extrapolations can, in principle, leave that
neighborhood, thus losing locality.

3) The nonlinear dynamics ϕ and their short form φ
have an impact on the accuracy of the prediction
via the Hessian

∥∥∇2φ
∥∥. Non-differentiable dynamics

are precluded from this construction, and the more
strongly nonlinear the system is (large Hessian), the
smaller VD should be. Similar arguments requiring
sufficiently slow nonlinear dynamics when employing
linear tracking MPC have been made in [8].

One can in addition observe that inequality (12) is possibly
not tight, as it is based on bounds using the norm of the
Hessian. Tighter bounds can arguably be developed, but not
presented here for the sake of brevity.

These observations point to important caveats in using a
predictive control approach (5) with a conventional exact
convex penalty such as the `1-norm for Jid, i.e.

min
α,uf

k, ŷ
f
k

Jctrl(u
f
k, ŷ

f
k) + λ · ‖α‖1 (19a)

s.t. (8), ŷf
k ∈ Y, uf

k ∈ U . (19b)

Indeed, even for λ large, conditions (10) are not enforced,
and the `1-norm regularization in (19) does not necessarily
promote the selection of past trajectories that are close to the
predicted one.

Fortunately, Proposition 1 also suggests a family of ap-
proaches to fulfil its assumptions. First, conditions (10) can
be trivially embedded in (19) without making the problem
more challenging to solve. Indeed, since (10) are convex
constraints, they do not present any particular difficulty.
The proximity condition resulting in a small VD (α) is
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more demanding. A prototype problem to address that issue
without regularization term can for example take the form

min
α,uf

k, ŷ
f
k

Jctrl(u
f
k, ŷ

f
k) (20a)

s.t.


up
k

yp
k

uf
k

ŷf
k

 =
∑
i∈D

αi


up
i

yp
i

uf
i

yf
i

 (20b)

∑
i∈D

αi = 1, αi ≥ 0 (20c)

max
v,w∈CD(α)

‖v −w‖2 ≤ ε (20d)

ŷf
k ∈ Y, uf

k ∈ U (20e)

for a given ε, fixing a bound for VD (α). The difference
between (20) and (19) comes through the constraints (20c)
and (20d). The constraint (20c) comes from condition (10)
and enforces the linear combination (4) to be a convex
combination of past trajectories. Constraint (20d) is the
proximity constraint that enforces the convex hull of the
past trajectories that are selected to be close to the predicted
one. This constraint turns out to be a challenging one,
as it is combinatorial in nature, i.e. all combinations of
past trajectories from which one can construct a convex
combination satisfying (6a) such that the right-hand side of
(20d) is less than ε must be found. Unfortunately, this is a
computationally demanding problem, and we are not aware of
any efficient algorithm to solve it. Building predictive control
schemes based on (20) is therefore not feasible in practice.

In Sec. IV, we therefore propose a decomposition of (20)
where a subset of relevant past trajectories satisfying (20d)
is selected first, and then problem (20) is solved on that
particular set, omitting constraint (20d). Before presenting
that method, some further discussions on (20) are in order.
First, the joint feasibility of constraints (20b) - (20d) can
be a challenge. Indeed, for ε small, constraint (20d) can
drastically restrict the set of admissible trajectories, denoted
by a set of indices S in the following. Restricting S can
make the linear combination (20b) difficult to satisfy in
terms of matching up

k, yp
k, especially when imposing (20c)

to use convex combinations of the admissible trajectories.
The feasibility of (20) then would in principle require a high
density of past trajectories in D such that a basis of the
past input-output sequences can be formed under constraint
(20d). In practice, ensuring the feasibility of problem (20)
would typically require a relaxation of (20b) - (20d). The
relaxation of (20b) has already been investigated for the more
classic problem (5), see [18]. It allows the solver to modify
the initial conditions of the prediction to match the past input-
output sequences. We will not discuss this relaxation here,
as it does not pertain to our proposed method. Instead, we
relax (20d) by first pre-selecting trajectories from D that meet
the (20d) criteria. Then, we solve (20) using that refined set,
omitting (20d).

A second useful observation is that for ε small, the output
prediction formed in problem (20) is at a lower risk of
being corrupted by the control objective Jctrl than the classic
formulation (5). Indeed, minimizing the control objective
Jctrl by corrupting the prediction requires (20) to exploit the
error term (15) for reducing Jctrl. However, as long as (20)
remains feasible, that error term can be made arbitrarily small
via ε, such that the distortion of the prediction for optimality
can be directly managed.

Finally, it ought to be underlined here that the classic
formulation (5) is a relaxation of (20) where (20c)-(20d) are
omitted, and a regularization of α used instead.

