
PrimeTime: A Finite-Time Consensus Protocol
for Open Networks

Henry W. Abrahamson† and Ermin Wei‡

Department of Electrical and Computer Engineering
Northwestern University

Evanston, USA

Abstract—In distributed problems where consensus be-
tween agents is required but average consensus is not
desired, it can be necessary for each agent to know not
only the data of each other agent in the network, but also
the origin of each piece of data before consensus can be
reached. However, transmitting large tables of data with
IDs can cause the size of an agent’s message to increase
dramatically, while truncating down to fewer pieces of
data to keep the message size small can lead to problems
with the speed of achieving consensus. Also, many existing
consensus protocols are not robust against agents leaving
and entering the network. We introduce PrimeTime, a
novel communication protocol that exploits the properties
of prime numbers to quickly and efficiently share small
integer data across an open network. For sufficiently small
networks or small integer data, we show that messages
formed by PrimeTime require fewer bits than messages
formed by simply tabularizing the data and IDs to be
transmitted.

I. INTRODUCTION

In many distributed systems, it is necessary for all
the agents in the system to agree on some parameter.
Some examples include distributed formation control [1],
optimal routing [2], and distributed kalman filtering for
state estimation [3]. This is known as the consensus
problem: for some state xi and agents i = 1...N ,
we wish to drive the system such that xi = xj for
all i, j. The first major theoretical exploration of the
average consensus problem in a fully distributed setting
is provided in [4]. In the years since, many average
consensus protocols have been developed, such as [5],
[6], as well as the classes of algorithms discussed in
[7]. These protocols all exhibit asymptotic convergence
to the average, i.e. xi → 1

N

∑
xj as time goes to ∞,

while only requiring agents to communicate with their
immediate neighbors to update their estimates.

However, in systems where quick reaction times may
be necessary for safety (such as for collision avoidance
for self-driving cars), having a finite convergence time
may be preferable over asymptotic convergence. There

This work was supported in part by the National Science Foundation
(NSF) under Grant ECCS-2030251, 2216926 and CMMI-2024774.

† email address: henryabrahamson2022@u.northwestern.edu.
‡ email address: ermin.wei@northwestern.edu.

are protocols for consensus with finite termination, such
as [8] and [9]. However, [8] involves iteratively calcu-
lating out the coefficients of the minimal polynomial
of the consensus matrix, while [9] requires its gains
to be set in terms of the eigenvalues of the graph’s
weight matrix. Both of these approaches would therefore
encounter issues if the graph is non-static, since these
values would be changing over time.

Others, such as the protocols described in [10] and
[11], rely on a leader-follower style of consensus, which
may be unsuited to fully distributed problems in which
the leader node might exit the network. There are
other finite time protocols of the type described in
[12] and [13], which can cope with dynamic graph
topologies (i.e., graph topologies in which the edges
are time-varying). However, these protocols all rely on
continuous-time dynamics, and so may not always be
feasible to approximate with a discrete time system.

Furthermore, none of the finite time algorithms pre-
sented above work on open networks, i.e. networks
which nodes can freely enter or exit. There are some
algorithms that can handle open networks, such as the
algorithms in [7] that are robust to initial conditions, as
well as the first order optimization algorithms presented
in [14], but these methods do not have finite termination.

Additionally, for some applications, such as

Figure 1: A 4-way in-
tersection. Each dot’s
intention is shown with
a corresponding inte-
ger. The two red dots
will crash if they move
at the same time.

intersection management, al-
though it is necessary for the
agents to achieve consensus
(in this case, on which car(s)
can enter the intersection next
and what direction(s) they can
turn), finding the average or
the minimum/maximum value
is not necessarily helpful for
achieving a meaningful con-
sensus. For example, if each
potential action is mapped to
some integer, as in Figure 1,
then reaching agreement by
computing the average is com-
pletely devoid of meaning if

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 5014

the average is not itself an integer. Indeed, computing
a single number in general may not fully encapsulate
what all of the agents in the system want to do. For our
intersection management example, it is obvious that there
must be some form of ID-tagging - the system should
not only agree that some car will turn left next, but that
car i in particular will do so.

We propose PrimeTime, a prime-number-based finite
time consensus protocol with finite termination for in-
teger data that intrinsically includes ID-tags for data.
PrimeTime is capable of achieving consensus even on
open graphs. Furthermore, PrimeTime allows for an
arbitrary desired consensus, not necessarily the average.

