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Abstract— Q-learning is a promising method for solving
optimal control problems for uncertain systems without the
explicit need for system identification. However, approaches
for continuous-time Q-learning have limited provable safety
guarantees, which restrict their applicability to real-time safety-
critical systems. This paper proposes a safe Q-learning algo-
rithm for partially unknown linear time-invariant systems to
solve the linear quadratic regulator problem with user-defined
state constraints. We frame the safe Q-learning problem as a
constrained optimal control problem using reciprocal control
barrier functions and show that such an extension provides a
safety-assured control policy. To the best of our knowledge, Q-
learning for continuous-time systems with state constraints has
not yet been reported in the literature.

I. INTRODUCTION

Reinforcement learning(RL) has a strong inter-relationship
with the theory of adaptive optimal control [1]. In particular,
RL algorithms have seen reasonable success in solving
continuous-time optimal control problems for systems with
uncertain/unknown dynamics (see [2]–[6] and references
therein for some examples). Stemming from the theory of
dynamic programming for continuous-time systems, such ap-
proaches typically solve the Hamilton-Jacobi-Bellman(HJB)
equations [7] under uncertain system dynamics by observing
system trajectories. However, unlike its discrete-time coun-
terpart, the Bellman equation, the HJB equation requires
accurate knowledge of the system dynamics. Thus, solv-
ing HJB equations for continuous-time uncertain systems
involve some degree of system identification to identify the
unknown/uncertain system dynamics.

One promising approach to solving optimal control prob-
lems without exact knowledge of the system dynamics
is Q-learning [8]. Inspired by algorithms for discrete-time
Q-learning [9]–[13], significant research effort is directed
towards extending Q-learning to continuous-time optimal
control problems [14]–[20]. Such approaches have shown
promising results in learning optimal control policies without
needing to know the exact system dynamics. However,
applying such algorithms to real-time safety critical systems
is still an open challenge due to lack of safety guarantees.

Formally, the notion of safety of dynamical systems is the
certification of forward invariance [21] of state and actuation
constraint sets. Under this definition of safety, the safe
RL problem is the mathematical construct to solve optimal
control problems under user-defined state and actuation con-
straints. In the literature, some common approaches to ensure
safety, include model predictive control (MPC) [22]–[24],
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reachability analysis [25], [26] and control barrier functions
[27], [28] to name a few. Control barrier functions have
gained popularity recently because they provide a Lyapunov-
like analysis to study a system’s safety without the need to
compute the system trajectories.

In the literature, the state and input-constrained linear
quadratic regulation (LQR) problem has been extensively
studied [29]–[32]. Further, approaches that combine adaptive
and optimal control theory to solve the LQR problem for un-
certain systems have also been reported [33]–[36]. However,
solving constrained LQR problems under uncertain system
dynamics is still an open challenge.

A particular class of solutions for the constrained adaptive
optimal control problem can be found in [37]–[40] where
control policies are learned via a constrained approximate
dynamic programming approach. However, all these ap-
proaches typically require an online system identification
to identify uncertain system dynamics. This requirement
for system identification comes at a price of increased
computation complexity for these approaches. As discussed
before, some continuous-time Q-learning approaches have
shown the ability to learn optimal control policies without
needing this online system identification and thus, they are
computationally cheaper.

In the context of continuous-time Q learning, the au-
thors of [41] have applied MPC to Q-learning in order
to incorporate actuation constraints. The authors of [42]
discuss an integral reinforcement learning technique with
input constraints. Continuous-time Q-learning has been used
for kino-dynamic motion planning in [43].

To the best of our knowledge, continuous-time Q-learning
with state constraints has not been reported in the literature.
In this paper, we propose a safe Q-learning algorithm to
handle user-defined state constraints using reciprocal control
barrier functions [27].

A. Contributions

This work extends the continuous-time Q-learning frame-
work to incorporate state constraints. The distinct advantage
of the proposed method over constrained approximate dy-
namic programming approaches is that it does not require
an explicit system identification step while safely learning
the optimal control policy.

We first formulate the safe Q-learning problem as the
constrained optimization of the Q function with respect to the
control policy, subject to the constraint on the time derivative
of a reciprocal control barrier function. We subsequently
formulate the Lagrangian of the optimization problem and
use an analytical solution to compute a constrained optimal
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control policy. We show that the proposed method bridges the
gap between constrained adaptive optimal control and the ad-
hoc method of safeguarding controllers [38]. We then extend
the integral reinforcement learning technique to safely learn
the optimal control policy online and show that the proposed
method satisfies the user-defined state constraints.

