
Turing meets Machine Learning:
Uncomputability of Zero-Error Classifiers

Holger Boche, Yannik N. Böck, Stefanie Speidel, Frank H. P. Fitzek

Abstract— In almost all areas of information technology, the
importance of automated decision-making based on intelligent
algorithms has been increasing steadily within recent years.
Since many of the envisioned near-future applications of these
algorithms involve critical infrastructure or sensitive human
goods, a sound theoretical basis for integrity assessment is
required, if for no other reason than the legal accountability
of system operators. This article aims to contribute to the
understanding of integrity of automated decision-making under
the aspect of fundamental mathematical models for computing
hardware. To this end, we apply the theory of Turing machines
to the problem of separating the support sets of smooth
functions, which provides a simple yet mathematically rigorous
framework for support-vector machines on digital computers.
Further, we investigate characteristic quantities and objects,
such as the distance between two separated support sets,
or separating hyperplanes themselves, with regards to their
computability properties, and provide non-technical interpre-
tations of our findings in the context of machine learning and
technological trustworthiness.

I. INTRODUCTION

Throughout recent years, the importance of automated
decision-making within any domain of society that involves
modern information technology has been increasing steadily.
Developing the underlying hard- and software components in
view of growingly complex systems and applications is often
key feature of contemporary engineering professions. Addi-
tionally, the development process often has to take a range

The work of Holger Boche was supported in part by the German Federal
Ministry of Education and Research (BMBF) within the National Initiative
on 6G Communication Systems through the Research Hub 6G-life under
Grant 16KISK002.

The work of Yannik Böck was supported in part by the BMBF within
NewCom under Grant 16KIS1004, in part by the BMBF within 6G-life
under Grant 16KISK002.

The work of Stefanie Speidel and Frank Fitzek was funded in part
by the German Research Foundation (DFG, Deutsche Forschungsgemein-
schaft) as part of Germany’s Excellence Strategy—EXC 2050/1—Project ID
390696704—Cluster of Excellence “Centre for Tactile Internet with Human-
in-the-Loop” (CeTI) of Technische Universität Dresden.

Furthermore, Stefanie Speidel and Frank Fitzek acknowledge the financial
support by the BMBF in the programme of “Souverän. Digital. Vernetzt.”.
Joint project 6G-life, project identification number: 16KISK001K.

Holger Boche and Yannik N. Böck are with the Lehrstuhl für Theo-
retische Informationstechnik and the BMBF Research HUB 6G-life (TU
Munich), Technische Universität München, Munich, Germany {boche,
yannik.boeck}@tum.de

Holger Boche is further with the Munich Center for Quantum Science
and Technology (MCQST), Munich, Germany.

Stefanie Speidel is with the National Center for Tumor Diseases
(NCT/UCC) Dresden, the Cluster of Excellence CeTI, and the BMBF
Research HUB 6G-life (TU Dresden), Technische Universität Dresden,
Dresden, Germany stefanie.speidel@nct-dresden.de

F. H. P. Fitzek is with the Deutsche Telekom Chair of Communication
Network, the Cluster of Excellence CeTI, and the BMBF Research HUB
6G-life (TU Dresden), Technical University of Dresden, Dresden, Germany,
frank.fitzek@tu-dresden.de

of other constraints into account, including requirements
that concern the perception and acceptance of technological
systems by society. For good reasons, these requirements are
particularly high in the domain of critical infrastructure and,
more general, whenever sensitive human goods and rights
are potentially affected.

Among others, the societal requirements towards intelli-
gent near-future systems can be observed in the commu-
nications sector. The recent COVID-19 pandemic made it
particularly clear that mobile communications is a mainstay
of modern society, and its significance can be expected to
increase further once the envisioned next-generation tech-
nologies have been put to practice. In this context, the
upcoming 6G mobile-communications standard supposed to
be finalized by 2030 is currently the main reference for
those infrastructural concepts that are planned to be realized
throughout the next years. In particular, it aims at formalizing
the implementation of remote and distributed control func-
tions orchestrated through wireless networking, as well as
joint communications and sensing. As the complexity of the
resulting networks is expected to be considerably high, 6G
involves contemporary machine-learning techniques for opti-
mization, decision-making, and control, to a large extent [1].
In fact, paradigm shifts towards employing intelligent sys-
tems in wireless networking have already been advocated in
the context of the 5G communications standard [2]. On the
customer-level, autonomous driving or the personal tactile
internet are well-known examples of technologies hoped to
be established by 6G infrastructure. Considering the accom-
panied impact on e.g. physical inviolability, privacy, and
civil rights, it has already been recognized that technological
trustworthiness – an umbrella-term for technological privacy,
security, integrity, resilience, reliability, availability, account-
ability, authenticity and device independence – has to be
understood in a new context in order for the next-generation
of communication technologies to gain widespread societal
acceptance [3], [4].

Technological trustworthiness encompasses the concepts
of integrity and accountability, which the mathematical prob-
lems investigated in this article relate to. On the level of
system functionality, integrity in short refers to the guarantee
that the system in question remains within the prescribed
margin of operation, whereas accountability refers to the
operator’s (legal) obligation to bear responsibility for the pos-
sible consequences of operating the system. Accordingly, in-
tegrity and accountability are interdependent aspects of trust-
worthiness. Once the 6G mobile-communications standard
has been established, its physical infrastructural components,

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 8553

e.g., base stations, data processing nodes, and mobile agents,
will start to be implemented. To this end, appropriate hard-
ware platforms and network architectures have to be selected,
which will later realize the functionalities provided by the
6G network. These functionalities are specified by protocols,
which have to be implemented in terms of algorithms. In
turn, the range of feasible algorithms depends on the chosen
hardware platform, which leads to the problem of whether in-
tegrity with respect to a certain functionality can be provided
at all. To a large extent, our evaluation of a system’s integrity
is based on mathematical models that describe the physical
laws involved in the considered engineering problem. The
hardware components employed to implement the system
are themselves subject to such models. In fact, the models
that characterize the employed hardware platform determine
the class of feasible algorithms. Thus, in order to establish
a mathematically sound technology assessment, choosing a
hardware platform that is theoretically capable of capturing
the physical nature of the functionality to be implemented is
a basic and necessary requirement. Furthermore, it is crucial
for legal accountability, since it must be possible to decide
in a transparent and unambiguous manner whether a certain
software implementation is considered defective or not.

