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Who Gets the Whip?
How Supplier Diversification Influences Bullwhip Effect in a Supply
Chain
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Abstract— To navigate the evolving terrain of Supply Chains
(SC), firms require new tools with broader applicability. Cur-
rent research ignores the forest in favor of trees, with focal firms
and serial networks assumed. This paper explicates a novel and
scalable model for SC study at a broad level. We utilize the core
of the model to observe the effect of structure and policy on
demand disturbance in a SC as a whole. We find that complex
structure alone does not effect change in disturbances; dynamic
policy is necessary and sufficient for amplification. The model
and simulations build to our main result: diversifying a firm’s
supplier-base can amplify disturbances more quickly.

I. INTRODUCTION

A supply chain (SC) is a network of firms that coordinate
the flows of goods from raw materials (RM) to the end user,
linked together through physical, information, and monetary
flows. Given the massive expanse of the “global SC,” that is,
the network structure of every firm that participates in the
global economy, the study of SCs typically assumes a focal
firm. Because extant research has largely been interested in
intra-firm processes [1], SCs are typically modelled as either
single-product dyadic or serial networks [2][3]. However,
this is not a picture of reality, as firms in a SC often
have multiple suppliers and/or customers. Further, supply
chains are complex adaptive systems, implying that they
have emergent properties. Those emergent properties make
the study of supply chain behavior incomplete at any level
lower than the supply chain.

A common result in SCM literature is the presence of
the bullwhip effect (BWE) [4] [5] [6]. The BWE is the
observation that the variance of the demand signal increases
as one traverses up the SC, and is broadly categorized as
a behavior of the SC system. If an input signal is denoted
u(t), and an output signal y(z), BWE states that 53 Ei)ﬁ >1,
where V-] is the variance operator. The work in [1] notes
that there are two underlying drivers of the BWE: (1) demand
distortion and (2) variance amplification. Demand distortion
is when “orders to suppliers tend to have larger variance than
sales to the buyer” [4], and variance amplification is when
that “distortion propagates upstream in an amplified form”
[4]. The literature has identified 19 managerial decisions,
herein called ‘policies,” that drive the BWE [3] [1]. Example
policies include safety stock, order batching, shipping lag,
etc. The BWE is a problem faced by approximately 2/3 of
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all firms [3]. Negative effects on firms stemming from BWE
include higher cost of capital, increased inventory holding
costs, and a decrease in profitability[3].

Controlling SCs requires both understanding system-
wide behavior and knowing how network structure re-
lates to that behavior. We seek to understand how two
phenomena—managerial decision making (policies) and net-
work structure—interact to affect the behavior of a SC.
We introduce the theoretical notion that policies can act
on the input, output, or state of a SC system, as well as
its connected sub-systems (customer-supplier pairs). And it
is those policies, not the structure directly, that are shown
to have an influence on the BWE. The key connection is
that some policies are limited by the SC structure. In that
way, policy mediates the relationship between structure and
behavior. This notion is given credence with results such as
Li, et al. [7], who find that a production policy mediates the
relationship between structure and behavior (BWE).

Of those papers that seek to understand the relation-
ship between structure and behavior, the dominant research
paradigm is to assume one of two types of structures:
divergent and convergent (Figure 1). A convergent structure
is one where a focal firm has multiple suppliers, and a
divergent structure is one where a focal firm has multiple
customers. According to [3], at the time of their writing,
28% of articles looking at the impact that structure has on a
SC used a dyadic structure, 42% used a serial structure, and
17% used a divergent structure. There were no papers that
looked at convergent structures.

R RPN

Dyadic Serial Convergent Divergent

Fig. 1. Comparison between structures with a focal firm (red).

As can be seen, there is a need to model SC behav-
ior in convergent structured SC. Literature has typically
specified that the convergent structure is ‘assembly’ [3],
meaning that a focal supplier provides a unique part that
is assembled together into one good. There is another
type of convergent structure, what we call ‘diversification,’
where a focal supplier purchases the same good from
multiple unique suppliers. This is often done as a means
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to lower risk, similar to choosing a diverse investment
portfolio in the financial markets. To distinguish between
those two paradigms, we will denote ‘convergent-assembly’
and ‘convergent-diversification’ (CD). To our knowledge, our
study is the first to analyze how a CD structure influences
BWE in a supply chain.