B. Mathematical notations used

In this paper, we use ≽ and ≻ to denote square matrices’
semi-definite and definite ordering, respectively. For a func-
tion (·) : Rn → R, ∇x(·) denotes ∂(·)

∂x . We use Nn to denote
the set of all natural numbers up to and including n. We use
λmax(·) and λmin(·) to refer to the maximum and minimum
eigenvalues of a square matrix, respectively. We use ∥ · ∥ to
denote the 2-norm for vectors and the corresponding induced
norm for matrices. Additionally, tr(·) denotes the trace of a
square matrix.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the linear time-invariant system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the
control input, A ∈ Rn×n is the uncertain system matrix, and
B ∈ Rn×m is the input matrix. We assume that pair (A,B)
is controllable and B is full rank and known. For the system
in (1), we seek to solve the infinite-horizon linear quadratic
regulation (LQR) problem by minimizing the cost functional

J(x(0), u) ≜
∫ ∞

0

c(x(τ), u(τ))dτ, (2)

with respect to the control policy u, where c(x, u) ≜
1
2x

⊤Mx + 1
2u

⊤Ru, with M ∈ Rn×n and R ∈ Rm×m

being the state and input weighing matrices respectively. The
matrix M is positive semi-definite and the pair (

√
M,A) is

detectable. The control weighing matrix R is positive defi-
nite. Additionally, we impose the following safety constraints
on the state trajectory of the system

x(t) ∈ S ∀ t ∈ R≥0, (3)

where the set S is a user-defined compact set containing
the origin. In other words, the control policy must ensure
the forward invariance of the set S [21]. For the rest of the
paper, we suppress the time dependence of the signals x(·)
and u(·) for notational brevity.

A. Unconstrained optimal control

For the system in (1) and the cost functional in (2), the
Hamiltonian [7] H : Rn × Rm × Rn → R, is defined as

H(x, u,∇xV
∗
s (x)) ≜ c(x, u)+∇xV

∗
s (x)

⊤(Ax+Bu), (4)

where V ∗
s (x) : Rn → R is the optimal value function defined

as
V ∗
s (x(t)) ≜ min

u(τ)∀τ∈R≥0

J(x(t), u) (5)

The optimal control law for the unconstrained system is
obtained by minimizing the Hamiltonian with respect to

(w.r.t.) the control action for each state x ∈ Rn, i.e., u∗(x) =
argminuH(x, u,∇xV

∗
s (x)) = −R−1B⊤∇xV

∗
s (x). For the

case of LTI systems, under quadratic integral cost function-
als, it is well known that the value function is a quadratic
function of the state [7], i.e., V ∗

s (x) = 1
2x

⊤Px, where
P ∈ Rn×n is a unique positive definite symmetric matrix
obtained by solving the algebraic Riccati equation (ARE)

A⊤P + PA− PBR−1B⊤P +M = 0, (6)

and the optimal control takes the form u∗(x) =
−R−1B⊤Px. The solution to the ARE in (6) and the cor-
responding optimal control law require complete knowledge
of the system matrices A and B. To solve optimal control
problems for systems with uncertain/unknown dynamics,
continuous-time approximate dynamic programming (ADP)
approaches have been proposed in the literature [2], [3], [33].

B. Continuous-time Q-learning

A notable approach for solving the ARE in a model-free
setting is to define the so-called “Q-function” inspired by
the field of reinforcement learning in discrete-time setting
[8], [13], [44]. The advantage of this method is that the
optimal control policy can be learned online from the state
observations without needing to know the system dynamics.

In the present work, we define the function Q : Rn ×
Rm → R as [15], [45]

Q(x, u) ≜ V ∗
s (x) +H(x, u,∇xV

∗
s ). (7)

Substituting the value function from (5) and the Hamiltonian
yields

Q(x, u) =
1

2
X⊤QX, (8)

where X ≜ [x⊤ u⊤]⊤, Q ≜ [Q11, Q12;Q21, Q22], Q11 ≜
PA + A⊤P + P +M , Q12 = Q⊤

21 ≜ PB, and Q22 ≜ R
are matrices of appropriate dimensions (cf. [15]). Based on
this definition of the Q function, the optimal control law
u∗ : Rn → Rm, can be written as

u∗(x) = argmin
u

Q(x, u) = −Q−1
22 Q21x. (9)

The expression in (9) offers a possible way to approximate
the optimal control in a model-free way using the estimates
of Q22 and Q21 [15]. In this paper, we extend the above
formulation to incorporate user-defined safety constraints by
utilizing Lyapunov-like control barrier functions.