This work aims at contributing to the understanding of
the fundamental limitations of digital technology in auto-
mated decision-making. To this end, we apply the theory
of Turing machines to the problem of separating the sup-
port sets of smooth functions. Since Turing machines are
widely accepted as a complete and definite mathematical
model of digital computers, our theory provides a simple
yet mathematically rigorous framework for support-vector
machines on real-world digital hardware, and allows for the
characterization of their fundamental theoretical limitations.
The remainder of the article is structured as follows. In
Section II, we provide a non-technical problem introduction
as well as a non-technical preview of our results, which
allows the reader to interpret our theory in the context of
technological integrity. Sections III and IV are dedicated to
mathematical preliminaries. Then, in Sections V, VI, VII,
and VIII, we present our findings in a formal mathematical
manner. We then conclude the article by a brief subsumption
and some additional remarks in Section IX.

For the sake of brevity, we refrain from presenting detailed
proofs. Theorem 1 is obtained from an essential generaliza-
tion of the methods applied to derive [5, Theorem 6, p. 697,
Theorem 7, p. 698]. Theorems 2, 4, and 5 are obtained
through contradiction: By exploiting the relevant functions’
discontinuity concerning convex combinations of elements of
their domains, it would be possible to construct a decision
algorithm for the halting problem. Similar methods were
used to derive [6, Theorem 3, p. 2457, Theorem 6, p. 2459]
and [5, Theorem 3, p. 693f, Theorem 4, p. 694], to which
we refer for details.

II. PROBLEM FORMULATION AND OUTLINE

Intelligent automated decision-making is essentially re-
lated to data classification, a well-known problem in the com-

Machine-Learning
Algorithm

y

Auxiliary
Information

L̂
(Classifier)

x L̂(x)

Analyzerf0, f1

L̂
(Classifier)

x L̂(x)

Fig. 1. Machine learning for data classification. Top: Based on a
set of training data and some auxiliary information, the machine-learning
algorithm computes a classifier. Bottom: An analyzer computes a classifier
by extracting the relevant information from an algorithmic characterization
of suitable probability density functions.

munity of machine learning. For comprehensive overviews,
we refer to [7], [8]. The data space D contains a collection of
regions D0,D1, . . .DN , N ∈ N+, such that D0 ∪D1 ∪ . . .∪
DN ⊆ D is satisfied. Each region is associated to a label,
which, for simplicity, we assume to equal the associated
region’s index. That is, we have L(x) = 0 iff x ∈ D0,
L(x) = 1 iff x ∈ D1, and so on, with L := {0, 1, . . . , N} ⊂
N being the set of labels. Throughout this article, we consider
the simple case of L = {0, 1}. The general problem then
consists of finding a suitable classification algorithm that,
when presented with a description of an object x ∈ D0∪D1∪
. . .∪DN , tries to infer the associated label L(x). Depending
on the context, this classifier can be interpreted as a decision
rule, i.e., the inferred label corresponds to the automated
decision made on the basis of the available data.

As a key feature of machine learning, the classifier algo-
rithm is itself computed by a digital machine, as opposed to
being implemented by a human programmer. In more formal
terms, the considered machine-learning algorithm gives rise
to a class of mappings

L ⊆
{
L̂ : D ⊇→ L,x 7→ L̂(x)

}
,

where the symbol ’⊇→’ indicates a partial mapping, and
tries to select a data classifier L̂ ∈ L that, according to some
fixed quality criterion, best matches the true labeling L :
D0 ∪D1 → L among the available choices. The selection is
based on training data y and (possibly) auxiliary information
about the regions D0 and D1. Commonly, the training data
is of the form

y :=
(
(x1, l1), . . . , (xN , lN)

)
∈ (D × L)N , N ∈ N+,

such that L(xn) = ln for n = 1, . . . , N , i.e., y consists of
a finite list of (correctly) labeled data points. The process is
visualized in Figure 1 (top).

Albeit a large amount of research has been invested into
machine learning, it suffers from a list of drawbacks that are

8554

yet to be overcome. These include, but are not limited to,
the lack of stability, performance guarantees, and stopping
criteria. That is, even tho a classifier L̂ may perform well on
regular data, a small amount of “unnatural” deviations in the
input x can make the output L̂(x) become almost completely
arbitrary. Even when restricted to noiseless and regular data,
there is generally no way to know for certain how well the
classifier L̂ will generalize to new data points not contained
in the training set y. Furthermore, many machine learning
algorithms are based on iterative computations, but there
is no general method to determine a suitable amount of
iterations. While a small number of iterations may result
in the choice of a classifier that performs poorly even on
the training data, a large number of iterations may lead
lead to phenomena overfitting. Often, the listed issues are
interdependent, and cannot be addressed one at a time.

Without any auxiliary information present, it is not possi-
ble to solve any of the listed issues, since the classification
regions D0 and D1 may behave arbitrarily pathological.
In most practical applications, such information is indeed
available, even though it is commonly not referred to by
other names. In the simplest case, auxiliary information may
be present in terms of an additional list of labeled data
points that is not used for training. The performance of the
computed classifier is then evaluated on those data points. If
it yields a good rate of accurate classifications, this is usually
taken as evidence for performance on new data points. Other
forms of auxiliary information include the simple assumption
that the classification regions D0 and D1 are “well-behaved”
in one way or another, or general mathematical regularization
techniques. However, these forms of auxiliary information
are informal and thus only yield heuristics on the actual
performance of the computed classifier.

