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Abstract— In this paper, we propose a novel distributed
algorithm for consensus optimization over networks. The key
idea is to achieve dynamic consensus on the agents’ average
and on the global descent direction by iteratively solving an
online auxiliary optimization problem through the Alternating
Direction Method of Multipliers (ADMM). Such a mechanism
is suitably interlaced with a local proportional action steering
each agent estimate to the solution of the original consensus
optimization problem. The analysis uses tools from system theory
to prove the linear convergence of the scheme with strongly
convex costs. Finally, some numerical simulations confirm our
findings and show the robustness of the proposed scheme.

I. INTRODUCTION

Recently, consensus (or cost-coupled) optimization has
gained popularity, see the recent surveys [1]–[3] for the related
applications and the state-of-the-art distributed algorithms. In
this setup, large attention has been received by the so-called
Gradient Tracking distributed algorithm originally proposed
in in [4]–[6] and extended to deal with different problem
setups like, e.g., the asynchronous case [7], the nonconvex
setting [8]–[10], or the online one [11], [12]. However, as
highlighted in [10], [13], [14], Gradient Tracking suffers
the presence of a marginally stable dynamics related to the
embedded perturbed consensus dynamics (see [15], [16])
devoted to reconstruct the unavailable global gradient of the
problem cost function. In ideal setups, a suitable initialization
is sufficient to avoid undesired bias due to such a marginally
stable part that, however, as shown in [17], makes the whole
scheme not robust with respect to the presence of errors
(due, e.g., to quantization effects, asynchronous updates, or
unreliable communication).

On the contrary, in [18], it is shown that dynamic average
consensus can be robustly addressed by suitably formulating
an associated online optimization problem and using the
(static) distributed version of Alternating Direction Method of
Multipliers (ADMM) as proposed in [19]. The use of ADMM
for distributed optimization was popularized by the mono-
graph [20], and has been extensively studied since, see e.g.
[21]–[23]. Its application for (static) average consensus was
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also discussed in [24], and for online distributed optimization
in [25]–[27].

The main contribution of this work is the design of ADMM-
Tracking Gradient, i.e., a novel distributed algorithm for
consensus optimization. The idea consists of controlling
each solution estimate through a proportional action with
a twofold purpose of removing (i) consensus error among
agents’ estimates, and (ii) the optimality error. Such an action
would require unavailable global information in each agent.
Thus, inspired by [18], we formulate an auxiliary, online
optimization problem whose solution coincides with the
unavailable information. We dynamically tackle this online
problem through a distributed implementation of the ADMM
and, in each agent, we suitably interlace its output with the
mentioned local, proportional action. By using tools from
system theory, it is possible to show that the overall strategy
exponentially steers the agents’ estimates to the consensus
configuration coinciding with the optimal solution of the
original problem. In detail, we interpret our algorithm as
a singularly perturbed system given by the interconnection
between (i) a slow subsystem given by the dynamics of
the solution estimates, and (ii) a fast one related to the
states of the ADMM. Numerical tests assess that ADMM-
Tracking Gradient outperforms Gradient Tracking in terms
of convergence rate and robustness.

The paper is organized as follows. Section II introduces the
problem setup. In Section III, we design the novel distributed
algorithm named ADMM-Tracking Gradient and provide
its convergence properties. Section IV reformulate ADMM-
Tracking Gradient as a singularly perturbed system Finally,
in Section V, we compare ADMM-Tracking Gradient and
Gradient Tracking on (i) a quadratic setup and (ii) a noisy,
logistic regression scenario.

