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Abstract— The paper studies a general regulator problem
with an internal model in a subset of measurement channels.
It proposes a procedure to reduce the stabilization problem
for an augmented system (the plant plus internal model) to
an equivalent one based on a process without the internal
model and having the complexity of the plant. A key idea is to
introduce stable internal model compensation (IMC) elements
to the controller, which are, in a sense, dual to the dead-time
compensators used in the control of delay systems. Closed-form
state-space expressions for such IMC elements and the resulted
equivalent plant are derived. It is shown that the complexity
of the resulted overall controller is lower than in approaches
based on the augmented plant.

Index Terms— Internal model principle, regulator problem,
linear systems.

I. Introduction

Consider a continuous-time linear time-invariant (LTI)

plant P W u 7! y under a control input u.t/ 2 R
m and a

measured output y.t/ 2 R
p. By the regulator problem we

understand the problem of designing a stabilizing feedback

controller R W y 7! u, which asymptotically rejects effects of

persistent disturbances and / or reference signals of a known

class on a part of the measured output, referred to as the

regulated signal. We assume that the regulated signal is

e.t/ D Ey.t/ 2 R
pe

for some E 2 R
pe�p assumed to be normalized, i.e. such that

EE 0 D I (a typical choice would be E D
�

I 0
�

).

The regulator problem is conventionally addressed via

the Internal Model Principle [1], by including a model of

persistent exogenous signals into the controller. A possible

configuration of the controller for the regulated signal as

above is (paraphrased from [2, Sec. 4.4])

R D Rs.E
0ME C I � E 0E/; (1)

where M is a pe �pe internal model, whose (pure imaginary)

poles model exogenous signals, and Rs is a design parameter,

dubbed stabilizer or post-processor, whose goal is to stabilize

the resulted closed-loop system and take care of transients

and other performance aspects. We assume the standard

feedback configuration, with the loop RP D Rs.E
0ME C

I � E 0E/P . The robust regulation requires each pole of M

to have the geometric multiplicity pe , see [2, 3]. The internal

Supported by the Israel Science Foundation (grant no. 3177/21), by the
Italian Ministry for Research (PRIN 2017 grant no. 2017YKXYXJ) and, in
part, by Sakranut Graydah at Politecnico di Milano and the Technion.

P. Colaneri and G. P. Incremona are with Dipartimento di Elettronica,
Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
(e-mails: patrizio.colaneri@polimi.it and gianpaolo.incremona@polimi.it).
L. Mirkin is with the Faculty of Mechanical Engineering, Technion—IIT,
Haifa 3200003, Israel (e-mail: mirkin@technion.ac.il).

model is normally fixed as a part of regulation considerations

and the stabilizer is designed for the augmented plant

Paug ´ .E 0ME C I � E 0E/P: (2)

A stabilizing Rs can always be designed, provided the two

terms in the right-hand side of (2) have no unstable can-

cellations. Controller (1) solves then the regulator problem

under mild technical assumptions on P for fairly general

disturbance attenuation and tracking setups.

Yet, despite its conceptual simplicity, the procedure out-

lined above has its own catches. The obvious one is the

inflation of dimensions when the complexity of the internal

model increases. An extreme example of that is repetitive

control [4] handling arbitrary periodic exogenous signals,

whose model is infinite dimensional and the design of a

stabilizer for which is highly nontrivial. Moreover, addressing

closed-loop performance for a high-dimensional Paug, which

then has several undamped resonances, might not be quite

simple. In many cases the choice is to resort to a low-gain Rs,

at least if P is stable itself. Another shortcoming of designing

Rs for Paug is a complex dependence of the parameters of

the stabilizer on those of the internal model. This implies

that adjusting Rs to changes in M might be very involved.

In this paper we put forward an alternative approach to

design internal model controllers. The idea is to introduce

fixed stable internal model compensation (IMC) elements,

which reduce the stabilization of Paug to that of a system

having the same complexity as the non-augmented plant P .

In some situations, this could even be the stabilization of P

itself. This approach is motivated by the delay compensation

in repetitive control [5] and that for a general internal model

in the state-feedback case with a control channel model [6].