We show through analytical and simulation results that,
as compared to a purely serial SC, a more complex CD
structure does not amplify the BWE if a static policy is
chosen. However, the complex structure with a time-varying
policy significantly amplifies the BWE. This is evidence
that the relationship between structure and SC behavior is
mediated by policies. We find intriguing indications that this
relationship is further modified by the nature of the demand
signal. We are encouraged that future studies on this effect
can provide meaningful insights.

Finally, we present a generalized form of a SC model
that future researchers can use to derive both analytic and
numerical results. This generalized form of a SC allows for
any structural configuration; expanding the ability to analyze
SCs beyond a simple dyadic or serial structure. This gener-
alized mathematical form of an entire SC starts to answer
the call by researchers interested in SC-wide coordination
research [8][9], which is anticipated to be enabled through
blockchain technologies [10][11]. Any research agenda that
is ultimately seeking to control the blockchain-enabled SC
through coordination mechanisms must first understand how
the entire system behaves as a result of individual manager
decision making. We take first steps in doing so.

In summary, we make three primary contributions:

1) Section II provides a novel mathematical model of a
SC with more complex structure. This general model
can be adapted and built upon based on the particular
structure and policies of interest.

2) We show in Theorem 1 the relationship between struc-
ture and policy, demonstrating that structure in and of
itself does not necessarily amplify the BWE. Rather, it
is the policy that amplifies the BWE. In fine, structure
enables policy and policy enables BWE.

3) We explicate the conditions under which results on the
BWE in serial SCs—a majority of extant research—
are applicable to CD supply chains (Section ??). These
same conditions also enable results on BWE in CD
supply chains to be performed on a simplified (i.e.
serial) structure.

The paper is set out as follows: Section II details the
generalized SC model, Section III provides the main results
with discussion, Section IV provides the simulation results,
and we conclude in Section V.

II. MODEL

In this section we lay out a general form of a SC model, to
aid researchers in future studies on the impact of structure
and behavior. In a later section the model will be used in
an agent-based simulation, verifying the above results and
adding additional richness to the nature of the amplification
effect.

The BWE is a result that is derived from the SC being
viewed as an input-output (IO) relationship. However, 10
relationships typically ignore the structure of the system (i.e.
are ‘black box’). Thus, we are interested in a class of models
where structural relationships can be defined. Further, models
of this class have state space representations, encoding the
structure of the SC. We will now explicate this set of models.

A. The #C Model

Let .#C be the set of all models that are under our
consideration. These systems are causal, time-invariant, and
have memory. They are defined by the graph structure G :
(V,E), where edges E represent the flow of information (e.g.
demand signals) and material goods, & nodes V' represent
firms.

1) State Space Representation: Let the vector y|t] repre-
sent the outputs of the system and NRET and NR be the
number of retail firms and raw material firms in the SC,
respectively. The vector can be partitioned into two vectors:
y¥C[t] € NRET are the outputs of physical finished goods
(FG) to the end consumer, and yPEM[t] € N*M are the de-
mand signals from raw materials producers for “extraction”.
It represents the SC’s demand for particular raw materials.
Thus, yli] = [y*¢[]7 yPEM 7]

Let the vector u[z] represent the inputs into the system. The
vector can be partitioned into two vectors: uRM[t] € NfM are
the inputs of physical raw materials, and uP¥M[t] € NRET
are the demand signals from end consumers. A demand
input is a random variable pulled from a distribution D,
with mean u and variance o2: uPPM[t] ~ D(u,0?). The
raw materials input uRM[¢] is equal to the demand signal
output yDEM[t] with some lag A (representing the process
of extracting raw materials): uRM[f] = yPEM[; — A]. Thus,
u— [yDEM[I — A7 uDEM[t]T]T

Fig. 2. ‘Black Box’ Model of a SC

The states of the system, x[¢], can also be partitioned. The
first partition is raw material inventories xXM[f] € RY, the
second partition is FG inventories x¥¢[t] € R", and the third
partition are the emergent states of the system x*MRG[¢] ¢ RF
where N represents the total number of firms in the system
and E represents the number of emergent states.

Putting it together, the vector of states for models in .#¢
for a given time period ¢ is:

x[f] = [XFG[I]T xRM[f]T XEMRG[I]T]T (1)

There are 2N + E states in the system per time period,
while the size of the input and output vectors are dependent
on the types of firms in the system.
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There are four categories (‘echelons’) of firms considered
in our model [12] [13]. The first are raw materials producers.
These are by necessity at the “top” of the SC; these firms
handle the demand and supply of raw materials to the
system. These firms do not have any other firms as suppliers.
The second and third type of firms are manufacturers and
distributors. The fourth are retailers, which by necessity are
at the “bottom” of the SC; these firms handle the demand
and supply of FG for the SC system. Retailers do not have
any firms as customers.