The rest of the paper is organized as follows. First,
we present the problem that we are trying to solve, and
discuss how it is related to the consensus problem. We
then present two versions of PrimeTime, and discuss how
they evolve through a simple example in section III. In
section IV, we provide some intuition for the consensus
speed of PrimeTime, as well as its scalability. Finally, in
section V, we present a brief simulation study to show
how PrimeTime compares with an equivalent algorithm
that does not use prime numbers or prime factorization.

II. FORMULATION

Suppose that we have a connected undirected graph
G = {V, E}, where V = {1, 2, . . . N} is the set
of nodes in the graph, representing the agents in the
system, and E is the set of edges, denoting the lines
of communication. We will use the terms “agent” and
“node” interchangeably in this work. Let Ni denote the
set of neighbors of agent i, and let N (m)

i denote the m-
hop neighbors of i; that is, the set of nodes connected to
i by a path of exactly length m (note that Ni = N (1)

i ,
and that N (0)

i = {i}).
We define the inclusive m-hop neighbors of i as

N (m)+
i = N (0)

i ∪ N (1)
i ∪ · · · ∪ N (m)

i , that is, the
set of agents that can be reached with m hops or
fewer. We define the exclusive m-hop neighbors of i as
N (m)−

i = N (m)
i −

(
N (0)

i ∪ N (1)
i ∪ · · · ∪ N (m−1)

i

)
=

N (m)
i −N (m−1)+

i , that is, the set of agents that can be
reached with m hops and no fewer. Here − is meant in
the set-theoretic sense.

In order to achieve consensus, each agent i in the
system wants to build a table Ti(k) consisting of ordered
pairs (xj , pj) for all j in the network. xj is the data over
which the system wants to achieve consensus, pj is a
unique identifier for agent j, and k is the time index.
We assume that each xj is a strictly positive integer,
and that they are all bounded above by some integer
M ≥ xj∀j. For example, for basic 4-way intersection
management, M = 3, with xi assigned to 1, 2, or 3
if agent i wants to turn right, turn left, or go straight

respectively. The algorithms we present are for the case
when xi is a scalar, but can be easily extended for
vector xi by transmitting a vector of messages, with one
element for each element of xi.

Once Ti(k) is complete for all i, every agent will know
the xj for all agents in the network. This way of looking
at the problem makes it seem more akin to a data sharing
or data flooding problem. However, if every Ti(k) is
identical, and each agent has an identical decision-
making protocol based on Ti(k), then the system will
have achieved consensus. Note that the system does not
update any xi in order to have xi converge to some
x̄. From that perspective, the system is not necessarily
achieving consensus on the data directly, but rather on
the table T .

III. ALGORITHMS

A. PrimeTime

For simplicity, we will begin by assuming a static
graph. In PrimeTime, pj are set as globally unique
prime numbers, so that they can function as identifiers.
Initialization must therefore be done in a centralized way
to avoid double-assignments of a particular prime, either
before the system is deployed, or by designating a leader
to assign primes once the system is launched. Adding
or removing primes from the system to handle nodes
entering or leaving can be done in a distributed way,
discussed in section III-C.

In order to complete Ti, at every time step each agent
transmits the message

mi(k) =
∏

{j:(xj ,pj)∈Ti(k)}

p
xj

j , (1)

i.e., the product of all the primes in agent i’s table at
time k, raised to their associated data’s power. Now let
Lj(k) be the set of all agents whose data is included in
mj(k). When messages are received, agents compute a
prime factorization to recover the data xl∈Lj

, which is
stored in the exponent of that data’s associated prime.
Any new data-prime pairs are added to Ti(k+1) for the
next time step.

In this way, PrimeTime allows for the encoding of
multiple pieces of data, all implicitly ID-tagged, within
a single integer. An algorithmic representation of Prime-
Time is shown in Algorithm 1, while a brief example of
PrimeTime running on a small graph is shown in Figure
2.