Below we extend these ideas to a fairly general class of

output-feedback systems with internal models. In situations

when the regulated signal e is a proper subset of measured

signal y, i.e. when pe < p, the proposed IMC is nontrivially

different from those in [5, 6] in the need to include two

IMC elements. One of those elements is in parallel to

the “central controller” in the regulation channel, similarly

to that in earlier results. But another one, connecting two

measurement channels, has no counterparts there. Explicit

state-space construction of stable IMC elements is proposed.

Notation: The closed right half of the complex plane is

denoted xC0. The complex-conjugate transpose of a matrix A

is denoted by A0. The notation spec.A/ stands for the matrix

spectrum when A is a square matrix or for the set of poles if

A is an LTI system. By H1 we denote the set of holomorphic

and bounded functions in the open right-half plane. The

notation � # 0 reads “� approaches zero from above.”
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We use the compact notation
�

A B

C D

�

´ D C C.sI � A/�1B

for transfer functions in terms of their state realizations.

II. Internal Model Compensation

We study the problem of designing a stabilizer Rs in

controller (1) with a given internal model M for a plant

P having a proper transfer function P.s/. We assume that

A1: spec.M/ 2 xC0, M �1 2 H1, and M.1/ D I ,

A2: pe D m and EP.s/ has full normal rank,

A3: spec..EP /�1/ \ spec.M/ D ¿.

The first part of A1 is standard, there is no need for stable

poles in internal models, whose role is to generate persistent

signals of a given class. The second part of that assumption

does not entail any restriction on the class of controllers,

and their zeros in xC0 or at the infinity could be easily

introduced via Rs, if required for whatever reason. Likewise,

the normalization of M.1/ can always be ensured by Rs.

Assumption A2 says that the regulated channel, u 7! e, is

neither underactuated, which is necessary for any regulator

problem, nor has redundancies. The latter simplifies our

arguments, although is not necessary for them and can be

relaxed at the expense of bulkier technicalities. Finally, A3,

together with the second part of A1, ensures that there are

no unstable cancellations in (2).

We start with a technical result, which plays a key role in

our developments and whose implications will be discussed

later on. We say that Rs internally stabilizes Paug if the system

(the gang of four)

T4;aug ´

�

I

�Rs

�

.I � PaugRs/
�1

�

I Paug

�

(3)

is stable (i.e. its transfer function belongs to H1). Introduce

also the matrix E? 2 R
.p�pe/�p as any matrix satisfying

E 0
?E? D I � E 0E:

Clearly, if p > pe, then every such E? has full row rank and

satisfies E?

�

E 0 E 0
?

�

D
�

0 I
�

.

Theorem 1: Rs internally stabilizes Paug defined by (2) iff

Rs D NR.I C E 0
?�2E/ � �1E (4)

for some NR internally stabilizing

NP ´ .I C E 0
?�2E/Paug.I C �1EPaug/�1 (5)

and �1; �2 2 H1 and such that I C �1EPaug is invertible.

Proof: The invertibility of I C E 0
?�2E D .I �

E 0
?�2E/�1 implies that any stabilizer Rs is produced by the

unique NR D Rs.I �E 0
?�2E/C�1E and we may consider Rs

in form (4) without loss of generality. Thus, we only need

to show the equivalence of the stability of T4;aug and that of

NT4 ´

�

I

� NR

�

.I � NP NR/�1
�

I NP
�

; (6)

which is the counterpart of T4;aug for the interconnection of
NP and NR. These two systems are related as

T4;aug D

�

I � E 0
?�2E 0

�1E I

�

NT4

�

I C E 0
?�2E 0

��1E I

�

; (7)

which follows by the relation

Paug D .I � E 0
?�2E/.I � NP �1E/�1 NP

and straightforward albeit lengthy algebra. Because
�

I C E 0
?�2E 0

��1E I

�

D

�

I � E 0
?�2E 0

�1E I

��1

is bi-stable, we have that T4;aug 2 H1 () NT4 2 H1,

which completes the proof.