Using those definitions, the size of the output vector y/t]
is Ngy + Nger; there are as many demand outputs as there
are raw material firms, and as many Fg outputs as there are
retail firms. The size of the input vector uft] is similarly
Nrm + Nger; there are as many demand inputs as there are
retail firms and as many raw materials inputs as there are
raw material firms.

The larger system (the ‘SC’) is composed of subsystems,
representing firms. Each firm has its own policies, and they
do not have access to any other firm’s policies. Therefore,
the general form of the system dynamics in state space form
is:

xi [t +1] ] g1(x1[t]) ki (ay[r])
o= ] @
xyvit+1]) ] [en(xn])] Lk (an(t])
yilt]]  [m(xife])]
L= : ; 3)
yvltl]  [Av(xnl]) ]

with g;, h;, and k; representing firm i’s ‘state policy’, ‘output
policy’, and ‘input policy’ respectively (see Section II-C).
Equations 2 and 3 show that each firm in the SC have their
own unique g, h and k.

B. Customer-Supplier Relationships: Building Blocks of the
System

The fundamental building blocks of models in the set
ZC are customer-supplier relationships. Define a firm as
an input-output relationship, and denote the inputs and
outputs into a particular firm with a subscript numeral i:
wlt] = [ wPEME])" and yilt) = PO yPEM]
Each firm is assumed to have only one type of raw material
good and one type of FG'.

Now consider two firms, i =1 (the customer) and i = 2
(the supplier) in a customer-supplier relationship:

w ] = O] uPEM ) 4)
wlr] = [1"[] YPEM )" 5)
yilt] = S yPEM ) (6)
yalt] = [¥5CTe) 2™ )] (7)

taking into account that the raw material output of firm
1 is the FG input for firm 2, and the demand output of

'Sometimes referred to in the literature as an ‘intermediate good’ if it
requires further processing.

firm 1 is the demand input for firm 2. The states for these
firms mirror the states for the larger SC system: x;[f] =
(O] ] xPMRG).

a) The Special Case of the Raw Materials Firm: As
inputs for raw material firms are delayed outputs, there are no
possible suppliers to these firms [14]. The customer-supplier
relationship is otherwise the same for raw materials firms,
as long as they are the supplier.

b) The Special Case of the Retail Firm: As outputs
for retail firms are sold to the end consumer, there are no
possible firm customers to these firms [14]. The customer-
supplier relationship is otherwise the same for retail firms,
as long as they are the customer.

C. Policies

Policies can be thought of as the decision processes that
managers in firms have to make. We have already introduced
the three categories of policies, ‘state policies’ (g;), ‘output
policies’ (k;), and ‘input policies’ (k;).

Each firm’s independent choice of policy, be it input,
output, or state, has a causal influence on the BWE in the
(sub-)system. That is, BWE arises because managers in each
firm in a SC are making decisions with varying levels of
information and coordination with other firms. The result of
this, alongside simple manager preference, is that each firm
has unique input, state, and output policies. These categories
do not need be a strict partition.

1) State Policies g;: We can decompose those policies
further to get an insight into the underlying mechanics. State
policies are the primary drivers of the demand-distortion
portion of BWE. They are intra-firm processes that directly
affect the states of the system x/'C and xf. For example,
after the state policy p; is chosen, it adjusts leM (decrease)
and xf G (increase) in each time period. Some examples
include how many (1) raw materials (RM) to hold as safety
stock, a;(+), (2) FG to produce, p;(:), and (3) FG to ship,
s2().

2) Output Policies h;: Output policies are the primary
drivers of the variance amplification portion of the BWE.
These are inter-firm processes that directly change the nature
of the output signal y;. Examples include how (1) many RM
to order, olQ() (2) to price FG, ¢;(-), (3) many FG to ship,
sl.Q(-), who to (4) order RM from, 0?(-), and (5) ship to,
S0

3) Input Policies k;: The final category of policies, input,
are intra-firm processes that aim to predict (e.g. forecasting),
directly modify (e.g. rejecting shipment at the door), feed-

forward (e.g. setting yPEM[t] equal to uPEM|t]), or otherwise

directly influence the input before they are added to the
states. Examples are how to (1) forecast incoming demand,
d;(+), (2) forecast incoming supply, J;(+), (3) conduct mar-
keting, m(-), and (4) Which shipments to accept or reject,
r,-(~).