The left half of Figure 2 shows the graph in question.
Each node is labelled with its associated prime, and
its data is indicated by the exponent of the prime
(e.g. x5 = 4). The right half shows the evolution of
PrimeTime from the perspective of node 7, indicated by
the red arrow. The leftmost column indicates node 7’s

5015

Algorithm 1 PrimeTime

Initialize Ti(0) = {(xi, pi)}
for k ≥ 0 do

mi(k) =
∏

{j:(xj ,pj)∈Ti(k)} p
xj

j

Transmit mi(k)
for j ∈ Ni do

Receive mj(k)
Compute the prime factorization of mj(k) to

recover (xl, pl) for all l ∈ Lj(k)
end for
Ti(k + 1) = Ti(k) ∪ {(xl, pl) : l ∈

⋃
j∈Ni

Lj(k)}
end for

Figure 2: An example of PrimeTime running on an
undirected graph.

local table T7(k), while the two columns to the right
indicate node 7’s transmitted message, m7(k), and node
7’s incoming messages, mj(k) with j ∈ N7. Incoming
messages are color coded with their node of origin;
e.g., the messages that node 7 receives from node 5 are
indicated in green.

Note that, in steady state, since Ti will contain the
data of every agent in the network, each agent’s message
will be the product of every agent’s prime raised to the
corresponding data’s power - a potentially large message
with large amounts of redundancy.

B. Incremental PrimeTime

If dropped packets or other communication errors are
common, and if both the range of the data and the
network itself are quite small, this redundancy may be
welcome. However, if either the data or the network
is large, then it might be infeasible or impractical to
constantly transmit possibly large integers. In this case,
we introduce Incremental PrimeTime, a modified version
of PrimeTime that has better scalability through reduced
redundancy, shown in Algorithm 2.

In Incremental PrimeTime, instead of transmitting the
product of their entire table, agents only transmit new
data. More precisely, instead of setting mi(k) according
to (1), each agent first constructs an auxiliary set

Ai(k) = Ti(k)− Ti(k − 1). (2)

Then, mi(k) is formed by

Algorithm 2 Incremental PrimeTime

Initialize Ti(0) = {(xi, pi)}, Ti(−1) = ∅
for k ≥ 0 do

Set Ai(k) = Ti(k)− Ti(k − 1)
mi(k) =

∏
{j:(xj ,pj)∈Ai(k)} p

xj

j

Transmit mi(k)
for j ∈ Ni do

Receive mj(k)
Compute the prime factorization of mj(k) to

recover (xl, pl) for all l ∈ Lj(k)
end for
Ti(k + 1) = Ti(k) ∪ {(xl, pl) : l ∈

⋃
j∈Ni

Lj(k)}
end for

Figure 3: An example of Incremental PrimeTime running
on an undirected graph.

mi(k) =
∏

{j:(xj ,pj)∈Ai(k)}

p
xj

j . (3)

To demonstrate, the same example from Figure 2 is
shown in Figure 3, but with the system running Incre-
mental PrimeTime instead. Compared to the previous
example, node 7 updates its table identically. However,
by using Ai(k) to form messages, each agent only
transmits each data-prime pair once, during the time step
right after that agent first receives it. This means that,
for Incremental PrimeTime, in steady state mi(k) = 1.
Once every agent knows every other agent’s data, no new
data will be obtained, so Ai(k) = ∅.

Incremental PrimeTime has a clear advantage over
PrimeTime in that its messages will be smaller, which
will allow it to scale better for larger networks and larger
M . However, PrimeTime has the benefit of having highly
redundant messages. Each agent transmits its entire table
at each time step, compared to Incremental PrimeTime,
in which agents transmit each data-prime pair exactly
once. Intuitively, this means that if the system suffers
from packet loss or something else that causes the graph
topology to be dynamic, PrimeTime will be able to pass
along data and complete its tables more consistently than
its incremental version.

5016

C. Open Graphs

PrimeTime and Incremental PrimeTime can both be
easily extended to handling open graphs, assuming that
the system is in steady state. To add a new agent i to
the network, i just needs to query one of its neighbors
for its table to find the smallest unused prime. It then
starts performing PrimeTime as if it were at time k = 0,
and so all other agents will eventually update their table
with the new prime-data pair.

Now, consider the case in which node i wants to
leave the network. Since the data is upper bounded by
M , we can set xi = M ′, the smallest integer that is
not used in the range of xi, as an indicator of leaving
the network. Just before agent i leaves, it transmits
mi(k)

′ = mi(k) × pM
′

i , where mi(k) is formed in
the usual way according to PrimeTime or Incremental
PrimeTime. When agent j receives this message and
computes the prime factorization to recover pM

′

i , it sim-
ply removes the pair (xi, pi) from its table and includes
pM

′

i in its product for its next message mj(k + 1), to
pass agent i’s “goodbye” along the network.