If provable solutions to any of the previously listed issues
are required, the auxiliary information must be available in
a mathematically formalized form. For example, the classi-
fication regions D0 and D1 may be associated to probability
density functions f0, f1 : D → [0, 1] with supp f0 =
D1, supp f1 = D1 that characterize the probability of data
points. In an optimistic scenario, these functions may be
accessible to the machine learning algorithm. In fact, similar
scenarios have recently gained attention under the name of
synthetically generated data. That is, rather than trying to
gather the training data y in the real-world, one tries to char-
acterize the functions f0 and f1 by an algorithm themselves,
which, in principle, can then produce an infinite sequence of
labeled samples (x1, l1), (x2, l2), (x3, l3), ... that is dense in
D0 ∪D1. In the simplest case, this sequence is successively
fed into a usual machine learning algorithm, similar to the
case of real-world training data. However, this is not the only
conceivable method. A more elaborated machine learning ap-
proach may instead extract the relevant information from the
algorithmic description of f0 and f1 directly, by analyzing
their source code. Note that this approach is a generalization
of the aforementioned technique, since an algorithm that
has access to f0 and f1 may “analyze” their source code
by simply drawing a sequence (x1, l1), (x2, l2), (x3, l3), ...

of sampling points by itself, and then calculate L̂ in the
usual manner. The generalized approach is visualized in
Figure 1 (bottom). It also avoids another more practical
limitation of machine learning: Real-world training data is
often costly if not impossible to obtain in large amounts,
and the structurally relevant “outlier” data points may only
occur in a fraction of cases. Among others, this is the case for
applications in healthcare and autonomous driving, c.f. [9],
[10] for contemporary examples.

Despite numerous advances in machine learning, such as
the previously discussed methods of learning by synthetically
generated data, the various drawbacks mentioned above
remain. In light of these difficulties, it has been speculated
whether more fundamental mathematical reasons may hinder
the implementation of stable and reliable machine learn-
ing techniques. In theoretical computer science, it is well-
established that the algorithmic capabilities of digital hard-
ware is fundamentally limited, and, in many cases, insuffi-
cient to capture the structure of theories formalized by means
of pure analytic mathematics, such as electromagnetism,
classical mechanics, or fluid dynamics. Yet, the design of
technology is ultimately based on such theories. Accordingly,
it has been conjectured that the drawbacks regarding stability
and reliability are related to the fundamental nature of digital
algorithms itself. In view of technological integrity, this has
critical consequences, since it implies the unsuitability of
digital hardware for certain engineering problems as a matter
of principle.

While most of the results established in the scope of this
work are applicable to machine learning for data classifi-
cation in general, provided a digital hardware platform is
considered, we will put some emphasis on the study of a type
of data classifiers known as support-vector machines. Their
mathematics belong to the most well-established theories in
supervised machine learning, c.f. [11] for details. The data
space is a cuboid in the N -dimensional Euclidean space,
i.e, D = [0, b]N ⊂ RN , b ∈ Q+, N ∈ N+, and we
restrict ourselves to the particularly well-behaved case of
strictly separated classification regions D0 = supp f0 and
D1 = supp f1, i.e., D0 ∩ D1 = ∅, and arbitrarily smooth
functions f0, f1 ∈ C0

N (b) (the mathematical terminology will
be introduced in Section III).

Definition 1. Consider D = [0, b]N ⊂ RN with b ∈ Q+ and
N ∈ N+. Classifiers of the form

L̂(x) =

{
1, if ⟨x,v⟩ − w > 0,

0, if ⟨x,v⟩ − w < 0,

are referred to as support-vector machines, with v ∈ [0, b]N

and w ∈ R being the computed parameters of the classifier.
The set

H :=
{
x ∈ RN : ⟨x,v⟩ − w = 0

}
is called a separating hyperplane for D0 and D1 if ⟨x,v⟩ <
w is satisfied for all x ∈ D0 and ⟨x,v⟩ > w is satisfied for
all x ∈ D1.

8555

Definition 2. Given strictly separated classification regions
D0 ⊂ [0, b]N and D1 ⊂ [0, b]N , we refer to the number

dinf(D0,D1) := inf
x0∈D0

inf
x1∈D1

∥x0 − x1∥2

as the optimum distance. If v and w are the parameters of
any separating hyperplane H for D0 and D1, we have

inf
x0∈D0

w − ⟨x0,v⟩ ≤ 1/2 · dinf(D0,D1), (1)

inf
x1∈D1

⟨x1,v⟩ − w ≤ 1/2 · dinf(D0,D1). (2)

The separating hyperplane is called optimal if both (1) and
(2) are satisfied with equality.

In order to obtain a meaningful analysis, the mathematics
of support-vector machines must be established within a
formalism for digital computing, which is provided by the
theory of Turing machines. Introduced in [12], [13], Turing
machines form an abstraction of today’s real-world digital
computers. Furthermore, the widely accepted Church-Turing
thesis implies that this abstraction is, albeit idealized, indeed
a complete and definitive model of real-world digital hard-
ware. Consequently, any algorithm that can be executed by
a real-world computer can in theory be simulated by a Tur-
ing machine. In contrast to real-world computers, however,
Turing machines are not subject to restrictions concerning
energy consumption, computation time or memory size. All
computation steps on a Turing machine are furthermore
assumed to be executed with zero chance of error. Com-
putability in the sense of Turing is the exact characterization
of what can be achieved by digital hardware, e.g., central
processing units (CPUs), digital signal processors (DSPs),
or field programmable gate arrays (FPGAs), if practical
limitations are disregarded. Thus, by employing the math-
ematical framework of Turing machines, we obtain a formal
theory of digitally computable support-vector machines. The
subsequent sections are, after providing a brief overview
on the mathematical preliminaries, dedicated to presenting
several core results of this theory.

