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Abstract— The purpose of this paper is to explore a nonlinear
generalization of the LTI theory of relaxation systems. LTI re-
laxation systems have the property that their Hankel operator is
the gradient of a quadratic functional. We use this property as a
defining property of nonlinear relaxation systems, generalizing
the functional from quadratic to convex. Relaxation systems
are shown to be special fading memory systems, characterized
by strong positivity properties. It is suggested that relaxation
systems and their duals define the elements of fading memory
systems that admit a physical circuit representation.

I. INTRODUCTION

How to model the memory of a physical device is a
central question of control theory. The question goes back
to the early modelling of operational amplifiers. It is un-
dergoing a resurgence of interest with the development of
neuromorphics, and the realization of neuromorphic circuits
from memristive materials, as well as with the development
of soft robotics, and the realization of soft actuators from
memory alloys [1]–[4].

Memory modelling has known a distinct and somewhat
separated development in the two traditions of system theory,
namely the input-output theory of systems modelled as
operators and the state-space theory of systems modelled as
differential equations. In the input-output theory, a key ad-
vance came from the concept of fading memory [5]. Fading
memory operators provide a nonlinear generalization of the
convolution property of LTI systems: the present output of
the system is calculated as a weighted combination of past
inputs. For linear systems, the weights are the coefficients
of the impulse response, that fades away at an exponential
rate. In state-space theory, one could argue that the state
is the memory, in that it summarizes what is needed from
the past to determine the future. The physical interpretation
of this abstract concept is however provided by dissipativity
theory [6], through the concept of storage. State variables of
physical circuits are in one-to-one correspondence with the
elements that can store energy: in electrical circuits, charge
is the storage of electric energy and flux is the storage of
magnetic energy. In this context, memory modeling becomes
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equivalent to energy-based modeling. The memory of a
physical system is identified from its storage elements.

The LTI theory of passive systems provides a clear re-
lationship between the fading memory of passive operators
and the physical storage of their state-space realization. Any
stable passive convolution operator has fading memory and
the input-output relationship can be realized as an electrical
circuit with capacitors and inductors as storage elements. The
storage is a quadratic function of the state.

For nonlinear systems, the link between fading memory
and storage is quite unclear. Nonlinear state-space models do
not necessarily have fading memory. Conversely, it is unclear
how to define the storage of a fading memory operator.

The present paper is an attempt to reconcile the separate
concepts of fading memory and storage in the physical
modelling of nonlinear circuits. Our starting point is the
relaxation property of the elements of linear circuits. The
concept of relaxation elements has a long history going back
to Maxwell and his linear relaxation model of viscoelas-
tic materials. When perturbed, a relaxation system returns
to equilibrium in a completely monotone manner, that is,
without a hint of oscillation [6]. In his seminal dissipativity
paper, Willems singles out LTI relaxation systems as those
passive circuits whose storage is completely determined by
the external behavior. Our recent paper [7] has formalized
this property by showing that the Hankel operator of a LTI
relaxation system is the gradient of a quadratic functional of
the past input. Because it is not defined in terms of the state
but directly in terms of the past input, we have named this
functional the intrinsic storage of the system.

To generalize the concept of relaxation system to nonlinear
systems, we take the intrinsic storage as the defining property
of a relaxation element. While linear relaxation systems
derives from quadratic storages, the generalization to convex
storages provides a nonlinear concept of relaxation system.
Nonlinear relaxation systems are derived from their convex
storage in the same way LTI convolution operators are
derived from their quadratic storage.

To build circuits from relaxation elements, we use duality
theory. Any relaxation element has a dual defined by the
Fenchel dual of its intrinsic storage. From there, circuits
can be defined as parallel and series interconnections of
relaxation elements. In that sense, relaxation systems become
the elements of fading memory systems that can be realized
as physical circuits.