These methods are only guaranteed to work for addi-
tion and removal of agents once the system has achieved
steady state. If the system has not yet achieved steady
state, then problems may arise if the graph’s topology
contains any loops.

IV. PERFORMANCE ANALYSIS

A. Consensus Speed

We start by rewriting the equation for PrimeTime mes-
sages (1) in terms of its graph theoretic representation.
At time k = 0, agents transmit only their own prime
and data, and so receive the data from their one-hop
neighbors. At time k = 1, agents transmit both the
primes and data of their 1-hop neighbors and their own,
and so receive that data from their 1-hop neighbors’ 1-
hop neighbors, i.e. their two hop neighbors. As such, we
can see that agents hear back from their k-hop neighbors
at time k − 1, and we can write the following equation
for Ti(k):

Ti(k) =
⋃

j∈N (k)+
i

(pj , xj), (4)

from which we can derive the equation for mi(k),

mi(k) =
∏

j∈N (k)+
i

p
xj

j . (5)

We now present PrimeTime’s finite termination.

Theorem 1. Let d be the diameter of G. Then for all i,
Ti(k) contains the data for all agents in the network for
all k ≥ d, and no sooner.

Proof. First, we will show that every agent’s table is
complete at time d. Let k ≥ d, and consider some
node i. By definition of the diameter of a graph, d is
the smallest integer such that all other nodes can be
reached from node i in d hops or fewer. Therefore,
N (d)+

i = V , so N (k)+
i = V . Plugging this into (4) yields

Ti(k) =
⋃

j∈N (k)+
i

(pj , xj) =
⋃

j∈V(pj , xj), which
means that the table is complete.

Now, let k < d. Again, by definition of the diameter,
there exists some pair of nodes i, j such that j is a d-hop
neighbor of i, and j is not a ℓ-hop neighbor of i for any
ℓ < d. Therefore, (xj , pj) /∈ Ti(k), and so not all tables
are complete.

Immediately from Theorem 1, we see that mi(k) =∏
i∈V pxi

i for all k ≥ d. This means that every agent
will transmit all agents’ data from time d onwards. If the
network is large, then this message may be impractical
to form and compute the prime factorization of.

Now, consider the messages for Incremental Prime-
Time. In this case, messages are only constructed from
new entries into Ti(k). However, the same rate of infor-
mation propagation as before holds, and so Ti(k) updates
as in (5). This means that Incremental PrimeTime also
completes its table in exactly d time steps, using an
identical argument as above. The messages, however,
update a bit differently:

mi(k) =
∏

j∈N (k)−
i

p
xj

j . (6)

Because N (d)+
i = V for all i, N (d+1)−

i = N (d+1)
i −

N (d)+
i = ∅. Therefore, all agents will transmit just 1 at

time d+1 and above. As before, tables will be complete
after d rounds of communication, after which consensus
can be achieved.

B. Scalability

Scalability appears as an immediate concern for
PrimeTime, since messages that are composed of poten-
tially long products might get large. This might require
custom implementations of large, unsigned integers, and
may also make the prime factorization step infeasible,
depending on hardware constraints of the application of
interest. Certainly, Incremental PrimeTime would scale
better than PrimeTime in this regard. We investigate the
scalability of Incremental PrimeTime in simulation in
Section V, but provide a few intuitions below.

If the number of agents in the network N is large,
then agents will be forced to use larger and larger prime
numbers. The steady-state message size for PrimeTime
will therefore increase at least as fast as N factorial,
if not worse. A large range of integer data would also
cause the message size to blow up quickly, since some

5017

of the primes would be raised to large powers. Although
Incremental PrimeTime doesn’t have the same steady-
state message as PrimeTime, messages in the transient
could still be quite large, for the same reasons as above.

The topology of the graph will also affect the message
size - in the case of PrimeTime, it affects how fast the
messages increase in size, while for Incremental Prime-
Time, it has a direct connection the transient message
size. Recall that Incremental PrimeTime messages can
be written according to (6). Therefore, the message size
for agent i at time k is directly related to |N (k)−

i |, the
number of exclusive k-hop in-neighbors of i. All else
being equal, graphs with large, highly connected clusters
would therefore have the largest message sizes under
Incremental PrimeTime.