See Figure 3 for a visualization on how policies interact
with signals. Thus, we have for a given firm i the pair of
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equations:

o)

=
+
I

gi(xilts oglt],...) + ki(wilt]:dife],..)  (8)
yilt] = hi(xs[t]; 0 1], -.). )

Fig. 3. Customer-Supplier Relationships showing modifications on incom-
ing/outgoing signals. Purple represents a signal changed by the policies of
firm i (supplier) and orange represents signals changed by firm j (customer).
The state policies g;(-) are placed showing they only effect the states directly.

4) SC Structure: The structure (graph) of the SC modifies
the allowable values for output policies. A SC where every
firm has no more than one supplier (customer) is limited
to whom they can ship to (order from): they only have one
choice! The ‘whom’ part of outgoing policies are partitions
on a 1-norm (e.g. how much to produce, ||p;(-)||1)- It can also
be viewed as a weighting vector @ of size RV that acts on
the signal y;[r], where NiSUP are the number of suppliers for
firm i. In this way, the structure of the SC directly determines
the size of the weighting vector .

The astute reader will notice the lack of financial signals
going into and out of the SC (sub-)system(s). Indeed, finan-
cial considerations are a key driver of managerial policies,
and need to be taken into account. We believe the simplest
form of the model has two signals: demand and supply. All
other factors, such as information, pricing, etc. are accounted
for within the policies (input or output). For example, the
choice of price for a finished good (an input policy) affects
the incoming demand. That said, the model is general enough
that additional signals can be added, not only financial but
even environmental signals (e.g. carbon emissions).

With a generalized model of a SC, we now turn to a
specific result on the output policy s7(-).

III. RESULTS

For our main results, we only consider how the policy s’,“()
influences BWE. A manager could choose from a wide range
of policies s‘l“() The policy could be as simple as setting a
fixed proportion that is purchased from each supplier. We call
this a fixed (time-invariant) policy, and denote it with y; =
s4(:) £ A. Every other type of policy is therefore a varying

1

policy: y; = s ()[i] £ Alr).

Let yPEM[f] be the outgoing demand signal of size |w|
from a focal firm and uP£M¢] be the incoming demand signal
for the same focal firm.
Theorem 1. Hold all other policies as time invariant,
allowing only s‘l“ to be time-varying. Then,
V(P ]) < v (yPEM), (10)
with equality iff a constant policy s‘l“ = A is chosen. Fur-
thermore, for any varying policy s?(-)[t], V (yPEM[t]) strictly
increases in the number of suppliers N to firm i.

Proof: Let Y be a demand signal drawn from distribu-
tion D, and Y be that same signal with a partition determined
by policy s/(-). Finally, let Y, be the signal partitioned using
a constant policy A, and Y, be the signal partitioned using
a varying policy A. We first prove equality.

Assume a time-varying signal Y; and scalar values A;—.y,
representing the scaled versions of that signal, with }°; = 1.
Define Ay to be (1 —A; —...— Ay). The variance of the outgo-
ing signal is V[A]Yl +... +ANYA] = V[MY;L] +... —I—V[)LNY}’],
which equals VY] +A2V[Y ] — AZVV] + ... + A3V ] —
AZV[Y;], making = V[Y;] = V[Y].

Next we prove the inequality. Define Ay to be (1 —A; —
...—Ay), all time varying signals. So, V[YA] = V[A1YA] +
o+ V[ANYA] + 225\;,‘ Cov(AiYa,A,Yp). Remembering that
AN E (1 —Ap — ... — Ay) gives us V[A[YA + ... + AyYs] =
VIYA] + VIAIYA] — V[AIYA] + ... + V[ANYA] — V[ANYA] +
2% Cov(AYa, AjYA) = VYAl + 217 Cov(Ai¥a, AjYA)

Note that Y, is a signal that is partitioned into N scaled
signals. Thus, all covariances for these scaled signals are
necessarily positive. This means that the right hand side
is equal to V[Ya] plus a positive number, V[Y] < V[YA] +
2):?;]. Cov(AiYp,AjYy). Using the fact that ¥ =Y, we have
V[Y;L] < V[YA].