Theorem 1 says that the stabilization of Paug can be solved

via that of NP by introducing internal model compensators

(IMC) �1 and �2 into the controller as in (4). This result

is reminiscent of [5, Thm. 1] and [6, Thm. 1], where the

stabilization of augmented plants is also reduced to that of

a plant free of internal models via the use of IMC elements.

However, the compensation is now qualitatively different,

the stabilizer in (4) uses not only the parallel element

��1E , similar to those in [5, 6], but also the cascade block

I C E 0
?�2E . The latter connects the regulated measurement

e with its complement in y. This is a consequence of the use

of only a part of the measured signal for the internal model.

If e D y, then E? is void, so is �2, and (4) has the same

structure as the controllers of [5, 6].

A. Complexity of NP

Stabilizing NP as a means to stabilize the augmented plant

makes sense only if NP is simpler than Paug. In this subsection

we show, by qualitative arguments, that stable �1 and �2 for

which the order of NP is the same as that of P can always be

found. Concrete choices are then discussed in Section III.

As a first step, we find a more informative relation between
NP and IMC elements �1 and �2. To this end, rewrite (5),

using (2) and relations between E and E?, in the form
�

E

E?

�

NP D

�

MEP

E?P C �2MEP

�

.I C �1MEP /�1:

Equivalently,
�

E NP

E?
NP

�

.I C �1MEP / D

�

MEP

E?P C �2MEP

�

: (8)

By A1 and A2, EP and M are invertible. Hence, post-

multiplying the relation above by .EP /�1M �1 does not

change it and we have
�

E NP

E?
NP

�

..EP /�1M �1C�1/ D

�

I

E?P.EP /�1M �1 C �2

�

:

The first row above implies that E NP is invertible as well, so

all we need is to construct a “simple” NP such that
�

�1

�2

�

D

�

I

E?
NP

�

.E NP /�1 �

�

I

E?P

�

.EP /�1M �1 (9)

are stable and I C �1MEP is invertible (the latter is always

true if EP.s/ is strictly proper).
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Two observations are important to understand implica-

tions of (9). First, the logic of choosing .E NP /�1 and

E?
NP .E NP /�1 is to match unstable, including non-proper,

parts of .EP /�1M �1 and E?P.EP /�1M �1, respectively.

Second, M �1 is itself stable, by A1, so instabilities above

are related only to the plant P , without the internal model.

These observations suggest that the complexity of NP shall not

exceed that of P . If EP is stably invertible, then the obvious

choice is NP D P . Otherwise, the dependence of NP on P is

normally more involved. Still, the logic of constructing the

two IMC elements is simple and Section III presents state-

space formulae, in which the order of NP equals that of P

and the orders of �1 and �2 equal that of M �1.

Remark 1 (if pe < m): The reasoning above still applies

if the regulator problem is over-actuated. What changes

in that case is the need to replace .EP /�1 as the right

multiplier in processing (8) with a nonsingular m�m system
�

.EP /# P?

�

, where .EP /# is a right inverse of EP and P?

is its complement such that EPP? D 0. This would still lead

us to (9), modulo the replacement of .EP /�1 with .EP /#,

and additional equations E NP P? D 0 and E?
NP P? D E?PP?

independent of �1 and �2. O

B. Closed-loop systems

The result of Theorem 1 addresses only the internal

stability issue. It is naturally also important to understand the

effect of applying the IMC elements on closed-loop systems

of interest. In the context of internal-model principle, those

are mainly the closed-loop sensitivity, S , and disturbance

sensitivity, Td, functions
�

S Td

�

´ .I � PR/�1
�

I P
�

: (10)

We are interested to understand relations between them and

the corresponding closed-loop systems associated with NP and
NR in (4) and (5), i.e.

�

NS NTd

�

´ .I � NP NR/�1
�

I NP
�

. The

relation is given by the result below.

Proposition 1: If �1 and �2 are given by (9), then

Td D P.EP /�1M �1E NTd (11a)

and

S D I � P.EP /�1E C P.EP /�1M �1E

�
�

NS.I � P.EP /�1E/ C NTd.EP /�1E
�

: (11b)

Proof: It is readily seen that

�

S Td

�

D
�

M �1
0 0

�

T4;aug

�

M0 0

0 I

�

;

where T4;aug is defined by (3) and M0 ´ E 0ME C E 0
?E?

is the factor containing the internal model in controller (1).