C. Control barrier functions

A versatile approach to ensure the safety of dynamical
systems is via control barrier functions, which are Lyapunov-
like functions used to provide safety certificates to control
policies [27], [28], [46]. Specifically, let there exist a con-
tinuously differentiable function h(x) : Rn → R, such that
S = {x ∈ Rn : h(x) ≥ 0}, Int(S) = {x ∈ Rn : h(x) >
0}, ∂S = {x ∈ Rn : h(x) = 0}. where Int(S) and ∂S
are non-empty sets defined as the interior and the boundary
of the compact set S, respectively. The function h(x) is
often referred to as the “zeroing” control barrier function
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(ZCBF). In this paper, we consider another type of control
barrier function, namely - reciprocal control barrier function
(RCBF) [27] due to its similarities with Lyapunov functions.
The RCBF is defined as

Definition 1 (Reciprocal control barrier function [27]):
A continuously differentiable function Bs(x) : Int(S) → R
is said to be a RCBF for the system in (1) if there exist
class K functions α1, α2, α3 such that

1/α1(h(x)) ≤ Bs(x) ≤ 1/α2(h(x)), (10)

inf
u
[∇xBs(x)

⊤(Ax+Bu)] ≤ α3(h(x)), ∀ x ∈ S. (11)
Provided a valid RCBF Bs(x) exists, a control policy

u(x) : Int(S) → Rm satisfying

∇xBs(x)
⊤[Ax+Bu(x)] ≤ γ(1/Bs(x)) ∀ x ∈ Int(S),

(12)
for some class K function γ(·); renders the set S forward
invariant for the system (1) [27]. We now use RCBF to
ensure safe online training of the continuous-time Q-learning
algorithm.

III. SAFE Q-LEARNING

We now detail the main contribution of the present work.
The objective of the proposed safe Q-learning algorithm is
to modify the optimal control policy of the unconstrained
problem to ensure safety. Thus, we qualify the optimization
problem in (9) by the safety constraint (12) and formulate
the safe Q-learning problem as

u∗safe(x) = argmin
u

Q(x, u), (13a)

s.t. ∇xBs(x)
⊤[Ax+Bu] ≤ γ(1/Bs(x)), (13b)

x(0) ∈ Int(S), (13c)

where Bs(x) is a user-defined candidate Lyapunov-like bar-
rier function for the constraint set S and γ : R → R is a
class K function. Under the structure of value function in
(5), we observe that the optimization problem outlined in
(13) is convex in the decision variable u. We formulate the
Lagrangian function L : Rn × Rm × R≥0 → R as

L(x, u, ν) =Q(x, u) + ν[∇xB
⊤
s [Ax+Bu]− γ(1/Bs(x))],

(14)
where ν ∈ R≥0 is the Lagrange multiplier. The optimal
control for the constrained system can be obtained from
∂L
∂u = 0, as

u∗safe(x) = −Q−1
22 Q21x− ν∗(x)R−1B⊤∇xBs(x), (15)

where ν∗(x) : Rn → R≥0 is the Lagrange multiplier derived
from the Karush-Kuhn-Tucker(KKT) conditions [47, Section
5.3.3], defined as

ν∗(x) = max(Cb(x)/Rb(x), 0), (16)

where Cb(x) ≜ −∇xBs(x)
⊤BR−1B⊤∇xV

∗
s (x) +

∇xBs(x)
⊤Ax + γ(1/Bs(x)) (cf. [48], [49]), and

Rb(x) ≜ ∇xBs(x)
⊤BR−1B⊤∇xBs(x). We observe

that the expression for the optimal Lagrange multiplier
contains unknown terms of the system matrix A and the

matrix P of the optimal value function. To make the control
law implementable and to simplify the analysis, we estimate
the Lagrange multiplier by a user-defined positive constant
ν = ksb ∈ R>0. The certainty equivalence controller thus
becomes

ûsafe(x) = −Q̂−1
22 Q̂21x− ksbR

−1B⊤∇xBs(x), (17)

where Q̂21 and Q̂22 denote the online estimates for Q21 and
Q22, respectively with appropriate dimensions.