Notation: A square matrix M ∈ Rn×n is said to be
Schur if all its eigenvalues lie in the open unit circle. The
identity matrix in Rm×m is Im. , while 0m is the all-zero
matrix in Rm×m. The vector of N ones is denoted by 1N ,
while 1N,n := 1N ⊗ In with ⊗ being the Kronecker product.
Dimensions are omitted whenever they are clear from the
context. For a finite set S, we denote by |S| its cardinality.
The vertical concatenation of the column vectors v1, . . . , vN
is COL(vi)i∈{1,...,N}. We denote as blkdiag(M1, . . . ,MN ) ∈
R

∑N
i=1 ni the block diagonal matrix whose i-th block is given

by Mi ∈ Rni×ni .
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II. PROBLEM DESCRIPTION AND PRELIMINARIES

We consider a network of N agents that aim to solve

min
x∈Rn

N∑
i=1

fi(x), (1)

where x ∈ Rn is the (common) decision variable, while fi :
Rn → R is the objective function of agent i ∈ {1, . . . , N}.
In the following, we will also use the function f : Rn → R
defined as f(x) :=

∑N
i=1 fi(x). Our goal is to design an

algorithm to solve (1) in a distributed way, namely with
update laws implementable over a network of agents using
only (i) local information and (ii) neighboring communication.
Indeed, we consider a network of agents communicating
according to an undirected graph G = ({1, . . . , N}, E), with
E ⊂ {1, . . . , N}×{1, . . . , N} such that i and j can exchange
information only if (i, j) ∈ E . The set of neighbors of i is
Ni := {j ∈ {1, . . . , N} | (i, j) ∈ E}, while its degree is
di := |Ni| and d :=

∑N
i=1 di. Notice that it holds d = 2|E|,

where | · | denotes the cardinality operator.
The following assumptions formalize the considered setup.

Assumption II.1. [Network Connectivity] The graph G is
connected. □

Assumption II.2. [Objective functions] The objective func-
tion f is c-strongly convex, while the gradients ∇fi(·) are
L-Lipschitz continuous for all i ∈ {1, . . . , N}. □

We notice that Assumption II.2 ensures that problem (1)
has a unique minimizer and we denote it as x⋆ ∈ Rn.

III. ADMM-TRACKING GRADIENT: ALGORITHM DESIGN
AND CONVERGENCE PROPERTIES

Let xti ∈ Rn be the estimate of the solution to problem (1)
maintained by agent i at iteration t ∈ N. We follow a control-
oriented design for the update of xti. Then, let uti ∈ Rn be the
i-th control input and consider the single integrator dynamics

xt+1
i = xti + uti. (2)

The control law determining uti should have the twofold
purpose of removing (i) the consensus error with respect to
the other agents’ estimates, and (ii) the optimality error related
to problem (1). Hence, one may design uti as a proportional
action with respect to the above errors, namely

uti = γ

 N∑
j=1

xtj/N − xti

− γ

N

N∑
j=1

∇fj(xtj), (3)

where γ > 0 is a tuning gain. By plugging the control law (3)
into (2), we get the closed-loop dynamics

xt+1
i = xti + γ

 N∑
j=1

xtj/N − xti

− γ

N

N∑
j=1

∇fj(xtj). (4)

However, in a distributed setting, agent i cannot access the
global terms 1

N

∑N
j=1 x

t
j and 1

N

∑N
j=1 ∇fj(xtj). Therefore,

we modify the control law (3) by employing two auxiliary
variables yti , s

t
i ∈ Rn aimed at reconstructing 1

N

∑N
j=1 x

t
j and

1
N

∑N
j=1 ∇fj(xtj), respectively. More in detail, the control

law (3) is replaced by

uti = γ(yti − xti)− γsti. (5)

We note that, if yti =
1
N

∑N
j=1 x

t
j and sti =

1
N

∑N
j=1 ∇fj(xtj),

the desired update (3) is recovered. Then, inspired by [18],
for each iteration t ≥ 0, we turn these two consensus-oriented
goals into the online optimization problem

min
(y1,...,yN )∈RNn

(s1,...,sN )∈RNn

N∑
i=1

gti(yi, si)

s.t.:
[
yi
si

]
=

[
yj
sj

]
if (i, j) ∈ E ,

(6)

where, for all i ∈ {1, . . . , N}, gti : Rn × Rn → R reads as

gti(yi, si) =
1

2

∥∥yi − xti
∥∥2 + 1

2

∥∥si −∇fi(xti)
∥∥2 .