Taking into account (7), we then have the relation

�

S Td

�

D .M �1
0 � E 0

?�2E/
�

NS NTd

�

�

M0 C E 0
?�2ME 0

��1ME I

�

between the functions of interest. It then follows from (9)

that
�

M0 C E 0
?�2ME

��1ME

�

D

�

I � PP �1
e E

P �1
e E

�

C

�

NP

�I

�

NP �1
e ME;

where Pe D EP and NPe D E NP , so that

�

S Td

�

D .M �1
0 � E 0

?�2E/
�

NS NTd

�

�

I � PP �1
e E 0

P �1
e E I

�

:

Using the expression for �2 from (9), it can be shown that

.M �1
0 � E 0

?�2E/ NS D I � NP NP �1
e E C PP �1

e M �1E NS;

from which (11a) follows by NTd D NS NP and (11b) is derived

using the relation .I � NP NP �1
e E/.I �PP �1

e E/ D I �PP �1
e E ,

which is readily verified.

It follows from Proposition 1 that

E
�

S Td

�

D M �1E
�

NS NTd

�

�

I � P.EP /�1E 0

.EP /�1E I

�

;

meaning that unstable poles of M.s/ are zeros of both ES.s/

and ETd.s/, as expected from the internal model principle.

III. State-Space Construction of �1, �2, and NP

To derive state-space expressions for the systems in The-

orem 1, bring in state-space realizations of the plant P and

the internal model M ,

P.s/ D

�

A B

C D

�

and M.s/ D

�

Am Bm

Cm I

�

;

whose state dimensions are n and nm, respectively. To

simplify formulae, we assume throughout this section that

A4: ED D 0,

i.e. that Pe.s/ is strictly proper, and that

A5: zeros of M.s/ and Pe.s/ are disjoint.

Choosing (stable) zeros of M.s/ to be different from those

of Pe.s/ is not restrictive, this can always be compensated by

Rs. We also need matrices B# 2 R
m�n and B? 2 R

.n�m/�n

such that
�

B?

B#

�

B D

�

0

I

�

and det

�

B?

B#

�

¤ 0:

They exist whenever B has full column rank, which is

guaranteed by A2 and A4. The following result can then

be formulated.

Proposition 2: If A1–5 hold true, then the generalized

Sylvester equation
�

B?

0

�

X.Am � BmCm/ �

�

B?A

�EC

�

X D

�

0

Cm

�

; (12)

has a unique bounded solution X 2 R
n�nm and

�

�1.s/

�2.s/

�

D

2

4

Am � BmCm Bm

C0 0

E?CX C E?DC0 0

3

5 ; (13)

where C0 ´ B#X.Am � BmCm/ � B#AX , and

NP .s/ D

�

A C XBmEC B

C D

�

(14)

satisfy (9).
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Proof: We start with (12). It is a generalized Sylvester

equation, known [7] to be solvable if the pencils
�

B?A

�EC

�

� s

�

B?

0

�

and sI � .Am � BmCm/ (15)

are regular and have no common roots. The second pencil

above is obviously regular. To see whether this is the case

for the first pencil of (15), rewrite it as
�

B?A

�EC

�

� s

�

B?

0

�

D

�

B? 0

0 �I

� �

A � sI

EC

�

:

Because adding zero columns does not change the rank, the

rank of the matrix above is equivalent to the rank of
�

B? 0

0 �I

� �

A � sI 0

EC 0

�

D

�

B? 0

0 �I

� �

A � sI B

EC 0

�

for all s 2 C. The last factor in the right-hand side above

is the Rosenbrock system matrix associated with Pe, so it

has full normal row rank by A2. The regularity of the first

pencil of (15) follows then by the full row rank of B?. Now,

by A5 zeros of Pe.s/, which are the roots of the first pencil

of (15), are assumed to be different from the zeros of M.s/,

which are the roots of the second pencil of (15). Thus, those

pencils are regular and have no common roots, which, in

turn, proves the first statement of the Lemma.