The rest of the paper is organized as follows. After some
preliminaries, we introduce in Section II a paradigmatic
example of memristive element and discuss the limitations
of its classical state-space representation. Section IV summa-
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rizes the key properties of LTI relaxation systems. Section V
show how to extend the definition of relaxation to nonlinear
systems. Section VI briefly discusses the duality theory of
relaxation systems. Section VII show how the proposed
approach can be employed to determine a relaxation model
of the introductory example.

II. A MOTIVATING EXAMPLE

Our interest in the relaxation property stems from the
difficulty to analyze circuits defined from state-space models.
We illustrate this bottleneck in the seminal paper [8] that
introduced circuit modelling in neuroscience. Hodgkin and
Huxley modelled the excitable behavior of a biophysical
neuron as the parallel interconnection of a leaky capacitor
and two current sources, the so-called potassium and sodium
ion channel currents.

They designed an experiment to identify the input-output
response of each ion channel current separately, from a
series of step input responses of different magnitude. Figure
1 reproduces the experimental responses recorded for the
potassium current.

Fig. 1: Graph of data of conductance of potassium ion
channel under different polarisation used in Hodgkin-Huxley
model [8, Fig. 3].

In order to simulate an action potential, the authors fitted
the experimental data to the following state-space model:

y = 36n4(u− VK)

ṅ = αn(u)(1− n)− βn(u)n,

αn(u) =
0.1− 0.01(−Vr + u)

exp(1− 0.1(−Vr + u))− 1

βn(u) =
0.125

exp(0.0125(−Vr + u))

with Vr = −65.1 and VK = −77. Vr is the resting potential
of the neuron.

Ever since, biophysical neural circuits have been modelled
according to that same modelling principle. Both internal cur-
rents (ion channels) and external currents (synaptic currents)
are modelled as state-space models similar to the potassium
current model. Such models have been called memristive by
Chua and Kang [9]. They are characterized by a dynamical
(voltage-gated) conductance. They are trivially passive, since
the product of current and voltage is always positive away
from the equilibrium potential V = VK . But what is their
storage ? Do they have fading memory ? As lumped models
of a complex molecular machinery, such elements do not
easily fit neither the classical theory of fading memory
systems nor the classical theory of energy-based modelling.
This lack of modelling framework has become a central
bottleneck of analysis and design, both in neuroscience and
in neuromorphic engineering [10].

The experimental data of the potassium current suggest
a memory element with the relaxation property: each step
response models how the system returns monotonically to
equilibrium from an initial deviation. We will illustrate in
the last section of the paper how the system can be modelled
as a relaxation system.

III. PRELIMINARIES

We let L2(T) denote the space of square-integrable signals
u : T → R, where T ⊆ R represents the time axis. L2 is a
Hilbert space, with inner product given by

⟨u, y⟩ =
∫
T
u(t)y(t) dt.

The Hardy space H2 is the space of complex functions which
are bounded and analytic in the right half plane, with inner
product

⟨û, ŷ⟩ =
∫ ∞

−∞
û(jω)∗ŷ(jω) dω,

where z∗ denotes the complex conjugate of z.
The Laplace transform is a linear bijection from

L2([0,∞)) to H2. Given u ∈ L2([0,∞)), its Laplace
transform is given by

û(s) = (Lu)(s) =
∫ ∞

0

u(t)e−st dt.

Given an absolutely integrable impulse response g ∈ L1,
we may define a Hankel operator Γg : L2([0,∞)) →
L2([0,∞)) by

(Γgu)(t) :=

∫ ∞

0

g(t+ τ)u(τ) dτ.

This may be thought of as a mapping from a past input ū
on the time interval (−∞, t] to a future output by setting
u(τ) = ū(t− τ).

A function f : R → R is absolutely monotonic if

d

dtn
f(t) ≥ 0
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for all t and n. A function f(t) is completely monotonic if

(−1)n
d

dtn
f(t) ≥ 0

for all t and n.