Indeed, if the graph G is connected, the (unique) optimal
solution of problem (6), say it (yt⋆, s

t
⋆) ∈ R2Nn, reads as

(yt⋆, s
t
⋆) = (1N,n

1
N

∑N
j=1 x

t
j ,1N,n

1
N

∑N
j=1 ∇fj(xtj)) [18].

From this observation, we design the updates of yti and sti by
resorting to the distributed ADMM proposed in [19]. Hence,
each agent i maintains an additional variable ztij ∈ R2n for
each neighbor j ∈ Ni and implements[

yti
sti

]
= argmin

yi∈Rn

si∈Rn

{
gti(yi, si)−

[
y⊤i s⊤i

] ∑
j∈Ni

ztij

+
ρdi
2

(
∥yi∥2 + ∥si∥2

)}
zt+1
ij = (1− α)ztij + α

(
−ztji + 2ρ

[
ytj
stj

])
,

with ρ > 0 and α ∈ (0, 1). Being gti quadratic, the above
updates are equivalent to the closed form[

yti
sti

]
=

1

1 + ρdi

[ xti
∇fi(xti)

]
+
∑
j∈Ni

ztij

 (7a)

zt+1
ij = (1− α)ztij + α

(
−ztji + 2ρ

[
ytj
stj

])
. (7b)

Let us introduce mt
ji ∈ R2n to denote the message from

agent j needed by agent i to perform (7b), namely

mt
ji := −ztji + 2ρ

[
ytj
stj

]
. (8)

Then, we compactly rewrite (7) as[
yti
sti

]
=

1

1 + ρdi

[ xti
∇fi(xti)

]
+
∑
j∈Ni

ztij

 (9a)

zt+1
ij = (1− α)ztij + αmt

ji. (9b)

We report in Algorithm 1 and we name it ADMM-Tracking
Gradient the whole distributed protocol arising by plugging (5)
into (2) and combining them with (9).
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Algorithm 1 ADMM-Tracking Gradient (Agent i)
Initialization: x0i ∈ Rn, z0i ∈ R2ndi .
for t = 0, 1, . . . do[

yti
sti

]
= 1

1+ρdi

([
xti

∇fi(xti)

]
+
∑

j∈Ni
ztij

)
xt+1
i = xti + γ(yti − xti)− γsti

for j ∈ Ni do

mt
ij = −ztij + 2ρ

[
yti
sti

]
transmit mt

ij to j and receive mt
ji from j

zt+1
ij = (1− α)ztij + αmt

ji

end for
end for

Algorithm 1 can be implemented in a fully-distributed
fashion since it only requires neighboring communication
and local variables. In particular, when running Algorithm 1,
each agent needs to exchange variables with 2n components
with its neighbors. The next theorem states the convergence
features of ADMM-Tracking Gradient.

Theorem III.1. Consider ADMM-Tracking Gradient and let
Assumptions II.1 and II.2 hold. Then, there exist γ̄, a1, a2 > 0
such that, for any γ ∈ (0, γ̄), (x0i , z

0
i ) ∈ Rn×R2ndi , it holds∥∥xti − x⋆

∥∥ ≤ a1 exp(−a2t),

for all i ∈ {1, . . . , N}. □

Due to space constraints, the proof of Theorem III.1 is
omitted in this paper and will be provided in a forthcoming
document. The proof is based on reformulating the aggre-
gate version of ADMM-Tracking Gradient as a singularly
perturbed system, i.e., the interconnection between a slow
subsystem and a fast one having an equilibrium parametrized
in the slow state. Based on this interpretation, given some
z⋆ ∈ R2nd that will be clear later, it is possible to show that
(1N,nx

⋆, z⋆) is a globally exponentially stable equilibrium
point for the aggregate form of ADMM-Tracking Gradient.