Finally, we prove the last statement. As was shown in
Equation III, for any number of firms N, the variance in the
SC is equal to the variance of the signal ¥ plus a number of
covariance terms. All of those covariances are scaled versions
of the signal Y, and therefore are positive. Thus, N suppliers:
T 2Cov(AYa, AjYA) + X1 Y 2Cov(AYA, ANYy).

i
As this shows, each additional supplier added will add
(N —1) Covariance terms. O

IV. SIMULATION

We realize specific functional forms of the policies and run
an agent-based simulation>. We run the simulation for 500
time periods, with a 200 time period ‘calibration period.” We
repeat each simulation 1,000 times and average the results.
End consumer demand is set to be a draw from a random
distribution, uPEM ~ N (100, 1). We set up three experimental
conditions. For Condition 1, we make no adjustments to
demand. For Conditions 2 and 3, we implement exogenous
demand shocks. In Condition 2, there is a single demand
shock up of 2x normal demand. In condition 3, there is a

2Qur simulation is set up very similarly to [3], but with the notable
exception that returns are not allowed.
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single demand shock down of 0.2x normal demand. We do
not allow returns or charge-backs (orders cannot be negative),
and assume any unmet demand in a particular time period
is lost (demand does not carry over to the next time period).
Each firm in the simulation makes one type of good, requires
only one type of good to enter production, and outputs
one type of good from production. All suppliers to a firm
produce substitute goods (i.e. have a CD structure). Our
model induces BWE with the presence of delays A (shipping
or production) and safety stock «. Initial simulation results
verify that BWE is present in our model. The realizations of
the policies are now explicated.

A. Policies

Unless stated otherwise, all policies are uniform and
unchanging across time and firms.
1) Policy Realizations:
a) Production function p;(-): (R‘“t’wHl — R). The
lesser of raw materials or demand input.

pi(uf™[e] 1M [r — 1) £ min( [P 1]}, [ — 1])

1D
b) Shipment function le() (R — R). The amount
shipped is amount ordered, or the available finished goods.

The amount shipped is always the amount produced.
P (), [ — 1) £ pi(-)

¢) Safety Stock function o0;(-): (R — R). Each non-
manufacturing firm has safety stock equal to 0.1x expected
demand. The manufacturing firms (2 and 3) have different
alphas for heterogeneity in the sim.

12)

0.05ifi=2
0.15ifi=3

0.10 otherwise

() Ea= (13)

d) Ordering function olQ() (R¥2wll 5 R). The
amount ordered needs to take into account the desired safety
stock, size of prior unreceived orders, inventory on hand, and
expected demand. Define a helper function that provides the
expected demand from time #+1 to ¢+, where ¥ is the

amount of time it takes for ordered product to be received:

E?™(e+ 114 p)] 2 y- P[] +uP™M[ —1]|l; (14)

of (0, 7, uPEM [f] wPEM [ — 1], xFM [1])

1

1+ o

2 max(0, Eu? Mt +1:1+y)]-

=Y - (15)
=1

For our simulation we set y = 2.

e) Demand function d;(-): (Rz"“zpm[t” — R). We im-
plement demand smoothing [3] averaging over the previous
two time periods:

o WPV +uPPM 1]

zi(uPPM ], uPM [ — 1)) & > (16)

G[ FG

f) Shipping function s{(-): (R”“‘j‘r Al — RN, 1f
there are fewer FG than there are total orders, the amount of
FG is shipped equally to each customer.

G
2 X [t]Vi

5?(NCUST7U{:G[I_}/]7XFG[I]) - NCUST * 7

1

if xFO[r] < [ufCr — 9|, and wPEM[r — 9], otherwise.
a7
2) Ordering function 0 (-): (RI+2 0] R, The

choice of policy for whom to order from, 0‘;‘(), can be
either time-varying or time-invariant. We use Markowitz
optimization [15]—a time varying policy—in each time
period as of(+).

Consider a focal firm where each direct supplier in their
‘diversified supplier portfolio’ provides substitute goods. The
buying manager at the firm is tasked with determining a
stochastic vector @, where the ith component @; represents
the weighting on the demand signal sent to supplier i. A
random variable r; represents the returns of the supplier.
which can be anything from on-time ship percentage to the
negative of price. Assume that the expected value ¢; := E(r;)
is known to the manager for all i.