IV. LTI RELAXATION SYSTEMS

LTI relaxation systems are special convolution operators
characterised by a completely monotonic impulse response:

(−1)n
d

dtn
g(t) ≥ 0. (1)

It follows from Bernstein’s theorem [11] that such impulse
responses have the representation

g(t) =

∫ ∞

0

e−ptdN(p) (2)

with N(s) a bounded nondecreasing function on [0,∞).
For simplicity, we limit ourselves to finite dimensional LTI
relaxation systems with impulse response

g(t) = G0δ(t) +
∑
i

Gie
−pit, (3)

where Gi, pi ≥ 0 for all i. For convenience, we also limit the
exposition to SISO systems, but MIMO relaxation systems
are defined similarly, by replacing the scalars pi and Gi by
positive definite matrices. The Laplace transform of (3) is

ĝ(s) = G0 +
∑
i

Gi

s+ pi
. (4)

In the sequel, we omit the term G0, that is, we choose
G0 = 0. This is because G0 models the purely resistive
part of the relaxation system. The nonlinear generalization
of a linear resistor is a classical topic, to which we briefly
return in Section VI. The focus of the present paper is on the
dynamical part of the relaxation system. Finally, we exclude
from the present paper the limiting case p = 0. This is
just for the convenience of the exposition, and the limiting
case p = 0 will be included in the journal version of this
conference paper.

For n = 1, the Hankel operator of g(t) = e−pt has the
expression

(Γgu)(t) =

∫ ∞

0

u(τ)e−p(t+τ)dτ = û(p)e−pt, t ≥ 0. (5)

This formula has the following intepretation: the future
output is the impulse response g weighted by the scalar
product of the past input with g. In the general case, from
the Laplace transform of (5), we get the following time and
frequency domain expressions of the Hankel operator.

Lemma 1: Let g be the impulse response of a relaxation
system. Then,

yΓg (t) = (Γgu)(t) =
∑
i

Giû(pi)e
−pit, t ≥ 0 (6a)

ŷΓg
(s) = L(Γgu)(s) =

∑
i

Gi
û(pi)

s+ pi
. (6b)

In the recent paper [7], we showed that the Hankel operator
of an LTI relaxation system is a cyclic monotone operator on

L2[0,∞). This means that (6a) is the derivative of a closed,
convex and proper potential M : L2([0,∞)) → R, defined
by

M(u) =
1

2
⟨u,Γgu⟩2 =

1

2

∫ ∞

0

u(t)yΓg (t)dt. (7)

For the simple case of g(t) = e−pt, the potential takes the
remarkable expression

M(u) =
1

2
û(p)

∫ ∞

0

u(t)e−ptdt =
1

2
û2(p), (8)

which, for general impulse g, leads to

M(u) =
1

2

∑
i

Giû
2(pi). (9)

The main theorem in [7] shows that M(u) defines an
intrinsic storage for the relaxation system, given by convolu-
tion with the impulse response g. Letting ū, ȳ ∈ L2(R), this
convolution operator has the expression

ȳ(t) =

∫ t

−∞
g(t− τ)ū(τ) dτ. (10)

In order to study properties of the convolution operator using
the Hankel operator, we project the past of ū on (−∞, t] to
a signal ut ∈ L2([0,∞)), given by

ut(τ) := ū(t− τ), τ ∈ [0,∞). (11)

Theorem 1: [7, Thm. 6] The functional M satisfies the
dissipation inequality

dM(ut)

dt
≤ ū(t)ȳ(t). (12)

⌟
The functional M(u) can be equivalently regarded as

the physical storage of the relaxation system and as the
memory potential of its Hankel operator. We call M the
memory potential, or, equivalently, the intrinsic storage of
the convolution operator defined by the completely monotone
impulse response g. The memory potential M characterizes
at once a fading memory operator and its physical storage.