Because Pe.s/ is strictly proper, its inverse does not have

a standard state-space realization. To avoid bulky technical-

ities of moving to the descriptor formalism, we consider a

perturbed version of (9), viz.
�

�1�

�2�

�

D

�

I

E?
NP�

�

.E NP�/
�1 � G�; (9�)

where

G� ´

�

I

E?P

�

.�I C Pe/�1M �1;

for some � > 0. If we find NP� and �1�; �2� 2 H1 satisfying

this equation and if these systems are well defined as � # 0,

then their limits solve (9).

It is readily verified that

�

M.s/.�I C Pe.s//

E?P.s/

�

D

2

6

6

4

Am BmEC �Bm

0 A B

Cm EC �I

0 E?C E?D

3

7

7

5

: (16)

Furthermore, using the idea of [8, §III-C], the realization

G�.s/ D

2

6

6

4

Am � BmCm 0 Bm

���1BCm A � ��1BEC ��1B

���1Cm ���1EC ��1I

���1E?DCm E?.I � ��1DE/C ��1E?D

3

7

7

5

is obtained by swapping the input and the first output signals

of the system in (16). The eigenvalues of Am � BmCm and

A���1BEC are zeros of M.s/ and �I CPe.s/, respectively.

By A5 they are disjoint for all sufficiently small �. As such,

the Sylvester equation

X�.Am � BmCm/ � .A � ��1BEC /X� D ��1BCm (12�)

has a unique solution X�. Applying a similarity transforma-

tion with the matrix
�

I 0
X� I

�

to the realization of G� above,

we end up with

G�.s/ D

2

4

A � ��1BEC ��1B C X�Bm

���1EC ��1I

E?.I � ��1DE/C ��1E?D

3

5

�

2

4

Am � BmCm Bm

��1.Cm � ECX�/ 0

E?CX� C ��1E?D.Cm � ECX�/ 0

3

5 :

The second term above is assumed to be stable, so it does

not need to be canceled by NP� terms. Thus, we may take

�

�1�.s/

�2�.s/

�

D

2

4

Am � BmCm Bm

C� 0

E?CX� C E?DC� 0

3

5 :

where C� ´ ��1.Cm � ECX�/ D B#X�.Am � BmCm/ �

B#AX� and the second equality follows by (12�). In this

case we just need to find NP� such that

�

I

E?
NP�.s/

�

.E NP�.s//�1

D

2

4

A � ��1BEC ��1B C X�Bm

���1EC ��1I

E?.I � ��1DE/C ��1E?D

3

5

to cancel all potential instabilities. To this end we again swap

the input and the first output and end up with
�

E

E?

�

NP�.s/ D

�

E

E?

� �

A C X�BmEC B C �X�Bm

C D C �E 0

�

:

This solves (9�).

Consider now (12�). It is obviously equivalent to
�

B?

B#

�

.X�.Am � BmCm/ � AX�/ D ��1

�

0

Cm � ECX�

�

:

Multiplying the second block row above by � > 0, we have
�

B?

�B#

�

X�.Am � BmCm/ �

�

B?A

�B#A � EC

�

X� D

�

0

Cm

�

:

Because this is a linear equation in X� , the latter is continu-

ous as a function of � and then lim�#0 X� D X , the solution

of (12). Then NP , �1, and �2 are the limited cases of NP�, �1�,

and �2� . This completes the proof.

Curiously, the invariant zeros of this NP coincide with those

of P . This is seen from the relation
�

A C XBmEC � sI B

C D

�

D

�

I XBmE

0 I

� �

A � sI B

C D

�

between their Rosenbrock matrices. By similar arguments,

the invariant zeros of E NP coincide with those of EP .

The overall controller (1) is then

R.s/ D
�

NR.s/ B#
�

2

4

Am BmE

CX I

AX � X.Am � BmCm/ 0

3

5 (17)

where NR is a controller stabilizing NP . The order of this

controller is the sum of those of NR and the model M .
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yref

ureq

u

k��e

y
P R

-

Fig. 1: 2DOF control system

If the former is an observer-based controller for NP , the

controller order is n C nm. This is a clear advantage over

the conventional design for the augmented plant Paug in (2),

where the controller order would be nC2nm in the observer-

based case.