III. PRELIMINARIES: SMOOTH FUNCTIONS

In the present Section, we provide a brief introduction
to the theory of smooth functions. We then continue to
investigate some underlying properties of the associated
support sets and the quantity dinf . In particular, this concerns
monotonicity and limit properties.

We denote set of continuous functions f : [0, b]N → R
that vanish at the boundary of [0, b]N by C0

N (b). That is,
we have f(x) = 0 for all x ∈ [0, b]N \ (0, b)N and all
f ∈ C0

N (b). For K ∈ N, the set CK
N (b) is defined recursively.

A function f ∈ C0
N (b) is an element of CK+1

N (b) if for all
i ∈ {1, . . . , N}, we have

∂f

∂xi
∈ CK

N (b).

Accordingly, we have CK+1
N (b) ⊂ CK

N (b) for all K ∈ N.
Analogously, the set C∞

N (b) is defined by

C∞
N (b) :=

⋂
K∈N

CK
N (b).

Equivalently, C∞
N (b) is the largest subset of C0

N (b) such that

∂f

∂xi
∈ C∞

N (b)

is satisfied for all f ∈ C∞
N (b) and all i ∈ {1, . . . , N}. That

is, C∞
N (b) is closed with respect to partial differentiation in

any of its variables.
Although the spaces CK

N (b) are larger than the space
C∞
N (b), they exhibit an additional topological structure. De-

fine the mapping ∥ · ∥C,0 : C0
N (b) → R+

0 , f 7→ ∥f∥C,0
according to

∥f∥C,0 := sup
x∈[0,b]N

|f(x)| = max
x∈[0,b]N

|f(x)|.

Then, the pair (C0
N (b), ∥·∥C,0) becomes a Banach-space. The

norm ∥·∥C,0 can be used to equip the spaces CK
N (b), K ∈ N,

with a Banach-space structure as well, by evaluating ∥·∥C,0
for all derivatives of f up to order K and selecting the
maximum of the values obtained in this manner. In formal
terms, the norm ∥·∥C,K : CK

N (b) → R+
0 is, as is the case with

the set CK
N (b) itself, defined recursively by

∥f∥C,K+1 := max

{
∥f∥C,0,

∥∥∥∥ ∂f

∂x1

∥∥∥∥
C,K

, . . . ,

∥∥∥∥ ∂f

∂xN

∥∥∥∥
C,K

}
.

This way, the pairs (CK
N (b), ∥·∥C,K), K ≥ 1, become

Banach-spaces for all N ∈ N with N ≥ 1 as well.
In the following, we denote the closure of a set D ⊂

[0, b]N , N ∈ N, by D, as well as its boundary by ∂D, if
there is no danger of confusion with the partial derivative.
For f ∈ CK

N (b), K ∈ N and ϵ ≥ 0, we define the sets

M>(ϵ, f) : =
{
x ∈ [0, b]N : f(x) > ϵ

}
,

M≥(ϵ, f) : =
{
x ∈ [0, b]N : f(x) ≥ ϵ

}
,

as well as M0(f) = [0, b]N \ M>(0, f). Both M0(f)
and M≥(ϵ, f) are closed for all ϵ ≥ 0. For notational
convenience, we also define

M+(f) := M>(0, f) = M>(0, f) ∪ ∂M>(0, f).

If f is non-negative, as is the case for probability density
functions, we have supp(f) = M+(f). For the sake of
generality, we consider M+(f) in the following, instead
of supp(f). However, all results presented in this paper
hold analogously if the restriction of CK

N (b) to non-negative
functions is considered ab initio instead. Next, for 0 < ϵ ≤
min{∥f0∥C,0, ∥f1∥C,0} and f0, f1 ∈ CK

N (b), define

F (ϵ, f0, f1) : = inf
x1∈M≥(ϵ,f0)

inf
x2∈M≥(ϵ,f1)

∥x1 − x2∥2

= min
x1∈M≥(ϵ,f0)

min
x2∈M≥(ϵ,f1)

∥x1 − x2∥2, (3)

where (3) follows from the compactness of M≥(ϵ, f0) and
M≥(ϵ, f1). Observe that F (ϵ, f0, f1) is, in fact, well-defined
for all 0 ≤ ϵ ≤ min{∥f0∥C,0, ∥f1∥C,0}. We have
• F (ϵ, f0, f1) ≥ dinf(M+(f0),M+(f1)) for all f0, f1 ∈
CK
N (b) and all 0 ≤ ϵ ≤ min{∥f0∥C,0, ∥f1∥C,0};

8556

• limϵ→0 F (ϵ, f0, f1) = dinf(M+(f0),M+(f1)) for all for
all f0, f1 ∈ CK

N (b).
In other words, for ϵ → 0, the value of F (ϵ, f0, f1) con-
verges towards dinf(M+(f0),M+(f1)) in a monotonically
decreasing manner. However, depending on f0 and f1, F
may or may not to be continuous in ϵ.

Finally, consider sequences (f0,n)n∈N ⊂ CK
N (b) and

(f1,n)n∈N ⊂ CK
N (b) such that

lim
n→∞

∥f0 − f0,n∥C,0 = 0 and lim
n→∞

∥f1 − f1,n∥C,0 = 0

are satisfied, where f0 and f1 are suitable functions in CK
N (b).