V. NONLINEAR RELAXATION SYSTEMS

We have seen in the previous section how the quadratic
potential û2(p) defines a LTI convolution operator with the
relaxation property. To generalize this definition to nonlinear
systems, we generalize the quadratic function to any proper
convex function F : R → R≥0 that reaches its minimum
at zero. For simplicity, we assume that F is continuously
differentiable and we note f = F ′. Indeed, for the case
g(t) = e−pt, we have

M(u) = F (û(p)), (13)

where p ∈ R≥0 and u ∈ L2[0,∞).
We then proceed to derive an operator from this memory

potential by taking the functional derivative, defined via the
first variation:

⟨gradM(u), ϕ⟩ :=
[
d

dε
(M(u+ εϕ))

]
ε=0

, (14)
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where ϕ ∈ L2[0,∞).
Theorem 2:

gradM(u) =
f(û(p))

s+ p
. (15)

⌟
Proof: Computing the functional derivative gives

⟨gradM(u), ϕ⟩ =
[
d

dε
M(u+ εϕ)

]
ε=0

=
d

dε

[
F (û(p) + εϕ̂(p))

]
ε=0

=

[
f(û(p) + εϕ̂(p))

d

dε
(û(p) + εϕ̂(p))

]
= f(û(p))ϕ̂(p). (16)

The result of the theorem then follows from〈
f(û(p))

s+ p
, ϕ̂

〉
=

〈
f(û(p))e−p ·, ϕ

〉
=

〈
f(û(p)), ϕe−p ·〉

=

∫ ∞

0

f(û(p))ϕ(t)e−ptdt

= f(û(p))ϕ̂(p), (17)

where the first identity follow from Parseval’s theorem.
This defines an operator gradM : H2 → H2. Taking the

initial value of this operator gives the memory functional [5],
[12] of a time-invariant fading memory system:

y(0) = lim
s→∞

s gradM(u) = lim
s→∞

sf(û(p))

s+ p
= f(û(p)).

(18)
In the time domain, the latter reads

y(0) = f

(∫ ∞

0

u(τ)e−pτ dτ

)
. (19)

Finally, the operator can be constructed from the memory
functional as follows. Consider the input signal ū ∈ L2(R)
and define ut as in (11), which maps the signal ū(t − ·) ∈
L2(−∞, t] into the signal ut(·) ∈ L2[0,∞). Then, the
operator output ȳ ∈ L2(R) can be computed by

ȳ(t) = f

(∫ ∞

0

ut(τ)e
−pτ dτ

)
= f (ût(pi)) (20a)

= f

(∫ ∞

0

ū(t− τ)e−pτ dτ

)
. (20b)

At each time, this has the form of a nonlinear readout of the
output of a first order lag

˙̄xp(t) = −px̄p(t) + ū(t) , ȳ(t) = f(x̄p(t)) (21)

with the “initially at rest” condition x̄p(−∞) = 0.
The derivation above motivates the following definition.
Definition 1: A relaxation system is a fading memory

causal time-invariant system given by the input-output re-
lationship

ȳ(t) =
∑
i

fi(x̄pi
(t)) =

∑
i

fi(ût(pi)) (22)

where fi : R → R are bounded monotone functions,
x̄pi(t) =

∫∞
0

ū(t − τ)e−piτdτ and ût = L(ū(t − ·)). For
F ′
i = fi, the functional

M(u) =
∑
i

Fi(û(pi)). (23)

is called the memory potential of the relaxation system (22).
⌟

We note that the above definition is closely related to
the kernel-based fading memory operators defined in the
recent paper [12]. Relaxation systems are special kernel-
based fading memory systems that derive from a potential.
We do not discuss the kernel interpretation of relaxation
systems in the present paper but the reader will note that
the first order lag 1

s+p is indeed (up to a factor) the Szegő
reproducing kernel of the Hardy space H2. Note that systems
of the form (21) were originally studied by Popov [13].