Remark. Note that there exists an alternate equivalent
algorithm that still builds up tables Ti(k) with data
and IDs, but instead of using prime numbers and prime
factorizations, it simply transmits the data-ID pairs as
two integers, and transmits multiple pairs as a long
vector (e.g., 2 pairs would require four integers, 3 pairs
would require six, etc.). This vectorized scheme mimics
the behavior of Incremental PrimeTime exactly, except
for the actual content of the message. Thus, the main
interest in PrimeTime is any possible savings in the
message size. We will use the vectorized scheme as our
point of comparison, since like PrimeTime it requires no
effort on behalf of those implementing the algorithm to
create new data types or determine optimal encodings.
As such, we leave the rigorous study of PrimeTime’s
information theoretic properties to future work.

Remark. For a specific application, it may be possible
to lower bitrate on a per-implementation basis by ex-
ploiting the specific properties of that problem. However,
this approach is highly inflexible and not applicable to a
general class of problems, while PrimeTime can be used
without those restrictions.

V. NUMERICAL RESULTS

To investigate the possible scalability of Incremental
PrimeTime, we performed a brief simulation study. We
leave out basic PrimeTime, as Incremental PrimeTime
achieves the same convergence speed with less com-
munication overhead. For each run, we generated 100
random geometric graphs, since graphs of this type are
generally a good model for many physical applications
(e.g. in environmental sensor networks, physical distance
is often the main determiner of whether two nodes
can communicate or not [3]). N points were uniformly
generated on the unit square, and edges between two
nodes were added if they were within r distance of each
other. If a graph was not connected, we regenerated it

(a)

(b)

Figure 4: Message sizes for Incremental Primetime and
the vectorized scheme when M = 3 (a) and M = 5 (b).

with the same parameters. We then compiled the non-
1 messages formed by Incremental PrimeTime over all
the graphs, and saw which messages fit within 4-byte
unsigned integers versus 8-byte unsigned integers, and
used that to compute the average amount of bytes used
per message. We chose 8-bytes as a cutoff point, as
the largest data type natively implemented for many
common programming languages is the 64-bit unsigned
integer, and because from that point on prime factoriza-
tions start to become more costly computationally.

As a point of comparison, we also ran the vectorized
scheme mentioned at the end of Section IV. Because the
vectorized scheme mimics the behavior of Incremental
PrimeTime exactly, except for the message size, compar-
ing the two allows to see how much communication cost
we save using prime factorization. Note that we assumed
that the vectorized scheme used 16-bit integers, since
that is the default for C and C++ (for reference, an int
in Python is typically 32 bits).

The results are shown in Figure 4 and Table I. Table
I shows the average message size for both Incremental
PrimeTime and the vectorized scheme. It also includes
the bytes needed for the largest message formed by In-
cremental PrimeTime as a rough measure of practicality.
Figure 4 shows the distribution of the byte requirements
for messages formed by both schemes, with Incremental
PrimeTime in red and the vectorized scheme in blue.

As seen in Figure 4a, for random geometric graphs

5018

Graph Parameters Max Bytes
(Incremental PrimeTime)

Avg Bytes
(Incremental PrimeTime)

Avg Bytes
(Vectorized Scheme)

N = 15, r = 0.36, M = 3 14 5.44 11.54
N = 15, r = 0.36, M = 5 19 6.94 11.71
N = 10, r = 0.36, M = 5 12 4.98 8.53
N = 15, r = 0.5, M = 3 16 6.88 16.67

Table I: Average byte requirements for messages formed by Incremental PrimeTime and the vectorized scheme,
along with the maximum byte requirement for Incremental PrimeTime for reference.

with N = 15, r = 0.36, and a maximum data value
of M = 3, ∼98% of messages formed by Incremental
PrimeTime were able to fit within an 8-byte unsigned
integer or smaller. For contrast, transmitting a single
data-ID pair requires 4 bytes, with the average byte
requirement for the vectorized scheme in this case being
about 2.1 times that of Incremental PrimeTime. When
we raise M to 5 (Figure 4b), Incremental PrimeTime
still maintains a smaller average byte requirement of
6.94 (compared to 11.71), but the proportion of messages
that require more than 8 bytes rises to 13%. The average
message size for the vectorized scheme is about the same
between the two previous cases, since the integer data is
transmitted as a 16-bit integer, regardless of its size.