Then, we have

lim sup
n→∞

dinf
(
M+(f0,n),M+(f1,n)

)
≤ dinf

(
M+(f0),M+(f1)

)
,

which is due to the fact that M+(fm), m ∈ {1, 2} are
subsets of a union of specific cuts of the sets M+(fm,n),
m ∈ {0, 1}, n ∈ N. In particular, we have

M+(f0) ⊆
∞⋃

M=0

∞⋂
n=M

M+(f0,n),

M+(f1) ⊆
∞⋃

M=0

∞⋂
n=M

M+(f1,n).

Observe that depending on the choice of (f0,n)n∈N ⊂ CK
N (b)

and (f1,n)n∈N ⊂ CK
N (b), the above inequality and inclusions

may or may not be strict.

IV. PRELIMINARIES: COMPUTABILITY THEORY

Throughout this section, we provide a brief formal intro-
duction to the theory of Turing machines, recursive functions
and computable analysis, which are well-established fields in
theoretical computer science. A comprehensive treatment of
the topic may be found in e.g. [14]–[16]. Subsequently, we
will employ the introduced formalism to establish a theory
of computable support-vector machines.

In the following, we refer to a mapping of the form
g : Nn ⊇→ N, n ∈ N, as a natural number function. Any
abstract object (real and complex numbers, matrices, signals,
etc.) that is to be processed on a digital computer has, on
the lowest level, to be represented by by a bit-string. In turn,
any bit-string is the binary representation of some natural
number. An algorithm executed by a digital computer can
thus be characterized by a natural number function. In the
theoretical domain, the same holds true for Turing machines
equivalently. The class of natural number functions that can
be computed in this manner coincides with the set of recur-
sive functions. Recursive functions, more specifically referred
to as µ-recursive functions, were, amongst others, considered
in [17]. Contrary to Turing machines, they are based on form-
ing the closure of a set of axiomatically computable functions
– the successor function as well as all constant and identity
functions on tuples of natural numbers [14, Definition 2.1,
p. 8] – with respect to a number of axiomatically computable
operations – composition, primitive recursion and unbounded
search [14, Definition 2.1, p. 8, Definition 2.2, p. 10]. Yet,

as indicated above, Turing machines and recursive functions
are equivalent in the following sense: The class of natural
number functions that can be computed by a Turing machine
coincides with the set of recursive functions [18].

Recall that for digital computers and Turing machines
alike, an object x ∈ D that belongs to some abstract set D
has, on the lowest level, to be represented by a bit-string or
natural number, respectively. Throughout this article, details
on how to represent abstract objects will be implicit, since
they are not of essence for our considerations. For two sets
D and D′ and a partial mapping H : D ⊇→ D′, we say that
there exists a Turing machine TMH that computes H , i.e.,
we have TMH(x) = H(x) for all x ∈ D that belong to the
domain of H , if there exists a recursive function that returns
a natural number that represents H(x), whenever its input is
a natural number that represents x. Equivalently, we call H
Turing computable.

Definition 3. A sequence (rn)n∈N ⊂ Q is called computable
if there exist recursive functions g, h1, h2 : N → N such that

rn =
(−1)g(n) · h1(n)

1 + h2(n)

is satisfied for all n ∈ N. An m-fold computable sequence
of rational numbers is analogously defined by recursive
functions g, h1, h2 : Nm → N.

Definition 4. A number x ∈ R is called computable if
there exists a computable sequence (rn)n∈N of rational
numbers and a recursive function ξ : N → N such that
|x − rn| ≤ 2−M holds true for all n,M ∈ N that satisfy
n ≥ ξ(M).

The above type of convergence is referred to as effective,
which indicates the existence of a recursive function ξ that
provides a quantitative estimate of the approximation error.
The function ξ is called a (recursive) modulus of convergence
for the sequence (rn)n∈N..

Observe that the set of computable numbers – denoted
by Rc – is countably infinite. Hence, it follows from a
cardinality argument that almost all real numbers are not
computable. An almost trivially necessary requirement for
a real number to be computable is its definability, i. e.,
informally speaking, it must be possible to characterize the
number by some proper mathematical statement. In more
formal terms, this commonly refers whether the number
can be (formally) defined by means of some well-formed
expression in Peano arithmetics. All mathematical quantities
that are relevant in the context of science and engineering,
are definable in this sense. However, not all definable real
numbers are computable, as we will see in the following.

The class of definable real numbers can be divided into
a countable hierarchy Σn,Πn : n ∈ N, where the mth level
is obtained by alternately applying sup- and inf-operations
on m-fold computable sequences of rational numbers [19].
We have Σ0 = Π0 = Q and Rc = Σ1 ∩ Π1 as well as
Σn ∪ Πn ⊂ Σn+1 ∩ Πn+1 for all n ∈ N. A quantity’s
hierarchical level can be interpreted in terms of the defining

8557

expression’s structural complexity. In our work, the set Π1

will be of special relevance. A real numbers x∗ satisfies x∗ ∈
Π1 if and only if there exist a computable sequence (rn)n∈N
of rational numbers such that x∗ = infn∈N rn is satisfied.
While this definition refers to computable sequences of
rational numbers, it can equivalently be expressed in terms
of computable sequences of computable numbers: A real
numbers x∗ satisfies x∗ ∈ Π1 if and only if there exist
a computable sequence (xn)n∈N of computable numbers
such that x∗ = infn∈N xn is satisfied. Analogously, a real
numbers x∗ satisfies x∗ ∈ Σ1 if and only if there exist a
computable sequence (xn)n∈N of computable numbers such
that x∗ = supn∈N xn is satisfied. This equivalence can easily
be extended to higher hierarchical levels. For details, we refer
to [5, Lemma 1, p. 689, Remark 9, p. 690].

Finally, we introduce a notion of computability for the
set CK

N (b), N,K ∈ N, b ∈ Q. Consider points x0, x1 ∈
[0, b]N ∩QN such that x0 and x1 do not coincide in any of
their components. Then, x0 and x1 define an N -dimensional
cuboid Q(x0, x1) with volume Vol(x0, x1) > 0, such that x0

and x1 constitute to two diametrically opposed corner points
of Q(x0, x1).