The following three theorems show that a nonlinear relax-
ation system inherits the key properties of an LTI relaxation
system.

Theorem 3: Let each fi(x) be absolutely monotonic on
R≥0. Then the impulse response of the relaxation system is
completely monotonic. ⌟

Proof: The impulse response of the relaxation system
is a sum of terms of the form fi(e

−pit). The function e−pit

is completely monotonic. The composition of an absolutely
monotonic function with a completely monotonic function is
completely monotonic [11, Chap. IV, Thm. 2b]. The sum of
completely monotonic functions is completely monotonic.

Theorem 4: A relaxation system is passive and its mem-
ory potential defines an intrinsic storage. ⌟

Proof: Let (ū, ȳ) ∈ Σ. As above, define ut ∈ L2[0,∞)
such that ut(τ) = ū(t− τ) for all τ ∈ [0,∞). It follows that
d
dtut(τ) = − d

dτ ut(τ). Then,

dM(ut)

dt
=

〈
gradM(ut),

dut

dt

〉
= −

〈
gradM(ut),

dut

dτ

〉
.

Using (17), we then have

dM(ut)

dt
= −

∑
i

fi(ût(pi))

〈
L−1

(
1

s+ pi

)
,
dut

dτ

〉
= −

∑
i

fi(ût(pi))

〈
e−pi·,

dut

dτ

〉
= −

∑
i

fi(ût(pi))

∫ ∞

0

e−piξ
dut

dτ
(ξ) dξ. (24)

Integration by parts gives

dM(ut)

dt
= −

∑
i

fi(ût(pi))

([
e−piξut(ξ)

]∞
0

+

∫ ∞

0

pie
−piξut(ξ) dξ

)
=

∑
i

fi(ût(pi))ut(0)−
∑
i

pifi(ût(pi))ût(pi)

= ȳ(t)ū(t)−
∑
i

pifi(ût(pi))ût(pi)

≤ ȳ(t)ū(t), (25)
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where the final inequality follows from the fact that each fi
is monotone and satisfies fi(0) = 0, so fi(û(pi)) has the
same sign as û(pi).

Theorem 5: A relaxation system is externally positive: if
u(t) ≥ 0 for all t, y(t) ≥ 0 for all t. ⌟

Proof: From Definition 1 for each i, the function fi is
monotone. It follows that fi(x̄pi

(t)) ≥ 0 whenever x̄pi
(t) ≥

0, which is clearly the case if ū(t) ≥ 0 for all t. Thus, from
(22), this implies that ȳ(y) ≥ 0 for all t if ū(t) ≥ 0 for all
t.

VI. DUALITY OF RELAXATION SYSTEMS

A key aspect of LTI circuit theory is that each element has
a dual: the dual of a resistor i = Rv is the conductor v = Gi,
with G = 1

R . The dual of the capacitor with impedance
v̂(s) = î(s)

Cs is the inductor î(s) = v̂(s)
Ls , with L = 1

C .
The authors in [14] make the important observation that this
duality property extends to nonlinear resistive elements: if
R(·) is a monotone function that satisfies R(0) = 0, then
the dual of the nonlinear resistor v = R(i) is the nonlinear
conductor i = G(v) with G the inverse of R. The duality
property comes from applying Fenchel duality to the convex
functional D(i) =

∫ i

0
R(x)dx, the so-called resistive content

introduced by Millar [15]. The Fenchel dual of D(i) is the
resistive co-content defined by

D⋆(v) = sup
i
(iv −D(i)). (26)

The resistive content can be regarded as the area under the
monotone curve v = R(i). The resistive co-content can be
regarded as the area under the monotone curve i = R−1(v).
Both have the dimension of energy, and they sum to the
power area iv.