IV. ADMM-TRACKING GRADIENT AS A SINGULARLY
PERTURBED SYSTEM

First of all, let us rewrite ADMM-Tracking Gradient in
a more compact form. To this end, let zti ∈ R2din be the
vector stacking all the variables ztij of the agent i, i.e., zti :=
COL(ztij)j∈Ni ∈ R2ndi , while let ztNi

:= COL(ztji)j∈Ni ∈
R2ndi , i.e., the vector stacking all the variables ztji with
j ∈ Ni. Moreover, let us introduce the functions hxi : Rn ×
Rndi → Rn, h∇i : Rn × Rndi → Rn, and hNi

: Rndi ×
Rndi → R2ndi defined as

hxi (xi, ψi) =
xi +

∑
j∈Ni

ψij

1 + ρdi

h∇i (xi, ψi) =
∇fi(xi) +

∑
j∈Ni

ψij

1 + ρdi

hNi(xNi , zNi) = COL

(
COL(xtj ,∇fj(xtj)) +

∑
j∈Ni

ztji

1 + ρdj

)
j∈Ni

,

where ψi ∈ Rndi has been decomposed as COL(ψij)j∈Ni

with ψij ∈ Rn for all j ∈ Ni. With these functions at hand,
we are able to rewrite the local update characterizing ADMM-
Tracking Gradient (cf. Algorithm 1) in a more compact form
described by

xt+1
i = xti + γ

(
hxi (x

t
i, z

t
i)− xti

)
− γh∇i (xti, z

t
i) (10a)

zt+1
i = (1− α)zti + α(−ztNi

+ 2ρhNi
(xtNi

, ztNi
)), (10b)

Now, let us provide the aggregate formulation of (10). To this
end, let us introduce the permutation matrix P ∈ R2nd×2nd

that swaps the ij-th element with the ji-th element, the
matrices Ax ∈ R2nd×Nn, Az ∈ R2nd×Nn, A ∈ R2nd×2Nn,
H ∈ RNn×Nn, H ∈ R2Nn×2Nn, and Tαρ ∈ R2nd×2nd

defined as

Ax :=


1d1,n

0d1n . . .
1dN ,n

0dNn



Az :=


0d1n

1d1,n . . .
0dNn

1dN ,n


H :=

 1
1+ρd1

In
. . .

1
1+ρdN

In


H :=

 1
1+ρd1

I2n
. . .

1
1+ρdN

I2n


Tαρ := (1− α)I − αP + 2αρPAHA⊤.

Then, we introduce the stacking vectors xt ∈ RNn and
zt ∈ R2nd defined as

xt :=

x
t
1
...
xtN

 , zt :=

 z
t
1
...
ztN

 .
The aggregate formulation of (10) reads as

xt+1 = xt + γ
(
H
(
xt +A⊤

x z
t
)
− xt

)
− γH

(
G(xt) +A⊤

∇z
t
)

(11a)

zt+1 = Tαρz
t + 2αρPAHv(xt), (11b)

where we introduced the operators G : RNn → RNn and
v : RNn → R2Nn that, given any x := COL(x1, . . . , xN ) ∈
RNn with xi ∈ Rn for all i ∈ {1, . . . , N}, are defined as

G(x) :=

 ∇f1(x1)
...

∇fN (xN )

 , v(x) :=


x1

∇f1(x1)
...
xN

∇fN (xN )

 . (12)

Fig. 1 reports a block diagram graphically describing (11).
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xt+1 = xt + γ(H(xt +A⊤
x zt)− xt)− γH(G(xt) +A⊤

∇zt)

zt+1 = Tαρz
t + 2αρPAHv(xt)

xtzt

Fig. 1: Block diagram representing (11).