Remark 1: The optimal Lagrange multiplier ν∗(·) in (15)
is a state-varying gain that switches between zero and
Cb(x)/Rb(x) depending upon the sign of Cb(·). If the
first term of the control input is sufficient to ensure safety
(i.e., satisfies (13b)) at a given state x ∈ Int(S), then
Cb(x) ≤ 0 and consequently ν∗(x) = 0 (this property of
Lagrange multipliers is termed as complementary slackness,
see [47]). Additionally, ν∗(·) is non-zero when the first term
of control input in (15) is unable to satisfy the constraint
on its own. Thus, the second term also becomes active
and ν∗(·) provides a way to ensure safety. However, as
discussed above, ν∗(·) contains terms of unknown/uncertain
matrices A and P . To make the controller implementable,
we approximate the multiplier ν∗(x) by a constant ksb.
Under this approximation, there is no way to switch-off
the safety-inducing term (second term of (17)). Thus, the
proposed approximate control law is only sub-optimal, with
the optimality gap dependent on the choice of ksb. Further,
we show that the satisfaction of the safety constraint is
not compromised under the approximation of the Lagrange
multiplier by the constant ksb.

Remark 2: The second term in (17) closely resembles a
“safeguarding controller” coined in [38]. The developments
in the present paper aim to bridge the gap between the ad-
hoc approach of safeguarding controllers and the theory of
constrained optimal control.

We now extend the actor-critic learning algorithm from
[15] to learn the controller in (17) online.

A. Actor-Critic based online learning

The optimal Q(x, u∗) function from (8) can be parame-
terized as

Q(x, u∗) =
1

2
X⊤QX =

1

2
vech(Q)⊤ϕ(X), (18)

where vech(Q) ∈ Rp with p ≜ (n + m)(n + m + 1)/2,
denotes the half-vectorization of Q yielding a column vec-
tor containing the upper-triangular elements of Q, where
elements off the diagonal are considered to be 2Qij ; and
ϕ : Rn+m → Rp denotes the quadratic basis function
yielding a vector containing the elements {XiXj}i∈Nn,j∈Nm .
For notational brevity, we define Wc ≜ 1

2vech(Q). Since the
matrix Q is unknown, the vector Wc and control law u∗(·)
are unknown and unimplementable, and thus require cor-
responding estimators. The “critic” estimator approximating
the Q function is given by

Q̂(x, ûsafe) = Ŵ⊤
c ϕ(X), (19)
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where Ŵc ∈ Rp is the weight estimate for the critic and the
estimated control law (“actor”) is given by

ûsafe(x) = Ŵ⊤
a x− ksbR

−1B⊤∇xBs(x), (20)

where Ŵa ∈ Rn×m is the actor weight estimate. The
objective of the actor and critic components of the algorithm
is to minimize the estimation errors defined as W̃a(t) ≜
−Q12Q

−1
22 − Ŵa(t) and W̃c(t) ≜ Wc − Ŵc(t) respectively.

To learn the ideal weights Wc and Wa(≜ −Q12Q
−1
22 ), we

write the fixed point optimality equation based on integral
reinforcement learning [15] as

Q(x(t), u∗(t)) = Q(x(t− T ), u∗(t− T ))−
∫ t

t−T
c(x, u)dτ,

(21)
where T ∈ R>0 is a fixed time interval. The expression
in (21) is the continuous-time equivalent of the Bellman
optimality equation for discrete-time reinforcement learning.
Now, under the uncertainties in the system matrix A and
the ARE solution P , we define the temporal difference (TD)
error in the estimate of the Q function as

ec(t) ≜ Q̂(x(t), û(t))− Q̂(x(t− T ), û(t− T ))

+

∫ t

t−T
c(x, û)dτ = Ŵ⊤

c ψ(t) +

∫ t

t−T
c(x, û)dτ,

(22)
where ψ(t) ≜ ϕ(X(t)) − ϕ(X(t − T )). To learn the ideal
weights online, we define the squared norm of the critic
error as δc ≜ 1

2∥ec∥
2, and subsequently, write the gradient

descent-based update law for the critic as

˙̂
Wc(t) = −ηc

ψ(t)