IV. Illustrative Example

Consider an armature-controlled DC motor connected to a

rigid mechanical load, see [9, Sec. 6.5] for details. We assume

that both the shaft angle �sh and its angular velocity !sh are

measurable, i.e. that y D
�

�sh
!sh

�

, and the control input is the

armature voltage u. The controlled plant is

P.s/ D

�

P�.s/

P!.s/

�

D

�

1=s

1

�

Km

.Js C f /Ra C K2
m

;

where Km is the motor (torque) coefficient, Ra is the armature

resistance (the inductance is neglected), and J and f are

the moment of inertia and viscous friction coefficient of the

rigid load, respectively. The disturbance signal is an external

torque �e applied to the load, which is equivalent to the load

(input) disturbance k� �e, where k� ´ Ra=Km. The regulated

variable is the shaft angle �sh, for which E D
�

1 0
�

.

We use the 2-degrees-of-freedom (2DOF) control archi-

tecture in the form depicted in Fig. 1. The signals yref and

ureq represent the nominal command following requirements

and R is a feedback controller. The closed-loop relations in

this case are
�

y

u

�

D

�

yref

ureq

�

C

�

S

RS

�

�

P k� �e � yref C P ureq

�

;

where S is the sensitivity function defined in (10). If yref

and ureq are chosen consistently, so that yref D P ureq, and

there are no disturbances, i.e. �e D 0, then the perfect tracking

condition y D yref holds regardless the choice of the feedback

controller R. Modelling uncertainty and disturbances change

this. But with an appropriate choice of R the effect of

those factors on y (and u, but this is less relevant for our

discussion) can be reduced. Specifically, if at some !i

ES.j!i/ D 0 and ETd.j!i / D 0 (18)

where S and Td are as in (10), then the corresponding

harmonic of �e, yref, and ureq do not affect the regulated

error �sh � Eyref in steady state even under uncertainty.

A. Regulation conditions

Our first goal is to understand what requirements to

the feedback controller R conditions (18) impose. To this

end, it can be shown that all stabilizing controllers can be

characterized as

R.s/ D
�

R� .s/ R!.s/
�

D

�

1 C b
Q1.s/ C sQ2.s/

�cl.s/

��1

Q.s/ �
1

b

�

�0 �1 � a
�

;

Km [N m/A] Ra [�] J [kg m2] f [N m s/rad] �max [N m]

0.126 2.08 0.008 0.005 0.235

TABLE I: Numerical values of motor and load parameters

where Q D
�

Q1 Q2

�

2 H1 but otherwise arbitrary (the

Youla parameter [10, Sec. 3.7]), a D .f C K2
m=Ra/=J , b D

Km=.RaJ /, and �cl.s/ D s2C�1sC�0 is an arbitrary Hurwitz

polynomial (the closed-loop characteristic polynomial under

Q1 D Q2 D 0). All stable ES and ETd are then

E
�

S.s/ Td.s/
�

D
1

�cl.s/

�

1 C b
Q1.s/ C sQ2.s/

�cl.s/

�

�
�

s.s C �1/ a � �1 b
�

�
bQ2.s/

�cl.s/

�

s �1 0
�

:

It is readily seen that condition (18) holds then iff

Q.j!i / D �
�

�cl.j!i /=b 0
�

¤ 0

and this condition implies that the transfer function of the

angle channel of the controller, R� .s/, must have at least

one pole at s D j!i . This justifies the use of the controller

of form (1) with an internal model M.s/ having poles at each

s D j!i .