Definition 5. A function f ∈ CK
N (b) is called computable if

there exist Turing machines

TMf :
(
[0, b]N ∩QN

)
×
(
[0, b]N ∩QN

)
→ Q,

TMf :
(
[0, b]N ∩QN

)
×
(
[0, b]N ∩QN

)
→ Q,

such that the following holds true for all (not necessarily
computable) sequences (x0,n)n∈N ⊂ [0, b]N ∩ QN and
(x1,n)n∈N ⊂ [0, b]N ∩ QN that satisfy Vol(x0,n, x1,n) > 0
for all n ∈ N:
• For all n ∈ N and all x ∈ Q(x0,n, x1,n), the inequality
TMf (x0,n, x1,n) ≤ f(x) ≤ TMf (x0,n, x1,n) holds true.

• If Q(x0,n, x1,n) ⊆ Q(x0,n+1, x1,n+1) for all n ∈ N
and limn→∞ Vol(x0,n, x1,n) = 0 are satisfied, we have
limn→∞ TMf (x0,n, x1,n) = limn→∞ TMf (x0,n, x1,n).

We denote the set of computable functions in CK
N (b) by

CK
c,N (b). The present notion of computability is often referred

to as Borel-Turing computability.

V. OPTIMUM DISTANCE IS Π1-COMPLETE

In this section, we present our first main result. Given two
arbitrarily smooth functions f0 and f1 with strictly separated
support, the optimum distance dinf(M+(f0),M+(f1)) is
generally an uncomputable number. That is, in contrast to
numbers such as π, e, or

√
2, it may be fundamentally im-

possible to compute dinf(M+(f0),M+(f1)) up to arbitrary
precision. More precisely, for N ≥ 1, K ∈ N, the range of
values of attained by

(f0, f1) 7→ dinf(M+(f0),M+(f1))

for f0, f1 ∈ CK
c,N (b) with M+(f0) ∩ M+(f1) = ∅ can

be shown to coincide with an interval in Π1. The fact
that dinf(M+(f0),M+(f1)) is generally an uncomputable
number then follows as an immediate consequence.

Theorem 1. For all N,K ∈ N and all b ∈ Q that satisfy
b > 0, we have{

x ∈ Π1 : 0 ≤ x < b
√
N
}

=
{
dinf(M+(f0),M+(f1)) : f0, f1 ∈ CK

c,N (b)
}
.

In Section II, we have hinted towards the issue of finding
suitable stopping criteria and performance guarantees in
intelligent decision making. For arbitrarily smooth func-
tions f0 and f1, we can always find computable sequences
of rational numbers that converge monotonically towards
dinf(M+(f0),M+(f1)) from above. However, in order to
evaluate the maximally achievable performance and stabil-
ity of a classifier algorithm for the classification regions
D0 = M+(f0) and D1 = M+(f1), we require a stopping
criteria for any such sequence. That is, given an accuracy
ϵ = 1/2N , N ∈ N, we require a second algorithm that
computes the number of elements of the sequence we need to
compute in order to obtain a rational number that is ϵ-close
to dinf(M+(f0),M+(f1)). Theorem 1 implies that such a
stopping criterion does not exist in general.

VI. UNCOMPUTABILITY OF NON-TRIVIAL LOWER
BOUNDS FOR THE OPTIMUM DISTANCE OF SUPPORT

SETS

In this section, we present our second main re-
sult. Every non-trivial lower bound for (f0, f1) 7→
dinf(M+(f0),M+(f1)) is not a Turing computable func-
tion. That is, any (terminating) algorithm that suppos-
edly computes a number smaller than or equal to
dinf(M+(f0),M+(f1)) based on representations of f0 and
f1 either returns 0 for all inputs or returns erroneous results
for some inputs. We first define the notion of a “trivial” lower
bound, and then formalize the statement in terms of Turing
machines.

In the following, we consider functions f0, f1 ∈ CK
c,N (b)

such that

dinf
(
M+(f0),M+(f1)

)
> 0 (4)

is satisfied. Then, consider a Turing machine

TM : CK
c,N (b)× CK

c,N (b) → R+
c,0

such that for all functions f0, f1 ∈ CK
c,N (b) that satisfy (4),

we have

dinf
(
M+(f0),M+(f1)

)
≥ TM(f0, f1). (5)

Clearly, any Turing machine TM that satisfies TM(f0, f1) =
0 for all functions f0, f1 satisfies this requirement, but is of
no practical or mathematical interest. We call such a Turing
machine the trivial lower bound. In the following, we will
investigate the computability of lower bounds that, at least
for one specific feasible pair of functions, attain non-zero
values, i.e., non-trivial bounds.

Theorem 2. Let TM : CK
c,N (b) × CK

c,N (b) → R+
c,0 be any

Turing machine that satisfies (5) for all functions f0, f1 ∈

8558

CK
c,N (b) that satisfy (4). Then, TM computes a trivial lower

bound.

In Section V, we have discussed the impossibility of find-
ing suitable stopping criteria in the context of evaluating the
the maximally achievable performance and stability of a clas-
sifier algorithm for the classification regions D0 = M+(f0)
and D1 = M+(f1). If the optimal performance and stability
are not of interest, but only a (possibly pessimistic) margin
of tolerated error that is guaranteed to be achievable, it is
sufficient to have a lower bound for dinf(M+(f0),M+(f1))
available. According to Theorem 2, however, any such lower
bound is either uncomputable or meaningless. Observer that
given a classifier L̂ for D0 and D1, computing its margin
of error would already provide such a bound. Thus, as a
corollary of Theorem 2, it follows that the margin of error
of a classifier is not algorithmically computable as well.