In a similar way, we can generate a dual of the memory
potential M(i) = F (̂i(p)), by taking the Fenchel conjugate
of F , denoted F ⋆. For a first-order relaxation system, this
gives:

F ⋆(v̂(p)) = sup
î(p)∈R

(
v̂(p)̂i(p)− F (̂i(p))

)
. (27)

v̂(p)

î(p)

F (̂i(p))

F ?(v̂(p))
f (̂i(p)), f−1(v̂(p))

Fig. 2: Graphical interpretation of the memory potential and
its conjugate.

Conjugating F and taking the gradient converts a capaci-
tative relaxation system to an inductive relaxation system.

Theorem 6: If the relaxation system generated by M(i) =
F (̂i(p)) has dynamics

˙̄xp(t) = −px̄p(t) + ī(t) , v̄(t) = f(x̄p(t)), (28)

then the relaxation system generated by M⋆(v) = F ⋆(v̂(p))
has dynamics given by

˙̄xp(t) = −px̄p(t) + v̄(t) , ī(t) = f−1(x̄p(t)). (29)

⌟
Proof: The proof mirrors that of Theorem 2, using

Fenchel’s identity [16, Sec. 2.1]: ∂F ⋆ = (∂F )−1 = f−1.
Nonlinear circuits can be defined by interconnecting re-

laxation elements according to Kirchoff’s laws. The parallel
interconnection of relaxation systems is a relaxation system
defined by the sum of the storages. The series interconnection
is defined as the dual of the parallel inteconnection of the
dual elements.

VII. A RELAXATION MODEL OF THE POTASSIUM
CURRENT

We return to the introductory example of this paper to
illustrate how the potassium current model can be approxi-
mated by a simple relaxation model.

As a first step, we fit a first-order relaxation model to
the step responses of the potassium current. We choose
the pole p1 = 1

0.15 to fit the slowest time-constant of the
experiemental step responses (which is also the one with the
smallest step amplitude). We then fit the monotone function
f1 to match the static gain of ten step responses of increasing
amplitudes {ui}10i=1. A piecewise quadratic fit provides the
approximation shown in Figure 3.

Fig. 3: Approximation of the potassium channel current by
a first-order relaxation system.

This first-order relaxation system is sufficient to capture
the slow dynamics of the channel. Additional poles can be
added to capture the faster responses of larger step responses.
With three poles chosen as p1 = 1

0.15 , p2 = 1
0.3 and p3 = 1

0.6 ,
we obtain the fit shown in Figure 4. The monotone functions
fi, i = 1, 2, 3, are regarded as “activation” functions. Their
sum must fit the static gains of the step responses. The
activation function of the slow pole is chosen to fit the small
amplitude step responses. The activation function of the
intermediate pole is chosen to fit the residual error for step
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responses of intermediate amplitudes. Finally, the activation
function of the fastest pole is chosen to correct the residual
error at large amplitudes. The figure suggests quite a good fit
with a third-order relaxation system. It should be emphasized
that the dynamics of ion channels are quite uncertain: they
are variable from neuron to neuron and from experiment to
experiment. Hence only a qualitative fit of the dynamics is
desirable. We also note that the numerical simulation of a
relaxation system is very cheap. The operator can be regarded
as a temporal analog of the spatial nonlinear convolution
operators of computer vision.

Fig. 4: Approximation of the potassium channel current by
a third-order relaxation system

VIII. CONCLUSION

Relaxation systems have been characterized as time-
invariant fading memory operators that derive from a mem-
ory potential. The memory potential is a functional of the
past input, which can be equivalently regarded as the memory
of the operator or its physical storage. Relaxation systems
enjoy many properties entailed by the convexity of their
potential. They exhibit the relaxation property, they are pas-
sive, and externally postitive. Relaxation systems provide a
dynamical generalization of nonlinear resistors. In that sense,
they can be regarded as alternative models of memristive
elements, with attractive algorithmic properties.

The recent preprint [17] provides an alternative definition
of nonlinear relaxation systems, grounded in the important
concept of reciprocity. The connection between the two
generalizations will be investigated in future research.
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