Now, we recall that the eigenvalues of Tαρ are either equal
to 1 or strictly inside the unitary circle [19]. Moreover, the
eigenvalues in 1 are all semi-simple [19]. Based on these
observations, in the next, we introduce a decomposition to
isolate the marginally stable part of Tαρ. To this end, let
b ∈ N be the dimension of the subspace S spanned by the
eigenvectors associated to 1, B ∈ R2nd×b be the matrix
whose columns represent an orthonormal basis of S, and
M ∈ R2nd×nd be the matrix such that B⊤M = 0 and
M⊤M = Ind

, with nd := 2nd − b. Then, let z̄ ∈ Rb and
z⊥ ∈ Rnd be defined as[

z̄
z⊥

]
:=

[
B⊤

M⊤

]
z. (13)

By the construction of B, it holds

B⊤TαρB = Ib, (14)

which allows us to claim that system (11) in the coordi-
nates (22) and (13) reads as

xt+1 = xt + γ
(
H
(
xt +A⊤

xMzt⊥
)
− xt

)
− γH

(
G(xt) +A⊤

∇Mzt⊥
)

(15a)

z̄t+1 = z̄t (15b)

zt+1
⊥ = T̄αρz

t
⊥ + 2αρM⊤PAHv(xt), (15c)

where we used T̄αρ :=M⊤TαρM and the results

A⊤
xB = 0, A⊤

∇B = 0, B⊤PAHA⊤ = 0. (16)

Notably, the variable z̄t does not affect the other updates
of (15) (and it holds z̄t ≡ z̄0 for all t ≥ 0). Thus, we ignore
it in the analysis considering the equivalent system

xt+1 = xt + γ
(
H
(
xt +A⊤

xMzt⊥
)
− xt

)
− γH

(
G(xt) +A⊤

∇Mzt⊥
)

(17a)

zt+1
⊥ = T̄αρz

t
⊥ + 2αρM⊤PAHv(xt). (17b)

We interpret (17) as a singularly perturbed system (see,
e.g., [28, Ch. 11]), i.e., the interconnection between the
slow subsystem (17a) and the fast one (17b). Indeed, we
can arbitrarily reduce the variation speed of (17a) through the
parameter γ, while the fast scheme (17b) has an equilibrium
parametrized in the slow state x through the function zeq

⊥ :
RNn → Rnd defined as

zeq
⊥ (x) := 2αρ(I − T̄αρ)

−1M⊤PAHv(x). (18)

Moreover, given any x ∈ RNn, it is possible to show that

HA⊤
xMzeq

⊥ (x) =
1N,n1

⊤
N,n

N
x−Hx (19a)

HA⊤
∇Mzeq

⊥ (x) =
1N,n1

⊤
N,n

N
G(x)−HG(x). (19b)

With these results at hand, we introduce the error coordinates

x̃ := x− 1N,nx
⋆, z̃⊥ := z⊥ − zeq

⊥ (x), (20)

which allows us to rewrite (17) as

x̃t+1= x̃t − γ
1N,n1

⊤
N,n

N G(x̃t + 1N,nx
⋆)

+γ

(
1N,n1

⊤
N,n

N −I
)
x̃t+γH(Ax+A∇)⊤Mz̃t⊥ (21a)

z̃t+1
⊥ = T̄αρz̃

t
⊥ − zeq

⊥ (x̃t+1 + x⋆) + zeq
⊥ (x̃t + x⋆). (21b)

Now, let us introduce the matrix R ∈ RNn×(N−1)n whose
columns span the space orthogonal to the one of 1N,n and
such that R⊤R = I . Then, let us employ the matrices 1N,n

and R to decompose x̃t into µt ∈ Rn and xt⊥ ∈ R(N−1)n

according to

µt :=
1⊤
N,n

N
x̃t, xt⊥ := R⊤x̃t. (22)

By using the coordinates (22), 1N,n ∈ ker(I − 1N,n1
⊤
N,n

N ),

and R⊤ 1N,n1
⊤
N,n

N = 0, we reformulate (21) as

µt+1 = µt − γ
1⊤
N,n

N
G(1N,nµ

t +Rxt⊥ + 1N,nx
⋆)