VII. IDENTIFYING SUPPORT-SET POINTS,
COMPUTABILITY OF NON-TRIVIAL UPPER BOUNDS FOR

THE OPTIMUM DISTANCE OF SUPPORT SETS

In this section, we present our third and fourth main
results, which are directly related. For some restricted classes
of smooth functions, there exist Turing computable upper
bounds for dinf , for example, if there exists a Turing com-
putable function that maps smooth functions (of the restricted
class under consideration) to a point within their support set.
However, such a Turing computable function does not exist
in general. As in the case for lower bounds, we first define
the notion of a “trivial” upper bound, and then formalize the
first statement in terms of Turing machines and in relation
to the second one.

For N,K ∈ N, b ∈ Q with b > 0, consider a subset
F ⊆ CK

c,N (b). such that there exists a computable function
S : F → RN , f 7→ S(f) that satisfies S(f) ∈ M>(0, f)
is satisfied for all f ∈ F . If such a function exists, it
immediately provides a computable, non-trivial upper bound
for dinf(M+(f0),M+f1), f0, f1 ∈ F . Define

M+(F) :=
⋃
f∈F

M>(0, f).

Then, an upper bound for dinf on F is called trivial if it
evaluates to

sup
x1∈M+(F)

sup
x2∈M+(F)

∥x1 − x2∥2

for all f0, f1 ∈ F

Theorem 3. If, for a subset F ⊆ CK
c,N (b) that contains

at least one non-zero element, there exists a computable
function S : F → RN , f 7→ S(f) such that S(f) ∈
M>(0, f) is satisfied for all f ∈ F , then there exists a
Turing machine TMF : F × F → R+

c,0 that satisfies

dinf
(
M+(f0),M+(f1)

)
≤ TMF (f0, f1)

for all f0, f1 ∈ F and is non-trivial in the above sense.

The set of non-negative, strictly concave functions in
CK
c,1(b) constitute an example of such a set, since it is always

possible to compute argmaxx∈[0,b] f(x) for non-negative,
strictly concave computable functions f : [0, b] → R. In
general, however, the non-existence of computable mappings
S of the above type can already be proven under mild
assumptions on the set F

Theorem 4. Consider a subset F ⊆ CK
c,N (b) that contains

at least two elements f0, f1 with M+(f0) ∩ M+(f1) = ∅
and is closed under convex combinations. Then, any mapping
S : F → RN , f 7→ S(f) such that S(f) ∈ M>(0, f) is
satisfied for all f ∈ F is not Turing computable.

For many reasons, it can be desirable to compute functions
S : F → RN , f 7→ S(f) such that S(f) ∈ M>(0, f) is
satisfied for all f ∈ F . For example, in the context of finding
suitable starting points for iterative optimization algorithms.
According to Theorem 4, such a functions can only exist for
very limited subsets of CK

c,1(b).

VIII. UNCOMPUTABILITY OF SEPARATING
HYPERPLANES

Last but not least, we present the fifth main result in
this section. Every function that maps smooth functions
f0 and f1 with strictly separated support to a separating
hyperplane for M+(f0) and M+(f1) is not a Turing com-
putable function. That is, any (terminating) algorithm that
supposedly computes a separating hyperplane for M+(f0)
and M+(f1) based on descriptions of f0 and f1 necessarily
returns erroneous results for some inputs.

Form Section II, recall that any hyperplane H is fully
determined by a pair (v, w). This pair is unique up to a scalar
multiple. In particular, given any pair (v, w), it is always
possible to compute the unique characterization (v′, w′) of
the same hyperplane that satisfies ∥v′∥2 = 1.

In the following, we expound that any mapping H :
(f0, f1) 7→ (v, w) that returns a separating hyperplane for
all functions f0, f1 ∈ CK

c,N (b) with M+(f0) ∩M+(f1) = ∅
is necessarily uncomputable.

Theorem 5. Consider N,K ∈ N and b ∈ Q with b > 0.
Let H : (f0, f1) 7→ H(f0, f1) := (v, w) be a mapping such
that for all f0, f1 ∈ CK

c,N (b) with M+(f0) ∩M+(f1) = ∅,
H(f0, f1) characterizes a separating hyperplane for f0 and
f1. Then, H is not Turing computable.

Despite the previously discussed obstacles in character-
izing the achievable stability and performance of classifier
algorithms, it might, for some applications, be sufficient to
compute separating hyperplanes without any requirements
on the resulting margin of error – i.e., it may be arbitrarily
small – provided that the hyperplane does separate the
classification regions. That is, while an small amount of
noise in a new data may lead to an erroneous classification,
noiseless data will still be classified correctly with certainty.
However, Theorem 5 implies that this problem is unsolvable
on digital hardware platforms as well.

8559

IX. CONCLUSION AND ADDITIONAL REMARKS

Throughout this article, we have applied the framework
of Turing machines to investigate support-vector machines
with regards to a mathematically rigorous formalism of
computability for digital hardware. Our results show that
in many ways, the theory of support-vector machines is
untraceable by digital algorithms, since the relevant math-
ematical objects – that is, the optimum distance dinf , lower
bounds on the optimum distance dinf , support-set points, or
separating hyperplanes – are either linked to the classification
regions by functions that are not Turing computable, or
even are uncomputable objects themselves. In particular, the
theory is fundamentally untraceable on digital hardware, as a
mathematical consequence of Turing’s theory. Its infeasibility
does not emerge from our ignorance of suitable machine-
learning algorithm, training data of low quality, or insuffi-
cient information about the classification regions.