Remark 2: It may happen that only the second condition

of (18) is required. For example, it is not unreasonable to

assume that only !i D 0 is of interest in setpoint tracking

problems. In such situations we may be concerned only with

ETd.j!i / if !i D 0. If this is the case, then the condition on

Q is relaxed to

Q1.j!i / C j!i Q2.j!i / D �
�cl.j!i/

b
¤ 0;

which does not entail Q2.j!i / D 0. Moreover, if Q1.j!i / D 0

is chosen, then we may end up with a controller solving the

regulator problem without an internal model in the regulated

channel (rather in the complementary velocity one). Still, the

case of Q2.j!i/ D 0 is not ruled out and (1) is a legitimate

choice. O

B. Design

Assume that condition (18) has to be satisfied for three

frequencies,

!0 D 0; !1 D
1

2
�; and !2 D

8

3
�:

To ensure (18) in this case we consider the model

M.s/ D
.s C am/5

s.s2 C !2
1/.s2 C !2

2/

for some am > 0, which satisfies A1 and A3. We then choose
NP , �1, and �2 according to Proposition 2. With the motor

numerical data as in Table I, for which

P.s/ D

�

1

s

�

7:5672

s.s C 1:578/
and k� D 16:5187;

and am D 4, we end up with

NP .s/ D

�

1

s � 20

�

7:5672

s2 � 18:42s C 281:1
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(a) disturbance torque, �e.t/ (b) shaft angle, �.t/

(c) input voltage, u.t/ (d) motor torque, �.t/

Fig. 2: Simulations

and the internal model compensators

�1.s/ D
422:84.s2 C 4:88s C 6:28/.s2 C 5:84s C 14:33/

.s C 4/5
;

�2.s/ D �
312:65.s2 C 3:56s C 3:83/.s2 C 4:63s C 17:09/

.s C 4/5
:

The poles of NP .s/ are quite different from those of P.s/, they

are actually in the open right-half plane. Still, this itself is not

a problem and the design of NR can be carried out as the stan-

dard static state feedback. Specifically, we place both closed-

loop poles at s D �2 by NR.s/ D �
�

22:6436 2:9631
�

and

then implement the overall fifth-order controller R as in (17).

The reference signal yref is chosen to be the time-optimal

shaft trajectory to attain a required steady-state �1 under a

limited torque � generated by the motor. For the maximum

torque �max in Table I we choose the constraint to be �max=4

(to have enough margins to compensate the external torque

as well) and design the optimal torque for the load dynamics

J R�sh C f P�sh D � under �sh.0/ D P�sh.0/ D 0, see [11, Ch. 7],

although details are not essential here. Having calculated the

optimal �sh D �opt, the reference signal

yref.t/ D

�

�opt.t/

!opt.t/

�

D

2

6

6

4

0 tsw tfin

�1

0 tsw tfin

3

7

7

5

;

where !opt D P�opt, the required voltage ureq D .1=P� /�opt is

of the form

ureq.t/ D
Ra

Km

�opt.t/ C Km !opt.t/ D
0 tsw

tfin ;

and �opt is bang-bang in the range Œ��max=3; �max=3�.

C. Simulations

Simulated responses of the 2DOF controller in Fig. 1 for

yref and ureq as above and �1 D 3� are presented in Fig. 2.

The disturbance

�e.t/ D 0:1

(

1 C sin.!1t/ if 0 < t < 6

sin.!1t/ � cos.!2t/ if t > 6

see Fig. 2(a). The resulting shaft angle is then as in Fig. 2(b),

which also presents yref in the dashed line. The presence

of the internal model M in the angle channel ensures that

the disturbance is asymptotically rejected, as expected. The

control signal is depicted in Fig. 2(c), where the dashed line

corresponds to ureq. The resulted torque generated by the

motor is shown in Fig. 2(d) and it is within the bounds of

˙�max (but this naturally depends on the actual disturbance).

The bang-bang torque for which the reference trajectory was

calculated is presented by the dashed line in Fig. 2(d).

V. Concluding Remarks

The paper has proposed a novel procedure of designing in-

ternal model controllers capable of reducing the stabilization

problem of high-dimensional augmented systems, containing

the plant and the internal model, to that of an internal model-

free counterpart of the plant. A key in the procedure is the

use of internal model compensation (IMC) elements, which

are stable systems enabling the reduction. An explicit state-

space construction of IMC has been derived.

A perspective future research direction is to analyze the

implementation of IMC elements that could result in an affine

dependence of the closed-loop dynamics on defining static

parameters of the internal model. We expect that such an

implementation could be instrumental in adding adaptation

mechanisms, similarly to the state-feedback study in [12].
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