+ γ
1⊤
N,n

N
H(A⊤

x +A⊤
∇)Mz̃t⊥ (23a)

xt+1
⊥ = (1− γ)xt⊥ + γR⊤H(A⊤

x +A⊤
∇)Mz̃t⊥ (23b)

z̃t+1
⊥ = T̄αρz̃

t
⊥ − zeq

⊥ (1N,nµ
t+1 + xt+1

⊥ + x⋆)

+ zeq
⊥ (1N,nµ

t +R⊤xt⊥ + x⋆). (23c)

For the sake of compactness, let us introduce ∆G : Rn ×
R(N−1)n → Rn, ℓ : Rnd → RNn, and ∆zeq

⊥ : Rn ×
R(N−1)n → Rnd defined as

∆G
(
µt, xt⊥

)
:= −

1⊤
N,n

N
G(1N,nµ

t +Rxt⊥ + 1N,nx
⋆)

+
1⊤
N,n

N
G(1N,nµ

t + 1N,nx
⋆)

ℓ(z̃t⊥) := H(A⊤
x +A⊤

∇)Mz̃t⊥

∆zeq
⊥ (µt, xt⊥) := −zeq

⊥ (1N,nµ
t+1 +Rxt+1

⊥ + x⋆)

+ zeq
⊥ (1N,nµ

t +Rxt⊥ + x⋆).

By using this notation and adding and subtracting γ
N∇f(µt+

x⋆) into (23a), we compactly rewrite system (23) as

µt+1 = µt − γ

N
∇f(µt + x⋆) + γ∆G

(
µt, xt⊥

)
+ γ

1⊤
N,n

N
ℓ(z̃t⊥) (24a)

xt+1
⊥ = (1− γ)xt⊥ + γR⊤ℓ(z̃t⊥) (24b)

z̃t+1
⊥ = T̄αρz̃

t
⊥ +∆zeq

⊥ (µt, xt⊥). (24c)
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We note that (24a) reads as the gradient method applied
to (1) (i) written in error coordinates with respect to x⋆

and (ii) perturbed via the vanishing terms γ∆G (µt, xt⊥) and

γ
1⊤
N,n

N ℓ(z̃t⊥). Moreover, the subsystem (24b) can be seen
as a linear system with Schur state matrix (1 − γ)I(N−1)n

perturbed by the vanishing term γR⊤ℓ(z̃t⊥). Finally, sys-
tem (24c) is a linear system with Schur state matrix T̄αρ
and a perturbation term ∆zeq

⊥ (µt, xt⊥) given by the variations
of the slow states µt and xt⊥ and, thus, that can be made
arbitrarily small through the parameter γ. Therefore, based on
these observations, we conclude that this system reformulation
paves the way to prove Theorem III.1 but, for the sake of
space, we will provide this proof in a forthcoming document.

V. NUMERICAL SIMULATIONS

In this section, we perform some numerical simulations
to compare ADMM-Tracking Gradient with the well-known
Gradient Tracking algorithm [4]–[14], which is described by
the local update equations

xt+1
i =

∑
j∈Ni

wijx
t
j − γsti (25a)

st+1
i =

∑
j∈Ni

wijs
t
j +∇fi(xt+1

i )−∇fi(xti), (25b)

where γ > 0 is a parameter called step-size, xti ∈ Rn is
the local solution estimate, sti ∈ Rn is so-called tracker,
while each wij matches the graph G, namely, wij > 0
whenever (j, i) ∈ E and wij = 0 otherwise. First, we
consider a quadratic scenario and, then, we address a logistic
regression problem in the case in which some errors affect the
update equations of the algorithms. All the simulations are
performed by considering networks of N = 10 agents and
an underlying randomly generated Erdős-Rényi graph with
connectivity parameter 0.1. In all the simulations, we run our
schemes by randomly selecting x0i ∈ Rn and z0ij ∈ R2n for
all i ∈ {1, . . . , N} and j ∈ Ni. As for Gradient Tracking, we
run it by setting the same x0i used to perform our schemes,
while, as prescribed in [4]–[6], we set s0i = ∇fi(x0i ) for all
i ∈ {1, . . . , N}. The comparisons are done in terms of the
convergence of the norm ∥et∥, in which et ∈ RNn denotes
the optimality error et := xt − 1N,nx

⋆.