(1 + ψ(t)⊤ψ(t))2
ec(t), (23)

where ηc ∈ R>0 is a user-defined gain. The update law for
the actor is given by

˙̂
Wa(t) = proj(−ηa(Q̂21(t)

⊤Q̂22(t)
−1 + Ŵa)), (24)

where the estimates Q̂22(t) and Q̂21(t) are extracted from
Ŵc(t), proj(·) denotes the projection operator [50] that
ensures ∥Ŵa(t)∥ ≤ W a ∀ t ∈ R≥0 where W a ∈ R>0 is a
user-defined bound and ηa ∈ R>0 is the user-defined actor
gain. Since the update law for actor depends on the estimate
of the critic, the critic’s learning rate must be substantially
larger.

Assumption 1: The signal ψ(t)
1+ψ(t)⊤ψ(t)

is persistently ex-
citing (PE).

Remark 3: The update laws in (23) and (24) are imple-
mented in continuous-time by maintaining a buffer of the
past trajectory data and computing the signal ec accordingly.

B. Safety and Stability Analysis

Theorem 1: For the system in (1) and under the critic and
actor update laws in (23) and (24) respectively, the control
law in (20) ensures that the state x, the actor and critic weight
estimation errors (W̃a and W̃c) are uniformly ultimately
bounded (UUB), and the set S is forward invariant.

Proof: According to the definition of forward invariance
[21], we initialize the state x such that x(0) ∈ Int(S).

We now consider the positive definite candidate Lyapunov
function V : D → R, where D ≜ Int(S) × Rp+nm, defined
as

V(ζ) = 1

2
x⊤Px+ ksbBs(x) +

1

2
∥W̃c∥2 +

1

2
tr(W̃⊤

a W̃a),

(25)
where ζ ≜ [x⊤ W̃⊤

c vec(W̃a)
⊤]⊤ is the augmented state

vector for the overall closed loop system. Using (10) one
can show that there exist two class K functions αl, αu such
that αl(∥ζ∥) ≤ V(ζ) ≤ αu(∥ζ∥) ∀ ζ ∈ D. In other words,
V(ζ) is a valid candidate Lyapunov function [51]. Computing
the time derivative of V and substituting the control law (20)
and the weight update laws (23), (24), we obtain the bound

V̇(ζ) ≤ −κx∥x∥2 − κc∥W̃c∥2 − κa∥W̃a∥2

− κb∥B⊤∇xBs(x)∥2 + ksbB∥B⊤∇xBs(x)∥+ ιc,
(26)

where κc ≜ 1
8ηc, κa ≜ ηa, κx ≜ 1

2λmin(M +Q12Q
−1
22 Q21),

κb ≜ k2sbλmin(R
−1), B ≜ supx∈Int(S) ∥Ax∥/∥B∥+ ∥W ax∥,

ιc ≜ 2η2aW
2
a∥R

−1∥2

ηc
+ supx∈Int(S)

W
2
a∥x∥

2

2 are positive con-
stants. Completing the squares, we write

V̇(ζ) ≤ −κx∥x∥2 − κc∥W̃c∥2 − κa∥W̃a∥2

− κb
2
∥B⊤∇xBs(x)∥2 + ι,

(27)

where ι ≜ B2

2ksbλmin(R−1) + ιc is a finite positive constant.
It can be shown that there exists a class K function αv(·)
such that αv(∥ζ∥) ≤ κx∥x∥2 + κc∥W̃c∥2 + κa∥W̃a∥2 +
κb

2 ∥B⊤∇xBs(x)∥2. We thus write V̇(ζ) ≤ −αv(∥ζ∥) + ι.
Now, since x(0) ∈ Int(S), V(ζ(0)) is a finite quantity.
Additionally, we observe that V̇(·) < 0 outside the compact
set Ωv ≜ {ζ ∈ D : ∥ζ∥ ≤ α−1

v (ι)}. Thus using [51, Theorem
4.18] it can be shown that ζ is uniformly ultimately bounded
(UUB). Since x(0) ∈ Int(S) =⇒ V(·) < ∞ ∀ t ∈ R≥0,
the RCBF Bs(x(t)) < ∞ ∀ t ∈ R≥0. By definition, at no
point in time does the state trajectory intersect the boundary
of the safe set ∂S [52]. Thus the state x(t) ∈ S ∀ t ∈ R≥0

and the set S is forward invariant for the system in (1).
Remark 4: The ultimate bound for the system depends on

the term ι which can be reduced by choosing the critic gain
ηc to be much larger than ηa, and choosing an appropriate
safety gain ksb. However, upon increasing ksb, it can be
shown that the control effort required increases. Thus there
exists a trade-off between the safety and control effort
objectives.