In the context of machine learning, the problem of com-
puting the pseudo-inverse of a matrices with respect to a
strict formalism of computability has recently been consid-
ered [20]. It was shown that the mapping A 7→ A† :=
A∗(AA∗)−1 is not Turing computable, i.e., there exists no
algorithm that computes A† based on a description of A.
However, it was also shown that if A is itself computable,
i.e., its entries are computable numbers, then A† is com-
putable as well. Each entry of A† can thus, in principle, be
approximated up to arbitrary precision, but the procedure on
how to compute such an approximation cannot be determined
from a description of A. The Π1-completeness of dinf is a
strictly stronger result. For a suitable choice of f0 and f1, the
value dinf(M+(f0),M+(f1)) is uncomputable, i.e., there
does not exist an algorithm that approximates the number
dinf(M+(f0),M+(f1)) up to arbitrary precision at all. In
other words, the target values of dinf are computationally ill-
behaved even though the objects in the domain of dinf are
computationally well-behaved.

Turing’s theory of computation is linked directly to in-
tegrity assessment. Per definition, integrity refers to the
guarantee that a technological system remains within it’s
prescribed margin of operation. If this margin of operation is
controlled by an algorithm on the basis of digital hardware,
it is a necessary criterion that the state and dynamics of the
system’s physical components can be adequately “translated”
into the digital realm, i.e., the relevant quantities must be
computable. If Turing’s theory prohibits such a translation,
the integrity of the system as a whole – i.e., its physical
components, its digital control hardware, and the control
algorithm realized by the latter – is compromised, since
the control hardware cannot “understand” the state of the
system’s physical parts.

With regards to near-future technological systems, the
fact that relevant problems in the field automated decision-
making can only be “solved” in a heuristic manner on
digital hardware needs to be considered. As discussed in the
introduction, the next generation of communication systems,
as standardized by 6G, relies on the ability to reliably

solve mathematical problems by intelligent algorithms in an
unprecedented manner. At the same time, these systems can
be expected to increasingly affect sensitive human goods,
making them potentially hazardous in case of operation out-
side the intended margin. Accordingly, strict adherence to in-
tegrity requirements is fundamentally necessary, with the in-
tegrity assessment performed on a mathematically sound and
rigorous basis. The authors conclude that in order to provide
such a well-grounded technology assessment, a development
of the understanding of fundamental limitations of digital
hardware with respect to future engineering problems is
critically needed. Further, in more general terms, an broader
understanding of the relations between theoretical criteria
for technology assessment, models of hardware platforms
employing different, not necessarily digital, mechanisms for
computing, and real-world engineering problems is required.

REFERENCES

[1] H. Yang, A. Alphones, Z. Xiong, D. Niyato, J. Zhao, and K. Wu,
“Artificial-intelligence-enabled intelligent 6g networks,” IEEE Net-
work, vol. 34, no. 6, pp. 272–280, 2020.

[2] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo,
“Machine learning paradigms for next-generation wireless networks,”
IEEE Wireless Communications, vol. 24, no. 2, pp. 98–105, 2017.

[3] G. Fettweis and H. Boche, “6G: The personal tactile internet - and
open questions for information theory,” IEEE BITS the Information
Theory Magazine, vol. 1, no. 1, pp. 71–82, 2021.

[4] ——, “On 6G and trustworthiness,” Communications of the ACM,
vol. 65, no. 4, pp. 48–49, 2022.

[5] H. Boche, Y. N. Böck, and U. J. Mönich, “On the arithmetic com-
plexity of the bandwidth of bandlimited signals,” IEEE Transactions
on Information Theory, vol. 69, no. 1, pp. 682–702, 2022.

[6] H. Boche and U. J. Mönich, “Algorithmic computability of the signal
bandwidth,” IEEE Transactions on Information Theory, vol. 67, no. 4,
pp. 2450–2471, 2021.

[7] N. V. Vapnik, “An overview of statistical learning theory,” IEEE
Transactions on Neural Networks, vol. 10, no. 5, pp. 988–999, 1999.

[8] ——, The Nature of Statistical Learning Theory. Springer, 2000.
[9] T. Xu, T. S. Brisimi, T. Wang, W. Dai, and I. C. Paschalidis, “A

joint sparse clustering and classification approach with applications to
hospitalization prediction,” in 2016 IEEE Conference on Decision and
Control (CDC), 2016.

[10] Y. Chen, N. Sohani, and H. Peng, “Modelling of uncertain reactive
human driving behavior: a classification approach,” in 2018 IEEE
Conference on Decision and Control (CDC), 2018.

[11] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf,
“Support vector machines,” IEEE Intelligent Systems and their Appli-
cations, vol. 13, no. 4, pp. 18–28, 1998.

[12] A. M. Turing, “On computable numbers, with an application to
the Entscheidungsproblem,” Proceedings of the London Mathematical
Society, vol. s2-42, no. 1, pp. 230–265, 1937.

[13] ——, “On computable numbers, with an application to the Entschei-
dungsproblem. A correction,” Proceedings of the London Mathemati-
cal Society, vol. s2-43, no. 1, pp. 544–546, 1938.

[14] R. I. Soare, Recursively Enumerable Sets and Degrees. Springer,
1987.

[15] M. B. Pour-El and J. I. Richards, Computability in Analysis and
Physics. Springer, 1989.

[16] K. Weihrauch, Computable Analysis: An Introduction. Springer, 2000.
[17] S. C. Kleene, “General recursive functions of natural numbers,”

Mathematische Annalen, vol. 112, no. 1, pp. 727–742, 1936.
[18] A. M. Turing, “Computability and λ-definability,” Journal of Symbolic

Logic, vol. 2, no. 4, pp. 153–163, 1937.
[19] X. Zheng and K. Weihrauch, “The arithmetical hierarchy of real

numbers,” Mathematical Logic Quarterly, vol. 47, no. 1, pp. 51–65,
2001.

[20] A. Fono, H. Boche, and G. Kutyniok, “Limitations of deep learning for
inverse problems on digital hardware,” in 8th International Conference
on Computation Harmonic Analysis, 2022.

8560