A. Quadratic Scenario

In this section, we consider a quadratic setup described by

min
x∈Rn

N∑
i=1

(
1
2x

⊤Qix+ r⊤i x
)
,

where Qi ∈ Rn×n and ri ∈ Rn. Moreover, it holds Qi =
Q⊤

i > 0 for all i ∈ {1, . . . , N} and, thus, the problem is
strongly convex. We set n = 2 and, for all i ∈ {1, . . . , N}, we
randomly generate each matrix Qi so that all its eigenvalues
belong to the interval [1, 5], while the components of each
vector ri are randomly generated from the interval [−10, 20]
with a uniform distribution. Since the quadratic scenario gives
rise to algorithm updates with linear form, we choose the
parameters of the algorithms as the ones minimizing the

largest eigenvalue of the matrices describing the algorithms
in error coordinates. Specifically, we choose γ = 0.865,
ρ = 0.528, α = 0.8924 for ADMM-Tracking Gradient, while
we set γ = 0.0627 for Gradient Tracking. Fig. 2 reports the
simulation results and shows that ADMM-Tracking Gradient
outperforms Gradient Tracking in terms of convergence rate.
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Fig. 2: Quadratic setup: comparison between ADMM-
Tracking Gradient (ATG) and Gradient Tracking (GT).

B. Logistic Regression Scenario with Errors

In this section, we consider a logistic regression scenario. A
network of agents aims to cooperatively train a linear classifier
for a set of points in a given feature space. Each agent i is
equipped with mi ∈ N points pi,1, . . . , pi,mi ∈ Rn−1 with
binary labels li,k ∈ {−1, 1} for all k ∈ {1, . . . ,mi}. The
problem consists of building a linear classification model from
these points solving the minimization problem described by

min
w∈Rn−1,b∈R

N∑
i=1

mi∑
k=1

log
(
1 + e−li,k(w

⊤pi,k+b)
)
+
C

2

∥∥∥∥[wb
]∥∥∥∥2 ,

where w ∈ Rd and b ∈ R are the optimization variables
and C > 0 is the so-called regularization parameter. Notice
that the presence of the regularization makes the cost
function strongly convex. We set n = 2, mi = 10 for
all i ∈ {1, . . . , N}, and we randomly generate each pi,k
and li,k for all i ∈ {1, . . . , 10} and k ∈ {1, . . . , 10}. We
empirically tune the algorithms’ parameters by choosing
α = 0.9 and ρ = 0.9 for ADMM-Tracking Gradient, while we
set γ = 0.1 for both ADMM-Tracking Gradient and Gradient
Tracking. Moreover, we consider the presence of fixed errors
affecting the update equations of the algorithms. In detail,
we consider an additive error vn = ϵ1n affecting the local
update equations (10a), (25a), and (25b), and, analogously,
an additive error v2ndi

= ϵ12ndi
affecting the update (10b),

where ϵ > 0 denotes the amplitudes of these errors. Fig. 3
compares the algorithms’ performance for different values of
ϵ. Differently from Gradient Tracking, we note that ADMM-
Tracking Gradient does not diverge and, hence, is robust with
respect to these errors.
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Fig. 3: Logistic regression scenario: comparison between
ADMM-Tracking Gradient (ATG) and Gradient Tracking
(GT) with fixed errors.

VI. CONCLUSIONS

In this paper, we proposed a novel distributed algorithm
for consensus optimization. In detail, we designed the
algorithm by interpreting the dynamic consensus problem as
an additional optimization problem addressed through the
ADMM. We interlaced the obtained scheme with suitable
local, proportional actions giving rise to the novel distributed
algorithm that we named ADMM-Tracking Gradient. In the
case of strongly convex problems, we proved the linear conver-
gence of the algorithm through a system theoretical analysis.
Finally, we tested our method to show its effectiveness.
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