IV. METHOD

In this section, we introduce a computational method to
tackle the combinatorial complexity of (20) arising from
constraint (20d). Rather than attempting to solve the prob-
lem directly, we suggest constructing a subset S of past
trajectories that adhere to constraint (20d). From there, we
can formulate a relaxed version of the problem, without
constraint (20d), which is amenable to standard optimization
algorithms. Indeed, once a subset S of indices for relevant
past trajectories is selected, the predictive control problem
reads as:

min
α, ŷf

k,u
f
k

Jctrl(u
f
k, ŷ

f
k) (21a)

s.t.


up
k

yp
k

uf
k

ŷf
k

 =
∑
i∈S

αi


up
i

yp
i

uf
i

yf
i

 (21b)

∑
i∈S

αi = 1, αi ≥ 0 (21c)

ŷf
k ∈ Y, uf

k ∈ U . (21d)

Hence, constraint (20d) is eliminated by selecting a priori
which past trajectories can be involved in the linear combi-
nation (21b). We also observe that the dimension of α in (21)
has the cardinality of S ⊆ D which is typically much smaller
than the one of α in (20). In order to discuss the selection
of S, one needs to observe that (20d) has two requirements:

1) proximity to the recent past inputs and outputs up
k,y

p
k,

2) proximity to the future input sequence uf
k.

Requirement 1 is fairly straightforward to satisfy, as it simply
consists in selecting past trajectories di for which up

i ,y
p
i

are proximal to the given up
k, y

p
k. This establishes a pool

of past trajectories that are admissible in terms of up
k, y

p
k.

The second requirement is more difficult as uf
k is defined

by solving problem (20), and therefore not known a priori.
In order to circumvent this difficulty, we propose to select
among the admissible trajectories those that yield a low
control cost Jctrl. The expectation then is that trajectories
conducive to building good control solutions will be selected,
and that these trajectories will be close to each other, hence
satisfying (20d). We develop these concepts more precisely
in the following.
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A. Proximal trajectories & proximity filter
The feature selection problem is to find a subset of the

input-output data with sufficient proximity to the recent
inputs and outputs up

k, y
p
k over an initialization horizon Tini.

The metric to assess the proximity is dependent on the
application, e.g. outputs evolving on Euclidean spaces can be
compared using the Euclidean distance, while outputs evolv-
ing on manifolds can be more complex. In this paper, we
measure proximity as the squared Euclidean distance between
the recent inputs and outputs up

k, y
p
k and the corresponding

past inputs and outputs up
i , y

p
i , and build the set of proximal

trajectories P ⊆ D as:

P =

{
i ∈ D s.t.

∥∥∥∥[yp
i

up
i

]
−
[
yp
k

up
k

]∥∥∥∥2 ≤ εp

}
(22)

for some εp > 0. For applications with fast dynamics
that require high sampling rates (e.g. robotics), and with a
significant amount of available data, the set D can be very
large, which can be a challenge for the online computation
of P . However, as this is a computer science problem, we
resort to efficient algorithms to compute the proximal set P
in a reasonable amount of time.

B. High-performance trajectories & performance filter
Among the proximal trajectories P , we need to select those

that are meaningful to serve as a basis for the predictive
control problem. To that end, we propose to base the selection
on the performance of the past trajectories in terms of the
control objective Jctrl. More specifically, we propose to order
the proximal past trajectories in terms of Jctrl

(
yf
i,u

f
i

)
. Let

us label the index of the trajectory with the lowest control
cost as i? given by:

i? = argmin
i∈P

Jctrl
(
yf
i,u

f
i

)
. (23)

We can then construct the set of indices S ⊆ P ⊆ D as

S =
{
i ∈ P s.t. ‖uf

i − uf
i?‖2 ≤ εf

}
(24)

for some εf > 0. Given that yf
i are constrained by yf

i −
φ(uf

i,u
p
i ,y

p
i ) = 0, they are not used for the construction of

S. The set S contains the indices of high-performance trajec-
tories that will be used to build the predictive control solution.
Given Proposition 1, we can now state the following result
that establishes a bound on the suboptimality of the predictive
control solution with respect to the control objective Jctrl that
is due to the approximation error eφ(S, α).

Proposition 2: Assume:
1) εf + εp ≤ ε
2) The mixed objective J is locally Lipschitz contin-

uous on S with respect to variations in y, i.e.∥∥J (yf
i, ·
)
− J

(
yf
j , ·
)∥∥ ≤ c

∥∥yf
i − yf

j

∥∥ ∀i, j ∈ S .
3) Let us denote

Λk =

{
α s.t.

[
up
k

yp
k

]
=
∑
i∈S

αi

[
up
i

yp
i

]
and (21c)

}
(25)

and assume that the optimal control input u?
k at time

k is such that

u?
k ∈

{∑
i∈S

αiu
f
i s.t α ∈ Λk

}
. (26)

Let α?, α̂? ∈ Λk be the minimizers of the respective cost
functions:

min
α∈Λk

JS (α) := min
α∈Λk

J

(
φ

(∑
i∈S

αidi

)
,
∑
i∈S

αiui

)
,

(27)

min
α∈Λk

ĴS (α) := min
α∈Λk

J

(∑
i∈S

αiφ(di),
∑
i∈S

αiui

)
. (28)

Then the following inequality holds:

JS (α̂?) ≤ JS (α?) + 2cε · max
v∈CS(α)

∥∥∇2φ (v)
∥∥ . (29)

Proof: Assumption 3 implies that the optimal control
input u?