IV. SIMULATION RESULTS

To demonstrate the safety and performance of the pro-
posed control algorithm, we consider the linear system with
A = [0, 1; 1.6, 2.8] and B = [0; 1]. We seek to solve the
linear quadratic regulator problem with the matrices M = I2
and R = 0.1. We impose a constraint on the norm of the
state x, i.e., ∥x(t)∥ ≤ 1.5 ∀ t ∈ R≥0. To incorporate the
constraint we construct the candidate RCBF as Bs(x) =

( 1.52

1.52−x⊤x
−1)2. The actor gain (ηa) was chosen to be 0.05,

and the critic gain (ηc) was chosen to be 20. To enforce
the safety constraints, the gain ksb was chosen to be 0.2.
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The integration window T was set to 0.01s. We apply an
exploration noise to the control input for the first 10s of the
simulation to ensure sufficient excitation and enable state
exploration.

Fig. 1(a) shows the state trajectory of the system under
the influence of the proposed control law starting from the
initial condition x0 = [1; 1]. We observe that the proposed
controller meets the regulation objectives and brings the
state to the origin within approximately 10 seconds after
removing the exciting signal. Fig. 1(b) shows the plot for the
actor weight estimate (Ŵa). We observe that the estimated
actor weight converges close to the true control gain (Wa).
However, there is a small steady-state error in the estimate
Ŵa2 (i.e., the weight corresponding to x2). The plot for
the norm of the state x is shown in Fig. 1(c) along with
the plot corresponding to the controller in [15]. We observe
that during the initial phase of the online RL training,
controller from [15] violates the safety constraint, whereas
the proposed controller meets the safety constraints at all
times. We now study the effect of variation of the safety

Fig. 1. (a) State Trajectory for the proposed algorithm (b) Estimated actor
weights (Ŵa) compared with the true control gains (Wa) (c) Plot of the
norm of state x compared with algorithm from [15].

TABLE I
PERFORMANCE ANALYSIS UNDER DIFFERENT SAFETY GAINS

Safety gain ksb 0.01 0.1 0.2 0.3 0.5
Total Cost 43.652 40.631 40.021 39.833 39.293

Peak Control effort 18.746 18.45 18.39 24 40

gain ksb on the performance of the proposed algorithm. To
demonstrate the same, we simulate the linear system under
different values of ksb starting from the same initial condition
x0 = [1; 1]. The exploration signal for all the cases was
kept the same to enable a fair comparison. The plot for
the norm of the state, along with the constraint bound, is
shown in Fig. 2. We observe that the state ventures closer
to the constraint boundary upon decreasing the value of ksb.
In other words, upon increasing ksb, the algorithm becomes
more conservative.

The comparison of the cost and the peak control effort
under different values of ksb is given in Table I. We observe
that upon increasing ksb, the total cost decreases, but the peak
control effort required increases (although for lower values of
ksb, the exploration control input dictates the peak control
effort). Thus we observe a trade-off between the cost and
the control effort required. However, the safety constraint is
never violated for all values of ksb.

Fig. 2. The plot of the norm of the state x for the proposed controller
under different values of ksb.

V. CONCLUSIONS

In this paper, we propose a safe Q-learning algorithm
utilizing reciprocal control barrier functions. Such an ap-
proach has the distinct advantage of learning optimal control
policies for uncertain LTI systems with user-defined state
constraints. We formulate the safe Q-learning problem as a
constrained optimization problem involving a constraint on
the time derivative of the RCBF. Subsequently, we derive
adaptation laws based on integral reinforcement learning for
the actor and critic estimators to estimate the constrained
optimal control law online. We prove that under the pro-
posed control law, the user-defined constraint set is forward
invariant. Additionally, the state and the estimation errors are
shown to be uniformly ultimately bounded via a Lyapunov
analysis. We subsequently demonstrate the safety and sta-
bility performance in a simulation study. Future extensions
to the present work could include extending the safe Q-
learning algorithm to consider the dynamics of the Lagrange
multiplier generated by the KKT conditions and extending
the proposed algorithm to include both actuation and state
constraints.
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