In Markowitz optimization[15], the manager’s goal is to
minimize the risk (covariance) associated with her decision
o while maintaining a minimum value of expected portfo-
lio performance u > 0. The covariance matrix C = [¢;j] €
RNTNT s such that ¢;; = E[(r; — e;)(rj —e;)]. At each
time ¢, both the firm and each supplier have the ability to
adjust their policies. The firm will adjust the decision vector
; the supplier i will adjust some aspect of r; based on the
previous @;. We assume that the supplier has the ability to
update the expected value e; at each time step: for instance,
via contract. At time step ¢ the firm manager’s decision
can be formulated as the following quadratic programming
problem. Since C is positive semi-definite it makes (18)
convex optimization.

¢ := min o' Co
@ (18)
st. To=1,e)fo>u, ©>0

B. Scenarios

The structure of the SC used in the simulation has three
different scenarios: ‘baseline’ for a serial SC, ‘structural’
for a SC with a CD structure but with static policy A,
and ‘policy’ for a SC with a CD structure and a varying
policy Aff]. In all three scenarios there are three echelons
(customer-supplier pairs). Echelon 1 is for the retailer-
distributor relationship. Echelon 2 is for the distributor-
manufacturer relationship. Echelon 3 is for the manufacturer-
raw materials relationship. For scenario 1 (baseline), we
have a SC with a serial structure, such that there is only
one firm in each echelon category, making N = 4. For
scenarios 2 (structural) and 3 (policy), we have a SC with
a diamond structure, such that there are two firms in the
echelon category ‘manufacturing’, with N = 5. In scenario
2 there is a fixed policy of(-) such that the distributor
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orders 50% of supplies from each manufacturer each time
period. In scenario 3 the ordering policy of‘ (+) is a Markowitz
optimization at each time period to determine the value @,
with the result that @; is ordered from one manufacturer and
1 — w is ordered from the other at a given time period.

C. Simulation Results

The simulation outcome reported in Table I show strong
support for our main results. The variances are reported as
a proportion of the baseline condition, such that for each
condition, baseline = 1. A value greater than 1 in either
the structural or policy scenarios indicates that the BWE
increased relative to baseline, and vice versa. The presence of
policy of'(-)—all else equal—amplifies the bullwhip for the
entire SC. However, all else not being equal in the presence
of shocks, we find more complex amplification/dampening
effects. In the presence of any shock, the BWE demonstrates
more erratic behavior. More work will need to be done to
uncover the underlying cause.

BWE Condition | Base | Structural | Policy
No Shock 1 0.81 8.64
Shock Up 1 1.06 0.70

Shock Down 1 0.91 0.19
Average 1 1.2 13.59
TABLE I

RATIOS OF VARIANCES OF DEMAND SIGNALS, AVERAGE ACROSS
THREE CONDITIONS. j REPRESENTS THE RETAIL FIRM AND i
REPRESENTS THE RAW MATERIAL FIRM.

V. CONCLUSION

In this paper we proved that a structural change in a
SC does not necessarily amplify the BWE. Because the
relationship between BWE and structure is mediated
by policy, it is only when a structural change has an
associated varying ordering policy is the BWE amplified.
Conversely, a structural change with an associated fixed
ordering policy—all else equal—does not amplify the BWE.

Our analytical results show that (1) previous work done on
the BWE that find results in a serial SC are also applicable
to SCs with a CD structure and a time-invariant ordering
policy, (2) future work looking at BWE in CD SC with
an associated time-invariant ordering policy can simplify
calculations using a serial SC (while the converse is not
true), (3) a CD supply chain and a time-varying ordering
policy—all else equal—will strictly increase BWE, and
(4) the rate at which the BWE is amplified increases
exponentially with each additional supplier.

These results have implications for managers. A risk-
averse manager might want to diversify their supplier port-
folio [16][17]. A manager might pursue this avenue if she
were concerned about a particular supplier being unreliable,
for example. However, diversifying the portfolio can have
some unintended consequences, as we show. Thus, a man-
ager will need to weigh the benefits (lowered risk profile
coming from multiple suppliers) with the potential costs
(increased demand volatility associated with adding more
suppliers). Further, if a more complex structure is deemed

necessary (e.g. needing more than one supplier for a single
good), removing managerial choice can mitigate the BWE
amplification. One such mitigation is negotiating long-term
purchase contracts.

Our hope is this research paper will contribute to opening
the door to the study of SC-level behaviors. Within that
sphere, more needs to be done to explore how complex
SC structures interact with managerial decision making to
influence these behaviors. There is also ample space to ex-
plore additional SC behaviors, such as how structure impacts
economic value, production idle time, excess inventory, etc.
Given the far-reaching impact that SC disruptions have on
the entire population, we firmly believe this is a research
area worth investing in.
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