k at time k is such that

min
α∈Λk

JS (α) = min
uf

k

J
(
ϕ(uf

k, u
p
k, y

p
k),u

f
k

)
(30)

holds. The corresponding minimizer satisfies α? ∈ Λk by
construction of Assumption 3. Similar arguments hold for
α̂? ∈ Λk. Using Proposition 1 and the continuity Assumption
2, we observe that∣∣∣ĴS (α)− JS (α)

∣∣∣ ≤ c ‖eφ(S,α)‖ (31)

≤ c · max
v∈CS(α)

∥∥∇2φ (v)
∥∥VS (α)

≤ cε · max
v∈CS(α)

∥∥∇2φ (v)
∥∥

holds for all α ∈ Λk. The final result then follows as

JS (α̂?) ≤ ĴS (α̂?) + cε · max
v∈CS(α)

∥∥∇2φ (v)
∥∥ (32)

≤ ĴS (α?) + cε · max
v∈CS(α)

∥∥∇2φ (v)
∥∥

≤ JS (α?) + 2cε · max
v∈CS(α)

∥∥∇2φ (v)
∥∥ .

Remark 1: Assumption 3 in Proposition 2 imposes the
requirement that the initial data up

k, y
p
k can be reproduced by

linear combinations of up
i , y

p
i with i ∈ S . This is a natural

requirement in the context of the proposed approach, but it
entails that the span of the stored trajectories has to exactly
match the trajectory space of the system. Noise in the data
or a small set of trajectories S may thus lead to Λk being
empty. The problem is commonly tackled by relaxing the
second block row in (21b), see e.g. [7].
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V. NUMERICAL EXAMPLE

We test our method on the inverted cart-pendulum system.
It is described by the state vector x, output vector y, and
input u = F , where x = [p, θ, v, ω]> represents the position
of the cart p, the angle of the pendulum θ, and their respective
velocities ẋ = v and θ̇ = ω. We consider the positions as
output, i.e. y = [p, θ]>. The accelerations of the inverse
pendulum are governed by:

v̇ =
−ml sin(θ)θ̇2 +mg cos(θ) sin(θ) + u

M +m(1− cos(θ)2)

ω̇ =
−ml cos θ sin θθ̇2 + F cos(θ) + (M +m)g sin(θ)

l(M +m(1− cos(θ)2))
.

The control objective is to stabilize the system around the
unstable upward equilibrium point with the cart position at
the origin, which corresponds to xeq = 04×1. The force input
is constrained to |F | ≤ 15N.

We use [19] to generate a library of 2000 swing-up
trajectories to build the predictor. The initial conditions for
the trajectories are sampled from uniform distributions with
x0 ∼ U(−0.2, 0.2)m and θ0 ∼ U(150, 210) deg, with initial
velocities and control input set to zero. The library of trajec-
tories is shown in Fig. 2. Including additional trajectories
with poor swing-up performance in the library does not
change the results, as they are not selected by the filter.

To solve the OCP for the data-driven approach, we use
IPOPT [20]. The weighting matrices for the control objective
are Q = diag(100, 100) and R = 0.1, with initialization
horizon and prediction horizon set to Tini = 10 and N = 50,
respectively. The proximity filter is applied to each output/in-
put channel separately, which allows using different values
for εp. In the simulation we use εpx = 0.05m for the cart
position, εpθ = 2deg for the pendulum angle, and εpu = 5N
for the control input.

We picked one trajectory from the library and use the rest
of the library for predictions. The dimension of α is set to 20,
i.e. after the proximity filter step on the initial conditions, the
library is reduced to 20 trajectories that include the optimal
trajectory and its 19 nearest neighbors as shown in Fig. 2.
The resulting predictions are shown in Fig. 3 and compared
to the rollouts of the optimal control sequence which only
start to diverge at t = 50 for θ, i.e. after 40 prediction steps.
This shows that the predictions are not being corrupted by
the majority of the library trajectories that represent a faster
swing-up.

We implemented a DeePC-like approach using the same
library. However, we did not use the prefiltered + ranking
approach and instead used all available trajectories directly.
We attempted to use `1-norm regularization, but we were
unable to find a suitable value for the regularization weight
λ. As a result, we were unable to obtain predictions that
were usable for control, and therefore, we will not report
them here.
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Fig. 2. The green trajectories were selected from all possible trajectories
to build the predictor, while the remaining trajectories are shown in black.
It is important to note that the dataset of all libraries is much larger and
distinct from the trajectories used to build the predictor. The blue rectangle
in the figure corresponds to the initial conditions, which consist of the first
Tini = 10 samples.

VI. CONCLUSION

In this paper, we proposed an extension of recent data-
driven predictive control approaches to handle nonlinear
systems. Our focus was on understanding the impact of
nonlinearities on the predictive control formulation, and we
proposed a feature selection algorithm to choose a subset
of available trajectories that represent the system behavior
with minimal prediction error. To validate the effectiveness
of our approach, we applied the algorithm to a nonlinear
system and demonstrated its ability to produce accurate
predictions. Overall, our work provides a promising solution
for addressing nonlinearities in data-driven predictive control.
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