On the other hand, reducing the network size to
N = 10 while keeping M = 5 lowers the proportion
of messages larger than 8 bytes to < 1%, making an
8 byte integer implementation seem more reasonable,
while still having messages about 1.7 times smaller than
the vectorized scheme. Lastly, to demonstrate how the
graph’s topology affects the message size, we set N and
M back to 15 and 3 and set r = 0.5 (back to Figure
4a). In this case, although 12% of messages were above
8 bytes, the relative reduction in average message size
increased to about 2.4 times.

We also ran Incremental PrimeTime on larger graphs,
ranging up to 100 nodes, but have omitted the results
since they show similar trends to the smaller graphs.

VI. CONCLUSION

We have shown how PrimeTime uses the proper-
ties of prime numbers to efficiently encode multiple
distinct pieces of implicitly ID-tagged data within a
single message, allowing for networks to achieve finite-
time consensus while still accommodating open graphs.
PrimeTime seems well-suited to applications with small
graphs and a limited data range that want global in-
formation sharing, such as intersection management for
autonomous vehicles. However, PrimeTime does have
issues with scalability, and so we introduce Incremental
PrimeTime to help lower the message size. Future work
may include extending PrimeTime to allow for directed
graphs and dynamic graph topologies, as well as looking
into further message truncation to keep the messages
within 8 bytes for practical implementations.

VII. ACKNOWLEDGMENTS

We would like to thank Anthony Goeckner, Qi Zhu,
and Randy Berry for their helpful insights and discus-
sions.

REFERENCES

[1] K. D. Listmann, M. V. Masalawala, and J. Adamy, “Consensus
for formation control of nonholonomic mobile robots,” in 2009
IEEE International Conference on Robotics and Automation,
pp. 3886–3891, 2009.

[2] R. Madan and S. Lall, “Distributed algorithms for maximum
lifetime routing in wireless sensor networks,” IEEE Transactions
on Wireless Communications, vol. 5, no. 8, pp. 2185–2193, 2006.

[3] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Distributed
kalman filtering based on consensus strategies,” IEEE Journal on
Selected Areas in Communications, vol. 26, no. 4, pp. 622–633,
2008.

[4] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001,
2003.

[5] T. Li and L. Xie, “Distributed consensus over digital networks
with limited bandwidth and time-varying topologies,” Automat-
ica, vol. 47, no. 9, pp. 2006–2015, 2011.

[6] Y. Gao, J. Ma, M. Zuo, T. Jiang, and J. Du, “Consensus of
discrete-time second-order agents with time-varying topology and
time-varying delays,” Journal of the Franklin Institute, vol. 349,
no. 8, pp. 2598–2608, 2012.

[7] S. S. Kia, B. Van Scoy, J. Cortes, R. A. Freeman, K. M. Lynch,
and S. Martinez, “Tutorial on dynamic average consensus: The
problem, its applications, and the algorithms,” IEEE Control
Systems Magazine, vol. 39, no. 3, pp. 40–72, 2019.

[8] S. Sundaram and C. N. Hadjicostis, “Finite-time distributed
consensus in graphs with time-invariant topologies,” in 2007
American Control Conference, pp. 711–716, 2007.

[9] A. Sandryhaila, S. Kar, and J. M. F. Moura, “Finite-time dis-
tributed consensus through graph filters,” in 2014 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1080–1084, 2014.

[10] “Finite-time distributed consensus via binary control protocols,”
Automatica, vol. 47, no. 9, pp. 1962–1968, 2011.

[11] Z. Liu, H. Jahanshahi, C. Volos, S. Bekiros, S. He, M. O. Alassafi,
and A. M. Ahmad, “Distributed consensus tracking control of
chaotic multi-agent supply chain network: A new fault-tolerant,
finite-time, and chatter-free approach,” Entropy, vol. 24, no. 1,
2022.

[12] L. Wang and F. Xiao, “Finite-time consensus problems for
networks of dynamic agents,” IEEE Transactions on Automatic
Control, vol. 55, no. 4, pp. 950–955, 2010.

[13] D. Gó mez-Gutiérrez, C. R. Vázquez, S. Čelikovský, J. D.
Sánchez-Torres, and J. Ruiz-León, “On finite-time and fixed-time
consensus algorithms for dynamic networks switching among
disconnected digraphs,” International Journal of Control, vol. 93,
pp. 2120–2134, nov 2018.

[14] I. L. Donato Ridgley, R. A. Freeman, and K. M. Lynch, “Self-
healing first-order distributed optimization,” in 2021 60th IEEE
Conference on Decision and Control (CDC), pp. 3850–3856,
2021.

5019

